
Chapter 3

Mostly static pages

In this chapter, we will begin developing the professional-grade sample applica-
tion that will serve as our example throughout the rest of this tutorial. Although
the sample app will eventually have users, microposts, and a full login and au-
thentication framework, we will begin with a seemingly limited topic: the cre-
ation of static pages. Despite its apparent simplicity, making static pages is a
highly instructive exercise, rich in implications—a perfect start for our nascent
application.

Although Rails is designed for making database-backed dynamic websites,
it also excels at making the kind of static pages we might create using raw
HTML files. In fact, using Rails even for static pages yields a distinct advan-
tage: we can easily add just a small amount of dynamic content. In this chapter
we’ll learn how. Along the way, we’ll get our first taste of automated testing,
which will help us be more confident that our code is correct. Moreover, having
a good test suite will allow us to refactor our code with confidence, changing
its form without changing its function.

121

122 CHAPTER 3. MOSTLY STATIC PAGES

3.1 Sample app setup
As in Chapter 2, before getting started we need to create a new Rails project,
this time called sample_app, as shown in Listing 3.1.1

Listing 3.1: Generating a new sample app.
$ cd ~/environment

$ rails _6.0.1_ new sample_app

$ cd sample_app/

(As in Section 2.1, note that users of the cloud IDE can create this project in the
same environment as the applications from the previous two chapters. It is not
necessary to create a new environment.)

Note: For convenience, a reference implementation of the sample app is
available at GitHub,2 with a separate branch for each of chapter in the tutorial.

As in Section 2.1, our next step is to use a text editor to update the Gemfile
with the gems needed by our application. Listing 3.2 is identical to Listing 1.6
and Listing 2.1 apart from the gems in the test group, which are needed for
the optional advanced testing setup (Section 3.6) and integration testing starting
in Section 5.3.4. Note: If you would like to install all the gems needed for the
sample application, you should use the code in Listing 13.75 at this time.

Important note: For all the Gemfiles in this book, you should use the
version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the
ones listed below (although they should be identical if you are reading this
online).

1If you’re using the cloud IDE, it’s often useful to use the “Go to Anything” command (under the “Go” menu),
which makes it easy to navigate the filesystem by typing in partial filenames. In this context, having the hello,
toy, and sample apps present in the same project can be inconvenient due to the many common filenames. For
example, when searching for a file called “Gemfile”, six possibilities will show up, because each project has
matching files called Gemfile and Gemfile.lock. Thus, you may want to consider removing the first two
apps before proceeding, which you can do by navigating to the environment directory and running rm -rf

hello_app/ toy_app/ (Table 1.1). (As long as you pushed the corresponding repositories up to GitHub, you
can always recover them later.)

2https://github.com/mhartl/sample_app_6th_ed

https://github.com/mhartl/sample_app_6th_ed
https://gemfiles-6th-ed.railstutorial.org/

3.1. SAMPLE APP SETUP 123

Listing 3.2: A Gemfile for the sample app.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.1'

gem 'puma', '3.12.1'

gem 'sass-rails', '5.1.0'

gem 'webpacker', '4.0.7'

gem 'turbolinks', '5.2.0'

gem 'jbuilder', '2.9.1'

gem 'bootsnap', '1.4.4', require: false

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

end

group :development do

gem 'web-console', '4.0.1'

gem 'listen', '3.1.5'

gem 'spring', '2.1.0'

gem 'spring-watcher-listen', '2.0.1'

end

group :test do

gem 'capybara', '3.28.0'

gem 'selenium-webdriver', '3.142.4'

gem 'webdrivers', '4.1.2'

gem 'rails-controller-testing', '1.0.4'

gem 'minitest', '5.11.3'

gem 'minitest-reporters', '1.3.8'

gem 'guard', '2.15.0'

gem 'guard-minitest', '2.4.6'

end

group :production do

gem 'pg', '1.1.4'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

As in the previous two chapters, we run bundle install to install and
include the gems specified in the Gemfile, while skipping the installation of
production gems using the option --without production:3

3It’s worth noting that --without production is a “remembered option”, which means it will be included

124 CHAPTER 3. MOSTLY STATIC PAGES

$ bundle install --without production

This arranges to skip the pg gem for PostgreSQL in development and use
SQLite for development and testing. Heroku recommends against using dif-
ferent databases in development and production, but for the sample application
it won’t make any difference, and SQLite is much easier than PostgreSQL to
install and configure locally.4 In case you’ve previously installed a version of
a gem (such as Rails itself) other than the one specified by the Gemfile, it’s a
good idea to update the gems with bundle update to make sure the versions
match:

$ bundle update

With that, all we have left is to initialize the Git repository:

$ git init

$ git add -A

$ git commit -m "Initialize repository"

As with the first application, I suggest updating the README file to be
more helpful and descriptive by replacing the default contents of README.md
with the Markdown shown in Listing 3.3. The README includes instructions
for getting started with the application.5 (We won’t actually need to run rails
db:migrate until Chapter 6, but it does no harm to include it now.)

Note: For convenience, the full reference app README contains additional
advanced information not present in Listing 3.3.
automatically the next time we run bundle install.

4Generally speaking, it’s a good idea for the development and production environments to match as closely as
possible, which includes using the same database, so I recommend eventually learning how to install and configure
PostgreSQL in development—but now is not that time. When the time comes, Google “install configure postgresql
<your system>” and “rails postgresql setup”, and prepare for a challenge. (On the cloud IDE, <your system> is
Linux.)

5The README also makes reference to a LICENSE file, which I’ve added by hand to the official reference
implementation, but it isn’t present by default. You can download a copy from the reference implementation repo
if you want it for completeness, but it’s not necessary for completing the tutorial.

https://github.com/mhartl/sample_app_6th_ed/blob/master/README.md
https://github.com/railstutorial/sample_app_6th_ed
https://github.com/railstutorial/sample_app_6th_ed
https://github.com/mhartl/sample_app_6th_ed/blob/master/LICENSE.md

3.1. SAMPLE APP SETUP 125

Listing 3.3: An improved README file for the sample app.
README.md

Ruby on Rails Tutorial sample application

This is the sample application for

[*Ruby on Rails Tutorial:

Learn Web Development with Rails*](https://www.railstutorial.org/)

(6th Edition)

by [Michael Hartl](https://www.michaelhartl.com/).

License

All source code in the [Ruby on Rails Tutorial](https://www.railstutorial.org/)

is available jointly under the MIT License and the Beerware License. See

LICENSE.md for details.

Getting started

To get started with the app, clone the repo and then install the needed gems:

```

$ bundle install --without production

```

Next, migrate the database:

```

$ rails db:migrate

```

Finally, run the test suite to verify that everything is working correctly:

```

$ rails test

```

If the test suite passes, you'll be ready to run the app in a local server:

```

$ rails server

```

For more information, see the

[*Ruby on Rails Tutorial* book](https://www.railstutorial.org/book).

Then commit the changes as follows:

126 CHAPTER 3. MOSTLY STATIC PAGES

$ git commit -am "Improve the README"

You may recall from Section 1.3.4 that we used the Git command git commit
-a -m "Message", with flags for “all changes” (-a) and a message (-m). As
shown in the second command above, Git also lets us roll the two flags into one
using git commit -am "Message".

You should also create a new repository at GitHub by following the same
steps as in Section 1.3.3 (taking care to make it private as in Figure 3.1), and
then push up to the remote repository:

$ git remote add origin https://github.com/<username>/sample_app.git

$ git push -u origin master

If you’re using the cloud IDE, you’ll need to prepare the application to be
served locally by editing the development.rb file as in the previous two chap-
ters (Listing 3.4).

Listing 3.4: Allowing connections to the local web server.
config/environments/development.rb

Rails.application.configure do

.

.

.

Allow connections to local server.

config.hosts.clear

end

To avoid integration headaches later on, it’s also a good idea to deploy the
app to Heroku even at this early stage. As in Chapter 1 and Chapter 2, I suggest
following the “hello, world!” steps in Listing 3.5 and Listing 3.6. (The main
reason for this is that the default Rails page typically breaks at Heroku, which
makes it hard to tell if the deployment was successful or not.)

https://github.com/new

3.1. SAMPLE APP SETUP 127

Figure 3.1: Creating the main sample app repository at GitHub.

128 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.5: Adding a hello action to the Application controller.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

def hello

render html: "hello, world!"

end

end

Listing 3.6: Setting the root route.
config/routes.rb

Rails.application.routes.draw do

root 'application#hello'

end

Then commit the changes and push up to GitHub and Heroku:

$ git commit -am "Add hello"

$ git push

$ heroku create

$ git push heroku master

As in Section 1.4, you may see some warning messages, which you should
ignore for now. We’ll deal with them in Section 7.5. Apart from the address of
the Heroku app, the result should be the same as in Figure 1.31.

As you proceed through the rest of the book, I recommend pushing and
deploying the application regularly, which automatically makes remote backups
and lets you catch any production errors as soon as possible. If you run into
problems at Heroku, make sure to take a look at the production logs to try to
diagnose the problem:

$ heroku logs # to see the most recent events

$ heroku logs --tail # to see events as they happen, Ctrl-C to quit

Note: If you do end up using Heroku for a real-life application, be sure to follow
the production webserver configuration in Section 7.5.

3.2. STATIC PAGES 129

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that GitHub renders the Markdown for the README in List-
ing 3.3 as HTML (Figure 3.2).

2. By visiting the root route on the production server, verify that the deploy-
ment to Heroku succeeded.

3.2 Static pages
With all the preparation from Section 3.1 finished, we’re ready to get started
developing the sample application. In this section, we’ll take a first step toward
making dynamic pages by creating a set of Rails actions and views contain-
ing only static HTML.6 Rails actions come bundled together inside controllers
(the C in MVC from Section 1.2.3), which contain sets of actions related by a
common purpose. We got a glimpse of controllers in Chapter 2, and will come
to a deeper understanding once we explore the REST architecture more fully
(starting in Chapter 6). In order to get our bearings, it’s helpful to recall the
Rails directory structure from Section 1.2 (Figure 1.11). In this section, we’ll
be working mainly in the app/controllers and app/views directories.

Recall from Section 1.3.4 that, when using Git, it’s a good practice to do our
work on a separate topic branch rather than the master branch. If you’re using
Git for version control, you should run the following command to checkout a
topic branch for static pages:

6Our method for making static pages is probably the simplest, but it’s not the only way. The optimal method
really depends on your needs; if you expect a large number of static pages, using a Static Pages controller can get
quite cumbersome, but in our sample app we’ll only need a few. If you do need a lot of static pages, take a look at
the high_voltage gem from thoughtbot.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Representational_State_Transfer
https://github.com/thoughtbot/high_voltage
https://thoughtbot.com/

130 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.2: The sample app README at GitHub.

3.2. STATIC PAGES 131

$ git checkout -b static-pages

3.2.1 Generated static pages
To get started with static pages, we’ll first generate a controller using the same
Rails generate script we used in Chapter 2 to generate scaffolding. Since
we’ll be making a controller to handle static pages, we’ll call it the Static Pages
controller, designated by the CamelCase name StaticPages. We’ll also plan
to make actions for a Home page, a Help page, and an About page, designated
by the lower-case action names home, help, and about. The generate script
takes an optional list of actions, so we’ll include actions for the Home and Help
pages directly on the command line, while intentionally leaving off the action
for the About page so that we can see how to add it (Section 3.3). The resulting
command to generate the Static Pages controller appears in Listing 3.7.

Listing 3.7: Generating a Static Pages controller.
$ rails generate controller StaticPages home help

create app/controllers/static_pages_controller.rb

route get 'static_pages/home'

get 'static_pages/help'

invoke erb

create app/views/static_pages

create app/views/static_pages/home.html.erb

create app/views/static_pages/help.html.erb

invoke test_unit

create test/controllers/static_pages_controller_test.rb

invoke helper

create app/helpers/static_pages_helper.rb

invoke test_unit

invoke assets

invoke scss

create app/assets/stylesheets/static_pages.scss

Incidentally, it’s worth noting that rails g is a shortcut for rails gener-
ate, which is only one of several shortcuts supported by Rails (Table 3.1). For
clarity, this tutorial always uses the full command, but in real life most Rails

https://en.wikipedia.org/wiki/CamelCase

132 CHAPTER 3. MOSTLY STATIC PAGES

Full command Shortcut
$ rails server $ rails s

$ rails console $ rails c

$ rails generate $ rails g

$ rails test $ rails t

$ bundle install $ bundle

Table 3.1: Some Rails shortcuts.

developers use one or more of the shortcuts shown in Table 3.1.7
Before moving on, if you’re using Git it’s a good idea to add the files for

the Static Pages controller to the remote repository:

$ git add -A

$ git commit -m "Add a Static Pages controller"

$ git push -u origin static-pages

The final command here arranges to push the static-pages topic branch up
to GitHub. Subsequent pushes can omit the other arguments and write simply

$ git push

The commit and push sequence above represents the kind of pattern I would
ordinarily follow in real-life development, but for simplicity I’ll typically omit
such intermediate commits from now on. (When following this tutorial, a good
rule of thumb is to make a Git commit at the end of each section.)

In Listing 3.7, note that we have passed the controller name as CamelCase
(so called because it resembles the humps of a Bactrian camel), which leads
to the creation of a controller file written in snake case, so that a controller
called StaticPages yields a file called static_pages_controller.rb. This
is merely a convention, and in fact using snake case at the command line also
works: the command

7In fact, many Rails developers also add an alias (as described in Learn Enough Text Editor to Be Dangerous)
for the rails command, typically shortening it to just r. This allows us to run, e.g., a Rails server using the
compact command r s.

https://en.wikipedia.org/wiki/Bactrian_camel
https://en.wikipedia.org/wiki/Snake_case
https://www.learnenough.com/r/learn_enough_text_editor/vim/saving_and_quitting_files#sec-saving_and_quitting_files
https://www.learnenough.com/text-editor

3.2. STATIC PAGES 133

$ rails generate controller static_pages ...

also generates a controller called static_pages_controller.rb. Because
Ruby uses CamelCase for class names (Section 4.4), my preference is to refer
to controllers using their CamelCase names, but this is a matter of taste. (Since
Ruby filenames typically use snake case, the Rails generator converts Camel-
Case to snake case using the underscore method.)

By the way, if you ever make a mistake when generating code, it’s useful to
know how to reverse the process. See Box 3.1 for some techniques on how to
undo things in Rails.

Box 3.1. Undoing things

Even when you’re very careful, things can sometimes go wrong when devel-
oping Rails applications. Happily, Rails has some facilities to help you recover.

One common scenario is wanting to undo code generation—for example, when
you change your mind on the name of a controller and want to eliminate the gener-
ated files. Because Rails creates a substantial number of auxiliary files along with
the controller (as seen in Listing 3.7), this isn’t as easy as removing the controller
file itself; undoing the generation means removing not only the principal generated
file, but all the ancillary files as well. (In fact, as we saw in Section 2.2 and Sec-
tion 2.3, rails generate can make automatic edits to the routes.rb file,
which we also want to undo automatically.) In Rails, this can be accomplished with
rails destroy followed by the name of the generated element. In particular,
these two commands cancel each other out:

$ rails generate controller StaticPages home help

$ rails destroy controller StaticPages home help

Similarly, in Chapter 6 we’ll generate a model as follows:

$ rails generate model User name:string email:string

https://api.rubyonrails.org/classes/ActiveSupport/Inflector.html#method-i-underscore

134 CHAPTER 3. MOSTLY STATIC PAGES

This can be undone using

$ rails destroy model User

(In this case, it turns out we can omit the other command-line arguments. When
you get to Chapter 6, see if you can figure out why.)

Another technique related to models involves undoing migrations, which we
saw briefly in Chapter 2 and will see much more of starting in Chapter 6. Migra-
tions change the state of the database using the command

$ rails db:migrate

We can undo a single migration step using

$ rails db:rollback

To go all the way back to the beginning, we can use

$ rails db:migrate VERSION=0

As you might guess, substituting any other number for 0 migrates to that version
number, where the version numbers come from listing the migrations sequentially.

With these techniques in hand, we are well-equipped to recover from the in-
evitable development snafus.

The Static Pages controller generation in Listing 3.7 automatically updates
the routes file (config/routes.rb), which we first saw in Section 1.2.4 when
we edited the root route for the hello app (Listing 1.11), and which we most
recently saw in Listing 3.6. The routes file is responsible for implementing
the router (seen in Figure 2.11) that defines the correspondence between URLs
and web pages. The routes file is located in the config directory, where Rails
collects files needed for the application configuration (Figure 3.3).

Since we included the home and help actions in Listing 3.7, the routes file

https://en.wiktionary.org/wiki/SNAFU

3.2. STATIC PAGES 135

Figure 3.3: Contents of the sample app’s config directory.

136 CHAPTER 3. MOSTLY STATIC PAGES

already has a rule for each one, as seen in Listing 3.8.

Listing 3.8: The routes for the home and help actions in the Static Pages
controller.
config/routes.rb

Rails.application.routes.draw do

get 'static_pages/home'

get 'static_pages/help'

root 'application#hello'

end

Here the rule

get 'static_pages/home'

maps requests for the URL /static_pages/home to the home action in the Static
Pages controller. Moreover, by using get we arrange for the route to respond
to a GET request, which is one of the fundamental HTTP verbs supported by
the Hypertext Transfer Protocol (Box 3.2). In our case, this means that when
we generate a home action inside the Static Pages controller we automatically
get a page at the address /static_pages/home. To see the result, start a Rails
development server as described in Section 1.2.2:

$ rails server

Then navigate to /static_pages/home (Figure 3.4).

Box 3.2. GET, et cet.

The Hypertext Transfer Protocol (HTTP) defines the basic operations GET,
POST, PATCH, and DELETE. These refer to operations between a client com-
puter (typically running a web browser such as Chrome, Firefox, or Safari) and a

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

3.2. STATIC PAGES 137

Figure 3.4: The raw home view (/static_pages/home).

138 CHAPTER 3. MOSTLY STATIC PAGES

server (typically running a webserver such as Apache or Nginx). (It’s important
to understand that, when developing Rails applications on a local computer, the
client and server are the same physical machine, but in general they are different.)
An emphasis on HTTP verbs is typical of web frameworks (including Rails) influ-
enced by the REST architecture, which we saw briefly in Chapter 2 and will start
learning more about in Chapter 7.

GET is the most common HTTP operation, used for reading data on the web;
it just means “get a page”, and every time you visit a site like https://www.
google.com/ or https://www.wikipedia.org/ your browser is sub-
mitting a GET request. POST is the next most common operation; it is the request
sent by your browser when you submit a form. In Rails applications, POST re-
quests are typically used for creating things (although HTTP also allows POST to
perform updates). For example, the POST request sent when you submit a registra-
tion form creates a new user on the remote site. The other two verbs, PATCH and
DELETE, are designed for updating and destroying things on the remote server.
These requests are less common than GET and POST since browsers are inca-
pable of sending them natively, but some web frameworks (including Ruby on
Rails) have clever ways of making it seem like browsers are issuing such requests.
As a result, Rails supports all four of the request types GET, POST, PATCH, and
DELETE.

To understand where this page comes from, let’s start by taking a look at the
Static Pages controller in a text editor, which should look something like List-
ing 3.9. You may note that, unlike the demo Users and Microposts controllers
from Chapter 2, the Static Pages controller does not use the standard REST ac-
tions. This is normal for a collection of static pages: the REST architecture
isn’t the best solution to every problem.

Listing 3.9: The Static Pages controller made by Listing 3.7.
app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

https://www.google.com/
https://www.google.com/
https://www.wikipedia.org/

3.2. STATIC PAGES 139

end

def help

end

end

We see from the class keyword in Listing 3.9 that static_pages_con-
troller.rb defines a class, in this case called StaticPagesController.
Classes are simply a convenient way to organize functions (also called meth-
ods) like the home and help actions, which are defined using the def key-
word. As discussed in Section 2.3.4, the angle bracket < indicates that Static-
PagesController inherits from the Rails class ApplicationController;
as we’ll see in a moment, this means that our pages come equipped with a large
amount of Rails-specific functionality. (We’ll learn more about both classes
and inheritance in Section 4.4.)

In the case of the Static Pages controller, both of its methods are initially
empty:

def home

end

def help

end

In plain Ruby, these methods would simply do nothing. In Rails, the situation
is different—StaticPagesController is a Ruby class, but because it in-
herits from ApplicationController the behavior of its methods is specific
to Rails: when visiting the URL /static_pages/home, Rails looks in the Static
Pages controller and executes the code in the home action, and then renders the
view (the V in MVC from Section 1.2.3) corresponding to the action. In the
present case, the home action is empty, so all visiting /static_pages/home does
is render the view. So, what does a view look like, and how do we find it?

If you take another look at the output in Listing 3.7, you might be able to
guess the correspondence between actions and views: an action like home has
a corresponding view called home.html.erb. We’ll learn in Section 3.4 what
the .erb part means; from the .html part you probably won’t be surprised that
it basically looks like HTML (Listing 3.10).

140 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.10: The generated view for the Home page.
app/views/static_pages/home.html.erb

<h1>StaticPages#home</h1>

<p>Find me in app/views/static_pages/home.html.erb</p>

The view for the help action is analogous (Listing 3.11).

Listing 3.11: The generated view for the Help page.
app/views/static_pages/help.html.erb

<h1>StaticPages#help</h1>

<p>Find me in app/views/static_pages/help.html.erb</p>

Both of these views are just placeholders: they have a top-level heading (inside
the h1 tag) and a paragraph (p tag) with the full path to the corresponding file.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Generate a controller called Foo with actions bar and baz.

2. By applying the techniques described in Box 3.1, destroy the Foo con-
troller and its associated actions.

3.2.2 Custom static pages
We’ll add some (very slightly) dynamic content starting in Section 3.4, but as
they stand the files shown in Listing 3.10 and Listing 3.11 underscore an im-
portant point: Rails views can simply contain static HTML. This means we can
begin customizing the Home and Help pages even with no knowledge of Rails,
as shown in Listing 3.12 and Listing 3.13.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

3.3. GETTING STARTED WITH TESTING 141

Listing 3.12: Custom HTML for the Home page.
app/views/static_pages/home.html.erb

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

Listing 3.13: Custom HTML for the Help page.
app/views/static_pages/help.html.erb

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial Help page.

To get help on this sample app, see the

Ruby on Rails Tutorial

book.

</p>

The results of Listing 3.12 and Listing 3.13 are shown in Figure 3.5 and
Figure 3.6.

3.3 Getting started with testing
Having created and filled in the Home and Help pages for our sample app (Sec-
tion 3.2.2), now we’re going to add an About page as well. When making a
change of this nature, it’s a good practice to write an automated test to verify
that the feature is implemented correctly. Developed over the course of building
an application, the resulting test suite serves as a safety net and as executable
documentation of the application source code. When done right, writing tests
also allows us to develop faster despite requiring extra code, because we’ll end
up wasting less time trying to track down bugs. This is true only once we get
good at writing tests, though, which is one reason it’s important to start practic-
ing as early as possible.

142 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.5: A custom Home page.

3.3. GETTING STARTED WITH TESTING 143

Figure 3.6: A custom Help page.

144 CHAPTER 3. MOSTLY STATIC PAGES

Although virtually all Rails developers agree that testing is a good idea,
there is a diversity of opinion on the details. There is an especially lively debate
over the use of test-driven development (TDD),8 a testing technique in which
the programmer writes failing tests first, and then writes the application code to
get the tests to pass. The Ruby on Rails Tutorial takes a lightweight, intuitive
approach to testing, employing TDD when convenient without being dogmatic
about it (Box 3.3).

Box 3.3. When to test

When deciding when and how to test, it’s helpful to understand why to test. In
my view, writing automated tests has three main benefits:

1. Tests protect against regressions, where a functioning feature stops working
for some reason.

2. Tests allow code to be refactored (i.e., changing its form without changing
its function) with greater confidence.

3. Tests act as a client for the application code, thereby helping determine its
design and its interface with other parts of the system.

Although none of the above benefits require that tests be written first, there are
many circumstances where test-driven development (TDD) is a valuable tool to
have in your kit. Deciding when and how to test depends in part on how comfort-
able you are writing tests; many developers find that, as they get better at writing
tests, they are more inclined to write them first. It also depends on how difficult
the test is relative to the application code, how precisely the desired features are
known, and how likely the feature is to break in the future.

In this context, it’s helpful to have a set of guidelines on when we should test
first (or test at all). Here are some suggestions based on my own experience:

8See, e.g., “TDD is dead. Long live testing.” by Rails creator David Heinemeier Hansson.

https://dhh.dk/2014/tdd-is-dead-long-live-testing.html

3.3. GETTING STARTED WITH TESTING 145

• When a test is especially short or simple compared to the application code it
tests, lean toward writing the test first.

• When the desired behavior isn’t yet crystal clear, lean toward writing the
application code first, then write a test to codify the result.

• Because security is a top priority, err on the side of writing tests of the secu-
rity model first.

• Whenever a bug is found, write a test to reproduce it and protect against
regressions, then write the application code to fix it.

• Lean against writing tests for code (such as detailed HTML structure) likely
to change in the future.

• Write tests before refactoring code, focusing on testing error-prone code
that’s especially likely to break.

In practice, the guidelines above mean that we’ll usually write controller and
model tests first and integration tests (which test functionality across models,
views, and controllers) second. And when we’re writing application code that isn’t
particularly brittle or error-prone, or is likely to change (as is often the case with
views), we’ll often skip testing altogether.

Our main testing tools will be controller tests (starting in this section), model
tests (starting in Chapter 6), and integration tests (starting in Chapter 7). Inte-
gration tests are especially powerful, as they allow us to simulate the actions of
a user interacting with our application using a web browser. Integration tests
will eventually be our primary testing technique, but controller tests give us an
easier place to start.

146 CHAPTER 3. MOSTLY STATIC PAGES

3.3.1 Our first test
Now it’s time to add an About page to our application. As we’ll see, the test is
short and simple, so we’ll follow the guidelines from Box 3.3 and write the test
first. We’ll then use the failing test to drive the writing of the application code.

Getting started with testing can be challenging, requiring extensive knowl-
edge of both Rails and Ruby. At this early stage, writing tests might thus seem
hopelessly intimidating. Luckily, Rails has already done the hardest part for
us, because rails generate controller (Listing 3.7) automatically gen-
erated a test file to get us started:

$ ls test/controllers/

static_pages_controller_test.rb

Let’s take a look at it (Listing 3.14).

Listing 3.14: The default tests for the StaticPages controller. green
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

end

test "should get help" do

get static_pages_help_url

assert_response :success

end

end

It’s not important at this point to understand the syntax in Listing 3.14 in de-
tail, but we can see that there are two tests, one for each controller action we
included on the command line in Listing 3.7. Each test simply gets a URL and
verifies (via an assertion) that the result is a success. Here the use of get indi-
cates that our tests expect the Home and Help pages to be ordinary web pages,

3.3. GETTING STARTED WITH TESTING 147

accessed using a GET request (Box 3.2). The response :success is an abstract
representation of the underlying HTTP status code (in this case, 200 OK). In
other words, a test like

test "should get home" do

get static_pages_home_url

assert_response :success

end

says “Let’s test the Home page by issuing a GET request to the Static Pages
home URL and then making sure we receive a ‘success’ status code in re-
sponse.”

To begin our testing cycle, we need to run our test suite to verify that the
tests currently pass. We can do this with the rails command as follows:

Listing 3.15: green
$ rails db:migrate # Necessary on some systems

$ rails test

2 tests, 2 assertions, 0 failures, 0 errors, 0 skips

As required, initially our test suite is passing (green). (Some systems won’t
actually display the color green unless you add the minitest reporters from the
optional Section 3.6.1, but the terminology is common even when literal colors
aren’t involved.) Note that here and throughout this tutorial, I’ll generally omit
some lines from the test output in order to highlight only the most imporant
parts.

By the way, on some systems you may see generated files of the form

/db/test.sqlite3-0

show up in the db directory. To prevent these generated files from being added
to the repository, I suggest adding a rule to the .gitignore file (Section 1.3.1)
to ignore them, as shown in Listing 3.16.

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#2xx_Success

148 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.16: Ignoring generated database files.
.gitignore

.

.

.

Ignore db test files.

db/test.*

3.3.2 Red
As noted in Box 3.3, test-driven development involves writing a failing test
first, writing the application code needed to get it to pass, and then refactoring
the code if necessary. Because many testing tools represent failing tests with
the color red and passing tests with the color green, this sequence is sometimes
known as the “Red, Green, Refactor” cycle. In this section, we’ll complete the
first step in this cycle, getting to red by writing a failing test. Then we’ll get to
green in Section 3.3.3, and refactor in Section 3.4.3.9

Our first step is to write a failing test for the About page. By following the
models from Listing 3.14, can you guess what it should be? The answer appears
in Listing 3.17.

Listing 3.17: A test for the About page. red
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

end

test "should get help" do

get static_pages_help_url

assert_response :success

9On some systems, rails test shows red when the tests fail but doesn’t show green when the tests pass. To
arrange for a true Red–Green cycle, see Section 3.6.1.

3.3. GETTING STARTED WITH TESTING 149

end

test "should get about" do

get static_pages_about_url

assert_response :success

end

end

We see from the highlighted lines in Listing 3.17 that the test for the About
page is the same as the Home and Help tests with the word “about” in place of
“home” or “help”.

As required, the test initially fails:

Listing 3.18: red
$ rails test

3 tests, 2 assertions, 0 failures, 1 errors, 0 skips

3.3.3 Green
Now that we have a failing test (red), we’ll use the failing test’s error messages
to guide us to a passing test (green), thereby implementing a working About
page.

We can get started by examining the error message output by the failing test:

Listing 3.19: red
$ rails test

NameError: undefined local variable or method `static_pages_about_url'

The error message here says that the Rails code for the About page URL is
undefined, which is a hint that we need to add a line to the routes file. We can
accomplish this by following the pattern in Listing 3.8, as shown in Listing 3.20.

150 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.20: Adding the about route. red
config/routes.rb

Rails.application.routes.draw do

get 'static_pages/home'

get 'static_pages/help'

get 'static_pages/about'

root 'application#hello'

end

The highlighted line in Listing 3.20 tells Rails to route a GET request for the
URL /static_pages/about to the about action in the Static Pages controller. This
automatically creates a helper called

static_pages_about_url

Running our test suite again, we see that it is still red, but now the error
message has changed:

Listing 3.21: red
$ rails test

AbstractController::ActionNotFound:

The action 'about' could not be found for StaticPagesController

The error message now indicates a missing about action in the Static Pages
controller, which we can add by following the model provided by home and
help in Listing 3.9, as shown in Listing 3.22.

Listing 3.22: The Static Pages controller with added about action. red
app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

end

3.3. GETTING STARTED WITH TESTING 151

def help

end

def about

end

end

As before, our test suite is still red, but the error message has changed again:

$ rails test

ActionController::UnknownFormat: StaticPagesController#about is missing

a template for this request format and variant.

This indicates a missing template, which in the context of Rails is essentially
the same thing as a view. As described in Section 3.2.1, an action called home

is associated with a view called home.html.erb located in the app/views/-
static_pages directory, which means that we need to create a new file called
about.html.erb in the same directory.

The way to create a file varies by system setup, but most text editors will
let you control-click inside the directory where you want to create the file to
bring up a menu with a “New File” menu item. Alternately, you can use the
File menu to create a new file and then pick the proper directory when saving
it. Finally, you can use my favorite trick by applying the Unix touch command
as follows:

$ touch app/views/static_pages/about.html.erb

As mentioned in Learn Enough Command Line to Be Dangerous, touch is
designed to update the modification timestamp of a file or directory without
otherwise affecting it, but as a side-effect it creates a new (blank) file if one
doesn’t already exist. (If using the cloud IDE, you may have to refresh the
file tree as described in Section 1.2.1. This is a good example of technical
sophistication (Box 1.2).)

Once you’ve created the about.html.erb file in the right directory, you
should fill it with the contents shown in Listing 3.23.

https://en.wikipedia.org/wiki/Touch_(Unix)
https://www.learnenough.com/r/learn_enough_command_line/manipulating_files/listing#sec-listing
https://www.learnenough.com/command-line

152 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.23: Code for the About page. green
app/views/static_pages/about.html.erb

<h1>About</h1>

<p>

The Ruby on Rails

Tutorial, part of the

Learn Enough family of

tutorials, is a

book and

screencast series

to teach web development with

Ruby on Rails.

This is the sample app for the tutorial.

</p>

At this point, running rails test should get us back to green:

Listing 3.24: green
$ rails test

3 tests, 3 assertions, 0 failures, 0 errors, 0 skips

Of course, it’s never a bad idea to take a look at the page in a browser to make
sure our tests aren’t leading us astray (Figure 3.7).

3.3.4 Refactor
Now that we’ve gotten to green, we are free to refactor our code with confi-
dence. When developing an application, often code will start to “smell”, mean-
ing that it gets ugly, bloated, or filled with repetition. The computer doesn’t
care what the code looks like, of course, but humans do, so it is important to
keep the code base clean by refactoring frequently. Although our sample app is
a little too small to refactor right now, code smell seeps in at every crack, and
we’ll get started refactoring in Section 3.4.3.

https://en.wikipedia.org/wiki/Code_smell

3.3. GETTING STARTED WITH TESTING 153

Figure 3.7: The new About page (/static_pages/about).

154 CHAPTER 3. MOSTLY STATIC PAGES

Page URL Base title Variable title
Home /static_pages/home "Ruby on Rails Tutorial Sample App" "Home"

Help /static_pages/help "Ruby on Rails Tutorial Sample App" "Help"

About /static_pages/about "Ruby on Rails Tutorial Sample App" "About"

Table 3.2: The (mostly) static pages for the sample app.

3.4 Slightly dynamic pages

Now that we’ve created the actions and views for some static pages, we’ll make
them slightly dynamic by adding some content that changes on a per-page ba-
sis: we’ll have the title of each page change to reflect its content. Whether a
changing title represents truly dynamic content is debatable, but in any case it
lays the necessary foundation for unambiguously dynamic content in Chapter 7.

Our plan is to edit the Home, Help, and About pages to make page titles
that change on each page. This will involve using the <title> tag in our
page views. Most browsers display the contents of the title tag at the top of the
browser window, and it is also important for search-engine optimization. We’ll
be using the full “Red, Green, Refactor” cycle: first by adding simple tests for
our page titles (red), then by adding titles to each of our three pages (green),
and finally using a layout file to eliminate duplication (Refactor). By the end
of this section, all three of our static pages will have titles of the form “<page
name> | Ruby on Rails Tutorial Sample App”, where the first part of the title
will vary depending on the page (Table 3.2).

The rails new command (Listing 3.1) creates a layout file by default, but
it’s instructive to ignore it initially, which we can do by changing its name:

$ mv app/views/layouts/application.html.erb layout_file # temporary change

You wouldn’t normally do this in a real application, but it’s easier to understand
the purpose of the layout file if we start by disabling it.

3.4. SLIGHTLY DYNAMIC PAGES 155

3.4.1 Testing titles (Red)
To add page titles, we need to learn (or review) the structure of a typical web
page, which takes the form shown in Listing 3.25. (This is covered in much
more depth in Learn Enough HTML to Be Dangerous.)

Listing 3.25: The HTML structure of a typical web page.
<!DOCTYPE html>

<html>

<head>

<title>Greeting</title>

</head>

<body>

<p>Hello, world!</p>

</body>

</html>

The structure in Listing 3.25 includes a document type, or doctype, declaration
at the top to tell browsers which version of HTML we’re using (in this case,
HTML5);10 a head section, in this case with “Greeting” inside a title tag;
and a body section, in this case with “Hello, world!” inside a p (paragraph)
tag. (The indentation is optional—HTML is not sensitive to whitespace, and
ignores both tabs and spaces—but it makes the document’s structure easier to
see.)

We’ll write simple tests for each of the titles in Table 3.2 by combining the
tests in Listing 3.17 with the assert_select method, which lets us test for
the presence of a particular HTML tag (sometimes called a “selector”, hence
the name):11

assert_select "title", "Home | Ruby on Rails Tutorial Sample App"

In particular, the code above checks for the presence of a <title> tag con-
taining the string “Home | Ruby on Rails Tutorial Sample App”. Applying this

10HTML changes with time; by explicitly making a doctype declaration we make it likelier that browsers will
render our pages properly in the future. The simple doctype <!DOCTYPE html> is characteristic of the latest
HTML standard, HTML5.

11For a list of common minitest assertions, see the table of available assertions in the Rails Guides testing article.

https://www.learnenough.com/html
https://en.wikipedia.org/wiki/HTML5
https://guides.rubyonrails.org/testing.html#available-assertions

156 CHAPTER 3. MOSTLY STATIC PAGES

idea to all three static pages gives the tests shown in Listing 3.26.

Listing 3.26: The Static Pages controller test with title tests. red
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Home | Ruby on Rails Tutorial Sample App"

end

test "should get help" do

get static_pages_help_url

assert_response :success

assert_select "title", "Help | Ruby on Rails Tutorial Sample App"

end

test "should get about" do

get static_pages_about_url

assert_response :success

assert_select "title", "About | Ruby on Rails Tutorial Sample App"

end

end

With the tests from Listing 3.26 in place, you should verify that the test suite
is currently red:

Listing 3.27: red
$ rails test

3 tests, 6 assertions, 3 failures, 0 errors, 0 skips

3.4.2 Adding page titles (Green)
Now we’ll add a title to each page, getting the tests from Section 3.4.1 to pass
in the process. Applying the basic HTML structure from Listing 3.25 to the
custom Home page from Listing 3.12 yields Listing 3.28.

3.4. SLIGHTLY DYNAMIC PAGES 157

Listing 3.28: The view for the Home page with full HTML structure. red
app/views/static_pages/home.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Home | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

</body>

</html>

The corresponding web page appears in Figure 3.8. Note that the browser used
in the screenshots (Safari) displays the page title only if you include an addi-
tional tab, which explains the second tab shown in Figure 3.8.

Following this model for the Help page (Listing 3.13) and the About page
(Listing 3.23) yields the code in Listing 3.29 and Listing 3.30.

Listing 3.29: The view for the Help page with full HTML structure. red
app/views/static_pages/help.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Help | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial help

page.

To get help on this sample app, see the

Ruby on Rails

Tutorial book.

</p>

</body>

</html>

158 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.8: The Home page with a title.

3.4. SLIGHTLY DYNAMIC PAGES 159

Listing 3.30: The view for the About page with full HTML structure. green
app/views/static_pages/about.html.erb

<!DOCTYPE html>

<html>

<head>

<title>About | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>About</h1>

<p>

The Ruby on Rails

Tutorial, part of the

Learn Enough family of

tutorials, is a

book and

screencast series

to teach web development with

Ruby on Rails.

This is the sample app for the tutorial.

</p>

</body>

</html>

At this point, the test suite should be back to green:

Listing 3.31: green
$ rails test

3 tests, 6 assertions, 0 failures, 0 errors, 0 skips

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.
Beginning in this section, we’ll start making modifications to the applica-

tions in the exercises that won’t generally be reflected in future code listings.
The reason is so that the text makes sense to readers who don’t complete the
exercises, but as a result your code will diverge from the main text if you do

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

160 CHAPTER 3. MOSTLY STATIC PAGES

solve them. Learning to resolve small discrepancies like this is an excellent
example of technical sophistication (Box 1.2).

1. You may have noticed some repetition in the Static Pages controller test
(Listing 3.26). In particular, the base title, “Ruby on Rails Tutorial Sam-
ple App”, is the same for every title test. Using the special function
setup, which is automatically run before every test, verify that the tests
in Listing 3.32 are still green. (Listing 3.32 uses an instance variable,
seen briefly in Section 2.2.2 and covered further in Section 4.4.5, com-
bined with string interpolation, which is covered further in Section 4.2.1.)

Listing 3.32: The Static Pages controller test with a base title. green
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

def setup

@base_title = "Ruby on Rails Tutorial Sample App"

end

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Home | #{@base_title}"

end

test "should get help" do

get static_pages_help_url

assert_response :success

assert_select "title", "Help | #{@base_title}"

end

test "should get about" do

get static_pages_about_url

assert_response :success

assert_select "title", "About | #{@base_title}"

end

end

3.4. SLIGHTLY DYNAMIC PAGES 161

3.4.3 Layouts and embedded Ruby (Refactor)
We’ve achieved a lot already in this section, generating three valid pages using
Rails controllers and actions, but they are purely static HTML and hence don’t
show off the power of Rails. Moreover, they suffer from terrible duplication:

• The page titles are almost (but not quite) exactly the same.

• “Ruby on Rails Tutorial Sample App” is common to all three titles.

• The entire HTML skeleton structure is repeated on each page.

This repeated code is a violation of the important “Don’t Repeat Yourself”
(DRY) principle; in this section we’ll “DRY out our code” by removing the
repetition. At the end, we’ll re-run the tests from Section 3.4.2 to verify that the
titles are still correct.

Paradoxically, we’ll take the first step toward eliminating duplication by
first adding some more: we’ll make the titles of the pages, which are currently
quite similar, match exactly. This will make it much simpler to remove all the
repetition at a stroke.

The technique involves using embedded Ruby in our views. Since the
Home, Help, and About page titles have a variable component, we’ll use a spe-
cial Rails function called provide to set a different title on each page. We can
see how this works by replacing the literal title “Home” in the home.html.erb
view with the code in Listing 3.33.

Listing 3.33: The view for the Home page with an embedded Ruby title. green
app/views/static_pages/home.html.erb

<% provide(:title, "Home") %>

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>Sample App</h1>

<p>

162 CHAPTER 3. MOSTLY STATIC PAGES

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

</body>

</html>

Listing 3.33 is our first example of embedded Ruby, also called ERb (or ERB).
(Now you know why HTML views have the file extension .html.erb.) ERb
is the primary template system for including dynamic content in web pages.12

The code

<% provide(:title, "Home") %>

indicates using <% ... %> that Rails should call the provide function and
associate the string "Home" with the label :title.13 Then, in the title, we
use the closely related notation <%= ... %> to insert the title into the template
using Ruby’s yield function:14

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

(The distinction between the two types of embedded Ruby is that <% ... %>

executes the code inside, while <%= ... %> executes it and inserts the result
into the template.) The resulting page is exactly the same as before, only now
the variable part of the title is generated dynamically by ERb.

We can verify that all this works by running the tests from Section 3.4.2 and
see that they are still green:

12There is a second popular template system called Haml (note: not “HAML”), which I personally love, but it’s
not quite standard enough for use in an introductory tutorial.

13Experienced Rails developers might have expected the use of content_for at this point, but it doesn’t work
well with the asset pipeline. The provide function is its replacement.

14If you’ve studied Ruby before, you might suspect that Rails is yielding the contents to a block, and your
suspicion would be correct. But you don’t need to know this to develop applications with Rails.

http://haml.info/

3.4. SLIGHTLY DYNAMIC PAGES 163

Listing 3.34: green
$ rails test

3 tests, 6 assertions, 0 failures, 0 errors, 0 skips

Then we can make the corresponding replacements for the Help and About
pages (Listing 3.35 and Listing 3.36).

Listing 3.35: The view for the Help page with an embedded Ruby title. green
app/views/static_pages/help.html.erb

<% provide(:title, "Help") %>

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial help

section.

To get help on this sample app, see the

Ruby on Rails

Tutorial book.

</p>

</body>

</html>

Listing 3.36: The view for the About page with an embedded Ruby title.
green
app/views/static_pages/about.html.erb

<% provide(:title, "About") %>

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>About</h1>

<p>

164 CHAPTER 3. MOSTLY STATIC PAGES

The Ruby on Rails

Tutorial, part of the

Learn Enough family of

tutorials, is a

book and

screencast series

to teach web development with

Ruby on Rails.

This is the sample app for the tutorial.

</p>

</body>

</html>

Now that we’ve replaced the variable part of the page titles with ERb, each
of our pages looks something like this:

<% provide(:title, "Page Title") %>

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

Contents

</body>

</html>

In other words, all the pages are identical in structure, including the contents of
the title tag, with the sole exception of the material inside the body tag.

In order to factor out this common structure, Rails comes with a special lay-
out file called application.html.erb, which we renamed in the beginning
of this section (Section 3.4) and which we’ll now restore:

$ mv layout_file app/views/layouts/application.html.erb

To get the layout to work, we have to replace the default title with the em-
bedded Ruby from the examples above:

3.4. SLIGHTLY DYNAMIC PAGES 165

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

The resulting layout appears in Listing 3.37.

Listing 3.37: The sample application site layout. green
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

</head>

<body>

<%= yield %>

</body>

</html>

Note here the special line

<%= yield %>

This code is responsible for inserting the contents of each page into the layout.
It’s not important to know exactly how this works; what matters is that using this
layout ensures that, for example, visiting the page /static_pages/home converts
the contents of home.html.erb to HTML and then inserts it in place of <%=
yield %>.

It’s also worth noting that the default Rails layout includes several additional
lines:

166 CHAPTER 3. MOSTLY STATIC PAGES

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag ... %>

<%= javascript_pack_tag "application", ... %>

This code arranges to include the application stylesheet and JavaScript, which
are part of the asset pipeline (Section 5.2.1), together with the Rails method
csp_meta_tag, which implements Content Security Policy (CSP) to miti-
gate cross-site scripting (XSS) attacks, and csrf_meta_tags, which mitigates
cross-site request forgery (CSRF) attacks. (One huge advantage of using a ma-
ture framework like Rails is that it worries about such things so that we don’t
have to.)

Even though the tests are passing, there one detail left to deal with: the
views in Listing 3.33, Listing 3.35, and Listing 3.36 are still filled with all the
HTML structure included in the layout. Since it’s redundant (and indeed leads
to invalid HTML markup) we should remove it and leave only the interior con-
tents. The resulting cleaned-up views appear in Listing 3.38, Listing 3.39, and
Listing 3.40.

Listing 3.38: The Home page with HTML structure removed. green
app/views/static_pages/home.html.erb

<% provide(:title, "Home") %>

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

Listing 3.39: The Help page with HTML structure removed. green
app/views/static_pages/help.html.erb

<% provide(:title, "Help") %>

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_request_forgery

3.4. SLIGHTLY DYNAMIC PAGES 167

Rails Tutorial Help page.

To get help on this sample app, see the

Ruby on Rails Tutorial

book.

</p>

Listing 3.40: The About page with HTML structure removed. green
app/views/static_pages/about.html.erb

<% provide(:title, "About") %>

<h1>About</h1>

<p>

The Ruby on Rails

Tutorial, part of the

Learn Enough family of

tutorials, is a

book and

screencast series

to teach web development with

Ruby on Rails.

This is the sample app for the tutorial.

</p>

With these views defined, the Home, Help, and About pages are the same as
before, but they have much less duplication.

Experience shows that even fairly simple refactoring is error-prone and can
easily go awry. This is one reason why having a good test suite is so valuable.
Rather than double-checking every page for correctness—a procedure that isn’t
too hard early on but rapidly becomes unwieldy as an application grows—we
can simply verify that the test suite is still green:

Listing 3.41: green
$ rails test

3 tests, 6 assertions, 0 failures, 0 errors, 0 skips

This isn’t a proof that our code is still correct, but it greatly increases the prob-
ability, thereby providing a safety net to protect us against future bugs.

168 CHAPTER 3. MOSTLY STATIC PAGES

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Make a Contact page for the sample app.15 Following the model in List-
ing 3.17, first write a test for the existence of a page at the URL /static_-
pages/contact by testing for the title “Contact | Ruby on Rails Tutorial
Sample App”. Get your test to pass by following the same steps as when
making the About page in Section 3.3.3, including filling the Contact page
with the content from Listing 3.42.

Listing 3.42: Code for a proposed Contact page.
app/views/static_pages/contact.html.erb

<% provide(:title, "Contact") %>

<h1>Contact</h1>

<p>

Contact the Ruby on Rails Tutorial about the sample app at the

contact page.

</p>

3.4.4 Setting the root route
Now that we’ve customized our site’s pages and gotten a good start on the test
suite, let’s set the application’s root route before moving on. As in Section 1.2.4
and Section 2.2.2, this involves editing the routes.rb file to connect / to a
page of our choice, which in this case will be the Home page. (At this point,
I also recommend removing the hello action from the Application controller
if you added it in Section 3.1.) As shown in Listing 3.43, this means changing
the root route from

15This exercise is solved in Section 5.3.1.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

3.4. SLIGHTLY DYNAMIC PAGES 169

root 'application#hello'

to

root 'static_pages#home'

This arranges for requests for / to be routed to the home action in the Static
Pages controller. The resulting routes file is shown in Figure 3.9.

Listing 3.43: Setting the root route to the Home page.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get 'static_pages/home'

get 'static_pages/help'

get 'static_pages/about'

end

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Adding the root route in Listing 3.43 leads to the creation of a Rails helper
called root_url (in analogy with helpers like static_pages_home_-
url). By filling in the code marked FILL_IN in Listing 3.44, write a test
for the root route.

2. Due to the code in Listing 3.43, the test in the previous exercise is al-
ready green. In such a case, it’s harder to be confident that we’re actually
testing what we think we’re testing, so modify the code in Listing 3.43
by commenting out the root route to get to red (Listing 3.45). (We’ll talk
more about Ruby comments in Section 4.2.) Then uncomment it (thereby
restoring the original Listing 3.43) and verify that you get back to green.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

170 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.9: The Home page at the root route.

3.5. CONCLUSION 171

Listing 3.44: A test for the root route. green
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get root" do

get FILL_IN

assert_response FILL_IN

end

test "should get home" do

get static_pages_home_url

assert_response :success

end

test "should get help" do

get static_pages_help_url

assert_response :success

end

test "should get about" do

get static_pages_about_url

assert_response :success

end

end

Listing 3.45: Commenting out the root route to get a failing test. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get 'static_pages/home'

get 'static_pages/help'

get 'static_pages/about'

end

3.5 Conclusion
Seen from the outside, this chapter hardly accomplished anything: we started
with static pages, and ended with… mostly static pages. But appearances are

172 CHAPTER 3. MOSTLY STATIC PAGES

deceiving: by developing in terms of Rails controllers, actions, and views, we
are now in a position to add arbitrary amounts of dynamic content to our site.
Seeing exactly how this plays out is the task for the rest of this tutorial.

Before moving on, let’s take a minute to commit the changes on our topic
branch and merge them into the master branch. Back in Section 3.2 we created
a Git branch for the development of static pages. If you haven’t been making
commits as we’ve been moving along, first make a commit indicating that we’ve
reached a stopping point:

$ git add -A

$ git commit -m "Finish static pages"

Then merge the changes back into the master branch using the same technique
as in Section 1.3.4:16

$ git checkout master

$ git merge static-pages

Once you reach a stopping point like this, it’s usually a good idea to push
your code up to a remote repository (which, if you followed the steps in Sec-
tion 1.3.3, will be GitHub):

$ git push

I also recommend deploying the application to Heroku:

$ rails test

$ git push heroku

Here we’ve taken care to run the test suite before deploying, which is a good
habit to develop.

16If you get an error message saying that the Spring process id (pid) file would be overwritten by the merge,
just remove the file using rm -f *.pid at the command line.

3.6. ADVANCED TESTING SETUP 173

3.5.1 What we learned in this chapter
• For a third time, we went through the full procedure of creating a new

Rails application from scratch, installing the necessary gems, pushing it
up to a remote repository, and deploying it to production.

• The rails script generates a new controller with rails generate

controller ControllerName <optional action names>.

• New routes are defined in the file config/routes.rb.

• Rails views can contain static HTML or embedded Ruby (ERb).

• Automated testing allows us to write test suites that drive the development
of new features, allow for confident refactoring, and catch regressions.

• Test-driven development uses a “Red, Green, Refactor” cycle.

• Rails layouts allow the use of a common template for pages in our appli-
cation, thereby eliminating duplication.

3.6 Advanced testing setup
This optional section describes the testing setup used in the Ruby on Rails Tu-
torial screencast series. There are two main elements: an enhanced pass/fail
reporter (Section 3.6.1), and an automated test runner that detects file changes
and automatically runs the corresponding tests (Section 3.6.2). The code in this
section is advanced and is presented for convenience only; you are not expected
to understand it at this time.

The changes in this section should be made on the master branch:

$ git checkout master

https://screencasts.railstutorial.org/
https://screencasts.railstutorial.org/

174 CHAPTER 3. MOSTLY STATIC PAGES

3.6.1 minitest reporters
Although many systems, including the cloud IDE, will show the appropriate
colors for red and green test suites, adding minitest reporters lends a degree
of pleasant polish to the test outputs, so I recommend adding the code in List-
ing 3.46 to your test helper file,17 thereby making use of the minitest-re-
porters gem included in Listing 3.2.

Listing 3.46: Configuring the tests to show red and green.
test/test_helper.rb

ENV['RAILS_ENV'] ||= 'test'

require_relative '../config/environment'

require 'rails/test_help'

require "minitest/reporters"

Minitest::Reporters.use!

class ActiveSupport::TestCase

Run tests in parallel with specified workers

parallelize(workers: :number_of_processors)

Setup all fixtures in test/fixtures/*.yml for all tests in alphabetical order.

fixtures :all

Add more helper methods to be used by all tests here...

end

The resulting transition from red to green in the cloud IDE appears as in Fig-
ure 3.10.

3.6.2 Automated tests with Guard
One annoyance associated with using the rails test command is having
to switch to the command line and run the tests by hand. To avoid this in-
convenience, we can use Guard to automate the running of the tests. Guard
monitors changes in the filesystem so that, for example, when we change the

17The code in Listing 3.46 mixes single- and double-quoted strings. This is because rails new generates
single-quoted strings, whereas the minitest reporters documentation uses double-quoted strings. This mixing of
the two string types is common in Ruby; see Section 4.2.1 for more information.

https://github.com/kern/minitest-reporters
https://github.com/kern/minitest-reporters
https://github.com/guard/guard
https://github.com/kern/minitest-reporters

3.6. ADVANCED TESTING SETUP 175

Figure 3.10: Going from red to green in the cloud IDE.

static_pages_controller_test.rb file, only those tests get run. Even
better, we can configure Guard so that when, say, the home.html.erb file is
modified, the static_pages_controller_test.rb automatically runs.

The Gemfile in Listing 3.2 has already included the guard gem in our
application, so to get started we just need to initialize it:

$ bundle exec guard init

Writing new Guardfile to /home/ec2-user/environment/sample_app/Guardfile

00:51:32 - INFO - minitest guard added to Guardfile, feel free to edit it

We then edit the resulting Guardfile so that Guard will run the right tests
when the integration tests and views are updated, which will look something
like Listing 3.47. For maximum flexibility, I recommend using the version of
the Guardfile listed in the reference application, which if you’re reading this
online should be identical to Listing 3.47:

• Reference Guardfile at railstutorial.org/guardfile

Listing 3.47: A custom Guardfile.
Defines the matching rules for Guard.

guard :minitest, spring: "bin/rails test", all_on_start: false do

https://www.railstutorial.org/guardfile

176 CHAPTER 3. MOSTLY STATIC PAGES

watch(%r{^test/(.*)/?(.*)_test\.rb$})

watch('test/test_helper.rb') { 'test' }

watch('config/routes.rb') { interface_tests }

watch(%r{app/views/layouts/*}) { interface_tests }

watch(%r{^app/models/(.*?)\.rb$}) do |matches|

"test/models/#{matches[1]}_test.rb"

end

watch(%r{^app/controllers/(.*?)_controller\.rb$}) do |matches|

resource_tests(matches[1])

end

watch(%r{^app/views/([^/]*?)/.*\.html\.erb$}) do |matches|

["test/controllers/#{matches[1]}_controller_test.rb"] +

integration_tests(matches[1])

end

watch(%r{^app/helpers/(.*?)_helper\.rb$}) do |matches|

integration_tests(matches[1])

end

watch('app/views/layouts/application.html.erb') do

'test/integration/site_layout_test.rb'

end

watch('app/helpers/sessions_helper.rb') do

integration_tests << 'test/helpers/sessions_helper_test.rb'

end

watch('app/controllers/sessions_controller.rb') do

['test/controllers/sessions_controller_test.rb',

'test/integration/users_login_test.rb']

end

watch('app/controllers/account_activations_controller.rb') do

'test/integration/users_signup_test.rb'

end

watch(%r{app/views/users/*}) do

resource_tests('users') +

['test/integration/microposts_interface_test.rb']

end

end

Returns the integration tests corresponding to the given resource.

def integration_tests(resource = :all)

if resource == :all

Dir["test/integration/*"]

else

Dir["test/integration/#{resource}_*.rb"]

end

end

Returns all tests that hit the interface.

def interface_tests

integration_tests << "test/controllers/"

end

Returns the controller tests corresponding to the given resource.

3.6. ADVANCED TESTING SETUP 177

def controller_test(resource)

"test/controllers/#{resource}_controller_test.rb"

end

Returns all tests for the given resource.

def resource_tests(resource)

integration_tests(resource) << controller_test(resource)

end

On the cloud IDE, there’s one additional step, which is to run the following
rather obscure commands to allow Guard to monitor all the files in the project:

$ echo fs.inotify.max_user_watches=524288 | sudo tee -a /etc/sysctl.conf

$ sudo sysctl -p

Once Guard is configured, you should open a new terminal (as with the Rails
server in Section 1.2.2) and run it at the command line as follows (Figure 3.11):

$ bundle exec guard

The rules in Listing 3.47 are optimized for this tutorial, automatically running
(for example) the integration tests when a controller is changed. To run all the
tests, simply hit return at the guard> prompt.

To exit Guard, press Ctrl-D. To add additional matchers to Guard, refer to
the examples in Listing 3.47, the Guard README, and the Guard wiki.

If the test suite fails without apparent cause, try exiting Guard, stopping
Spring (which Rails uses to pre-load information to help speed up tests), and
restarting:

$ bin/spring stop # Try this if the tests mysteriously start failing.

$ bundle exec guard

Before proceeding, you should add your changes and make a commit:

https://github.com/guard/listen/wiki/Increasing-the-amount-of-inotify-watchers
https://github.com/guard/guard
https://github.com/guard/guard/wiki

178 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.11: Using Guard on the cloud IDE.

$ git add -A

$ git commit -m "Complete advanced testing setup"

