
214 CHAPTER 4. RAILS-FLAVORED RUBY

inserted by Rails to ensure that browsers reload the CSS when it changes on
the server. Because the hex string is by design unique, your exact version of
Listing 4.14 will differ.)

Listing 4.14: The HTML source produced by the CSS includes.
<link rel="stylesheet" media="all" href="/assets/application.self-

f0d704deea029cf000697e2c0181ec173a1b474645466ed843eb5ee7bb215794.css?body=1"

data-turbolinks-track="reload" />

4.4 Ruby classes
We’ve said before that everything in Ruby is an object, and in this section we’ll
finally get to define some of our own. Ruby, like many object-oriented lan-
guages, uses classes to organize methods; these classes are then instantiated to
create objects. If you’re new to object-oriented programming, this may sound
like gibberish, so let’s look at some concrete examples.

4.4.1 Constructors
We’ve seen lots of examples of using classes to instantiate objects, but we have
yet to do so explicitly. For example, we instantiated a string using the double
quote characters, which is a literal constructor for strings:

>> s = "foobar" # A literal constructor for strings using double quotes

=> "foobar"

>> s.class

=> String

We see here that strings respond to the method class, and simply return the
class they belong to.

Instead of using a literal constructor, we can use the equivalent named con-
structor, which involves calling the new method on the class name:19

19These results will vary based on the version of Ruby you are using. This example assumes you are using
Ruby 1.9.3 or later.



4.4. RUBY CLASSES 215

>> s = String.new("foobar") # A named constructor for a string

=> "foobar"

>> s.class

=> String

>> s == "foobar"

=> true

This is equivalent to the literal constructor, but it’s more explicit about what
we’re doing.

Arrays work the same way as strings:

>> a = Array.new([1, 3, 2])

=> [1, 3, 2]

Hashes, in contrast, are different. While the array constructor Array.new takes
an initial value for the array, Hash.new takes a default value for the hash, which
is the value of the hash for a nonexistent key:

>> h = Hash.new

=> {}

>> h[:foo] # Try to access the value for the nonexistent key :foo.

=> nil

>> h = Hash.new(0) # Arrange for nonexistent keys to return 0 instead of nil.

=> {}

>> h[:foo]

=> 0

When a method gets called on the class itself, as in the case of new, it’s
called a class method. The result of calling new on a class is an object of that
class, also called an instance of the class. A method called on an instance, such
as length, is called an instance method.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


216 CHAPTER 4. RAILS-FLAVORED RUBY

1. What is the literal constructor for the range of integers from 1 to 10?

2. What is the constructor using the Range class and the new method? Hint:
new takes two arguments in this context.

3. Confirm using the == operator that the literal and named constructors
from the previous two exercises are identical.

4.4.2 Class inheritance
When learning about classes, it’s useful to find out the class hierarchy using the
superclass method:

>> s = String.new("foobar")

=> "foobar"

>> s.class # Find the class of s.

=> String

>> s.class.superclass # Find the superclass of String.

=> Object

>> s.class.superclass.superclass # Ruby has a BasicObject base class as of 1.9

=> BasicObject

>> s.class.superclass.superclass.superclass

=> nil

A diagram of this inheritance hierarchy appears in Figure 4.1. We see here that
the superclass of String is Object and the superclass of Object is Basic-
Object, but BasicObject has no superclass. This pattern is true of every
Ruby object: trace back the class hierarchy far enough and every class in Ruby
ultimately inherits from BasicObject, which has no superclass itself. This is
the technical meaning of “everything in Ruby is an object”.

To understand classes a little more deeply, there’s no substitute for making
one of our own. Let’s make a Word class with a palindrome? method that
returns true if the word is the same spelled forward and backward:

>> class Word

>> def palindrome?(string)

>> string == string.reverse

>> end

>> end

=> :palindrome?



4.4. RUBY CLASSES 217

Object

String

BasicObject

Figure 4.1: The inheritance hierarchy for the String class.

We can use it as follows:

>> w = Word.new # Make a new Word object.

=> #<Word:0x22d0b20>

>> w.palindrome?("foobar")

=> false

>> w.palindrome?("level")

=> true

If this example strikes you as a bit contrived, good—this is by design. It’s
odd to create a new class just to create a method that takes a string as an argu-
ment. Since a word is a string, it’s more natural to have our Word class inherit
from String, as seen in Listing 4.15. (You should exit the console and re-enter
it to clear out the old definition of Word.)

Listing 4.15: Defining a Word class in the console.
>> class Word < String # Word inherits from String.

>> # Returns true if the string is its own reverse.



218 CHAPTER 4. RAILS-FLAVORED RUBY

>> def palindrome?

>> self == self.reverse # self is the string itself.

>> end

>> end

=> nil

Here Word < String is the Ruby syntax for inheritance (discussed briefly in
Section 3.2), which ensures that, in addition to the new palindrome? method,
words also have all the same methods as strings:

>> s = Word.new("level") # Make a new Word, initialized with "level".

=> "level"

>> s.palindrome? # Words have the palindrome? method.

=> true

>> s.length # Words also inherit all the normal string methods.

=> 5

Since the Word class inherits from String, we can use the console to see the
class hierarchy explicitly:

>> s.class

=> Word

>> s.class.superclass

=> String

>> s.class.superclass.superclass

=> Object

This hierarchy is illustrated in Figure 4.2.
In Listing 4.15, note that checking that the word is its own reverse involves

accessing the word inside the Word class. Ruby allows us to do this using the
self keyword: inside the Word class, self is the object itself, which means
we can use

self == self.reverse

to check if the word is a palindrome. In fact, inside the String class the use
of self. is optional on a method or attribute (unless we’re making an assign-
ment), so



4.4. RUBY CLASSES 219

Object

Word

String

BasicObject

Figure 4.2: The inheritance hierarchy for the (non-built-in) Word class from
Listing 4.15.



220 CHAPTER 4. RAILS-FLAVORED RUBY

self == reverse

would work as well.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. What is the class hierarchy for a range? For a hash? For a symbol?

2. Confirm that the method shown in Listing 4.15 works even if we replace
self.reverse with just reverse.

4.4.3 Modifying built-in classes
While inheritance is a powerful idea, in the case of palindromes it might be even
more natural to add the palindrome? method to the String class itself, so
that (among other things) we can call palindrome? on a string literal, which
we currently can’t do:

>> "level".palindrome?

NoMethodError: undefined method `palindrome?' for "level":String

Amazingly, Ruby lets you do just this; Ruby classes can be opened and modi-
fied, allowing ordinary mortals such as ourselves to add methods to them:

>> class String

>> # Returns true if the string is its own reverse.

>> def palindrome?

>> self == self.reverse

>> end

>> end

=> nil

>> "deified".palindrome?

=> true

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


4.4. RUBY CLASSES 221

(I don’t know which is cooler: that Ruby lets you add methods to built-in
classes, or that "deified" is a palindrome.)

Modifying built-in classes is a powerful technique, but with great power
comes great responsibility, and it’s considered bad form to add methods to built-
in classes without having a really good reason for doing so. Rails does have
some good reasons; for example, in web applications we often want to prevent
variables from being blank—e.g., a user’s name should be something other than
spaces and other whitespace—so Rails adds a blank? method to Ruby. Since
the Rails console automatically includes the Rails extensions, we can see an
example here (this won’t work in plain irb):

>> "".blank?

=> true

>> " ".empty?

=> false

>> " ".blank?

=> true

>> nil.blank?

=> true

We see that a string of spaces is not empty, but it is blank. Note also that nil is
blank; since nil isn’t a string, this is a hint that Rails actually adds blank? to
String’s base class, which (as we saw at the beginning of this section) is Ob-
ject itself. We’ll see some other examples of Rails additions to Ruby classes
in Section 9.1.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that “racecar” is a palindrome and “onomatopoeia” is not. What
about the name of the South Indian language “Malayalam”? Hint: Down-
case it first.

https://en.wikipedia.org/wiki/Whitespace_(computer_science)
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


222 CHAPTER 4. RAILS-FLAVORED RUBY

2. Using Listing 4.16 as a guide, add a shuffle method to the String

class. Hint: Refer to Listing 4.12.

3. Verify that Listing 4.16 works even if you remove self..

Listing 4.16: Skeleton for a shuffle method attached to the String class.
>> class String

>> def shuffle

>> self.?('').?.?

>> end

>> end

>> "foobar".shuffle

=> "borafo"

4.4.4 A controller class
All this talk about classes and inheritance may have triggered a flash of recog-
nition, because we have seen both before, in the Static Pages controller (List-
ing 3.22):

class StaticPagesController < ApplicationController

def home

end

def help

end

def about

end

end

You’re now in a position to appreciate, at least vaguely, what this code means:
StaticPagesController is a class that inherits from ApplicationCon-

troller, and comes equipped with home, help, and about methods. Since
each Rails console session loads the local Rails environment, we can even create
a controller explicitly and examine its class hierarchy:20

20You don’t have to know what each class in this hierarchy does. I don’t know what they all do, and I’ve been



4.4. RUBY CLASSES 223

>> controller = StaticPagesController.new

=> #<StaticPagesController:0x22855d0>

>> controller.class

=> StaticPagesController

>> controller.class.superclass

=> ApplicationController

>> controller.class.superclass.superclass

=> ActionController::Base

>> controller.class.superclass.superclass.superclass

=> ActionController::Metal

>> controller.class.superclass.superclass.superclass.superclass

=> AbstractController::Base

>> controller.class.superclass.superclass.superclass.superclass.superclass

=> Object

A diagram of this hierarchy appears in Figure 4.3.
We can even call the controller actions inside the console, which are just

methods:

>> controller.home

=> nil

Here the return value is nil because the home action is blank.
But wait—actions don’t have return values, at least not ones that matter.

The point of the home action, as we saw in Chapter 3, is to render a web page,
not to return a value. And I sure don’t remember ever calling StaticPages-

Controller.new anywhere. What’s going on?
What’s going on is that Rails is written in Ruby, but Rails isn’t Ruby. Some

Rails classes are used like ordinary Ruby objects, but some are just grist for
Rails’ magic mill. Rails is sui generis, and should be studied and understood
separately from Ruby.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
programming in Ruby on Rails since 2005. This means either that (a) I’m grossly incompetent or (b) you can be
a skilled Rails developer without knowing all its innards. I hope for both our sakes that it’s the latter.

https://en.wiktionary.org/wiki/grist#English
https://en.wikipedia.org/wiki/Sui_generis
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition


224 CHAPTER 4. RAILS-FLAVORED RUBY

ActionController::Base

StaticPagesController

ApplicationController

Object

ActionController::Metal

AbstractController::Base

BasicObject

Figure 4.3: The inheritance hierarchy for the Static Pages.



4.4. RUBY CLASSES 225

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By running the Rails console in the toy app’s directory from Chapter 2,
confirm that you can create a user object using User.new.

2. Determine the class hierarchy of the user object.

4.4.5 A user class
We end our tour of Ruby with a complete class of our own, a User class that
anticipates the User model coming up in Chapter 6.

So far we’ve entered class definitions at the console, but this quickly be-
comes tiresome; instead, create the file example_user.rb in your application
root directory and fill it with the contents of Listing 4.17.

Listing 4.17: Code for an example user.
example_user.rb

class User

attr_accessor :name, :email

def initialize(attributes = {})

@name = attributes[:name]

@email = attributes[:email]

end

def formatted_email

"#{@name} <#{@email}>"

end

end

There’s quite a bit going on here, so let’s take it step by step. The first line,

attr_accessor :name, :email

creates attribute accessors corresponding to a user’s name and email address.
This creates “getter” and “setter” methods that allow us to retrieve (get) and as-
sign (set) @name and @email instance variables, which were mentioned briefly

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


226 CHAPTER 4. RAILS-FLAVORED RUBY

in Section 2.2.2 and Section 3.4.2. In Rails, the principal importance of instance
variables is that they are automatically available in the views, but in general they
are used for variables that need to be available throughout a Ruby class. (We’ll
have more to say about this in a moment.) Instance variables always begin with
an @ sign, and are nil when undefined.

The first method, initialize, is special in Ruby: it’s the method called
when we execute User.new. This particular initialize takes one argument,
attributes:

def initialize(attributes = {})

@name = attributes[:name]

@email = attributes[:email]

end

Here the attributes variable has a default value equal to the empty hash,
so that we can define a user with no name or email address. (Recall from
Section 4.3.3 that hashes return nil for nonexistent keys, so attributes-

[:name] will be nil if there is no :name key, and similarly for attributes-
[:email].)

Finally, our class defines a method called formatted_email that uses the
values of the assigned @name and @email variables to build up a nicely format-
ted version of the user’s email address using string interpolation (Section 4.2.1):

def formatted_email

"#{@name} <#{@email}>"

end

Because @name and @email are both instance variables (as indicated with the @
sign), they are automatically available in the formatted_email method.

Let’s fire up the console, require the example user code, and take our User
class out for a spin:

>> require './example_user' # This is how you load the example_user code.

=> true

>> example = User.new



4.4. RUBY CLASSES 227

=> #<User:0x224ceec @email=nil, @name=nil>

>> example.name # nil since attributes[:name] is nil

=> nil

>> example.name = "Example User" # Assign a non-nil name

=> "Example User"

>> example.email = "user@example.com" # and a non-nil email address

=> "user@example.com"

>> example.formatted_email

=> "Example User <user@example.com>"

Here the '.' is Unix for “current directory”, and './example_user' tells
Ruby to look for an example user file relative to that location. The subsequent
code creates an empty example user and then fills in the name and email ad-
dress by assigning directly to the corresponding attributes (assignments made
possible by the attr_accessor line in Listing 4.17). When we write

example.name = "Example User"

Ruby is setting the @name variable to "Example User" (and similarly for the
email attribute), which we then use in the formatted_email method.

Recalling from Section 4.3.4 we can omit the curly braces for final hash
arguments, we can create another user by passing a hash to the initialize
method to create a user with pre-defined attributes:

>> user = User.new(name: "Michael Hartl", email: "mhartl@example.com")

=> #<User:0x225167c @email="mhartl@example.com", @name="Michael Hartl">

>> user.formatted_email

=> "Michael Hartl <mhartl@example.com>"

We will see starting in Chapter 7 that initializing objects using a hash argument,
a technique known as mass assignment, is common in Rails applications.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


228 CHAPTER 4. RAILS-FLAVORED RUBY

1. In the example User class, change from name to separate first and last
name attributes, and then add a method called full_name that returns
the first and last names separated by a space. Use it to replace the use of
name in the formatted email method.

2. Add a method called alphabetical_name that returns the last name
and first name separated by comma-space.

3. Verify that full_name.split is the same as alphabetical_name.-
split(', ').reverse.

4.5 Conclusion
This concludes our overview of the Ruby language. In Chapter 5, we’ll start
putting it to good use in developing the sample application.

We won’t be using the example_user.rb file from Section 4.4.5, so I
suggest removing it:

$ rm example_user.rb

Then commit the other changes to the main source code repository and merge
into the master branch, push up to GitHub, and deploy to Heroku:

$ git commit -am "Add a full_title helper"

$ git checkout master

$ git merge rails-flavored-ruby

As a reality check, it’s a good practice to run the test suite before pushing or
deploying:

$ rails test

Then push up to GitHub:


