
Chapter 4

Rails-flavored Ruby
Grounded in examples from Chapter 3, this chapter explores some elements of
the Ruby programming language that are important for Rails. Ruby is a big lan-
guage, but fortunately the subset needed to be productive as a Rails developer is
relatively small. It also differs somewhat from the usual material covered in an
introduction to Ruby. This chapter is designed to give you a solid foundation in
Rails-flavored Ruby, whether or not you have prior experience in the language.
It covers a lot of material, and it’s OK not to get it all on the first pass. We’ll
refer back to it frequently in future chapters.1

4.1 Motivation
As we saw in the last chapter, it’s possible to develop the skeleton of a Rails
application, and even start testing it, with essentially no knowledge of the un-
derlying Ruby language. We did this by relying on the test code provided by the
tutorial and addressing each error message until the test suite was passing. This
situation can’t last forever, though, and we’ll open this chapter with an addition
to the site that brings us face-to-face with our Ruby limitations.

As in Section 3.2, we’ll use a separate topic branch to keep our changes
self-contained:

1For a more systematic introduction to Ruby, see Learn Enough Ruby to Be Dangerous.

179

https://www.learnenough.com/ruby


180 CHAPTER 4. RAILS-FLAVORED RUBY

$ git checkout -b rails-flavored-ruby

We’ll merge our changes into master in Section 4.5.

4.1.1 Built-in helpers
When we last saw our new application, we had just updated our mostly static
pages to use Rails layouts to eliminate duplication in our views, as shown in
Listing 4.1 (which is the same as Listing 3.37).

Listing 4.1: The sample application site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

</head>

<body>

<%= yield %>

</body>

</html>

Let’s focus on one particular line in Listing 4.1:

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

This uses the built-in Rails function stylesheet_link_tag (which you can
read more about at the Rails API)2 to include application.css for all media

2An “API” is an Application Programming Interface, which is a set of methods and other conventions that

https://api.rubyonrails.org/classes/ActionView/Helpers/AssetTagHelper.html#method-i-stylesheet_link_tag
https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/Media_type


4.1. MOTIVATION 181

types (including computer screens and printers). To an experienced Rails de-
veloper, this line looks simple, but there are at least four potentially confusing
Ruby ideas: built-in Rails methods, method invocation with missing parenthe-
ses, symbols, and hashes. We’ll cover all of these ideas in this chapter.

4.1.2 Custom helpers
In addition to coming equipped with a large number of built-in functions for
use in the views, Rails also allows the creation of new ones. Such functions are
called helpers; to see how to make a custom helper, let’s start by examining the
title line from Listing 4.1:

<%= yield(:title) %> | Ruby on Rails Tutorial Sample App

This relies on the definition of a page title (using provide) in each view, as in

<% provide(:title, "Home") %>

<h1>Sample App</h1>

<p>

This is the home page for the

<a href="https://www.railstutorial.org/">Ruby on Rails Tutorial</a>

sample application.

</p>

But what if we don’t provide a title? It’s a good convention to have a base title
we use on every page, with an optional page title if we want to be more specific.
We’ve almost achieved that with our current layout, with one wrinkle: as you
can see if you delete the provide call in one of the views, in the absence of a
page-specific title the full title appears as follows:

serves as an abstraction layer for interacting with a software system. The practical effect is that we as developers
don’t need to understand the program internals; we need only be famliar with the public-facing API. In the present
case, this means that, rather than be concerned with how stylesheet_link_tag is implemented, we need only
know how it behaves.

https://en.wikipedia.org/wiki/Abstraction_layer


182 CHAPTER 4. RAILS-FLAVORED RUBY

| Ruby on Rails Tutorial Sample App

In other words, there’s a suitable base title, but there’s also a leading vertical
bar character | at the beginning.

To solve the problem of a missing page title, we’ll define a custom helper
called full_title. The full_title helper returns a base title, “Ruby on
Rails Tutorial Sample App”, if no page title is defined, and adds a vertical bar
preceded by the page title if one is defined (Listing 4.2).3

Listing 4.2: Defining a full_title helper.
app/helpers/application_helper.rb

module ApplicationHelper

# Returns the full title on a per-page basis.

def full_title(page_title = '')

base_title = "Ruby on Rails Tutorial Sample App"

if page_title.empty?

base_title

else

page_title + " | " + base_title

end

end

end

Now that we have a helper, we can use it to simplify our layout by replacing

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

with

3If a helper is specific to a particular controller, you should put it in the corresponding helper file; for example,
helpers for the Static Pages controller generally go in app/helpers/static_pages_helper.rb. In our case,
we expect the full_title helper to be used on all the site’s pages, and Rails has a special helper file for this
case: app/helpers/application_helper.rb.



4.1. MOTIVATION 183

<title><%= full_title(yield(:title)) %></title>

as seen in Listing 4.3.

Listing 4.3: The site layout with the full_title helper. green
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

</head>

<body>

<%= yield %>

</body>

</html>

To put our helper to work, we can eliminate the unnecessary word “Home”
from the Home page, allowing it to revert to the base title. We do this by first
updating our test with the code in Listing 4.4, which updates the previous title
test and adds one to test for the absence of the custom "Home" string in the title.

Listing 4.4: An updated test for the Home page’s title. red
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Ruby on Rails Tutorial Sample App"

end

test "should get help" do



184 CHAPTER 4. RAILS-FLAVORED RUBY

get static_pages_help_url

assert_response :success

assert_select "title", "Help | Ruby on Rails Tutorial Sample App"

end

test "should get about" do

get static_pages_about_url

assert_response :success

assert_select "title", "About | Ruby on Rails Tutorial Sample App"

end

end

Let’s run the test suite to verify that one test fails:4

Listing 4.5: red
$ rails test

3 tests, 6 assertions, 1 failures, 0 errors, 0 skips

To get the test suite to pass, we’ll remove the provide line from the Home
page’s view, as seen in Listing 4.6.

Listing 4.6: The Home page with no custom page title. green
app/views/static_pages/home.html.erb

<h1>Sample App</h1>

<p>

This is the home page for the

<a href="https://www.railstutorial.org/">Ruby on Rails Tutorial</a>

sample application.

</p>

At this point the tests should pass:

Listing 4.7: green
$ rails test

4I’ll generally run the test suite explicitly for completeness, but in practice I usually just use Guard as described
in Section 3.6.2.


