
212 CHAPTER 4. RAILS-FLAVORED RUBY

4. Find an online version of the Ruby API and read about the Hash method
merge. What is the value of the following expression?

{ "a" => 100, "b" => 200 }.merge({ "b" => 300 })

4.3.4 CSS revisited
It’s time now to revisit the line from Listing 4.1 used in the layout to include
the Cascading Style Sheets:

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

We are now nearly in a position to understand this. As mentioned briefly in
Section 4.1, Rails defines a special function to include stylesheets, and

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

is a call to this function. But there are several mysteries. First, where are the
parentheses? In Ruby, they are optional, so these two are equivalent:

Parentheses on function calls are optional.

This:

stylesheet_link_tag('application', media: 'all',

'data-turbolinks-track': 'reload')

is the same as this:

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

Second, the media argument sure looks like a hash, but where are the curly
braces? When hashes are the last argument in a function call, the curly braces
are optional, so these two are equivalent:

4.3. OTHER DATA STRUCTURES 213

Curly braces on final hash arguments are optional.

This:

stylesheet_link_tag 'application', { media: 'all',

'data-turbolinks-track': 'reload' }

is the same as this:

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

Finally, why does Ruby correctly interpret the lines

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

even with a line break between the final elements? The answer is that Ruby
doesn’t distinguish between newlines and other whitespace in this context.17

The reason I chose to break the code into pieces is that I prefer to keep lines of
source code under 80 characters for legibility.18

So, we see now that the line

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

calls the stylesheet_link_tag function with two arguments: a string, in-
dicating the path to the stylesheet, and a hash with two elements, indicating the
media type and telling Rails to use the turbolinks feature added in Rails 4.0.
Because of the <%= ... %> brackets, the results are inserted into the template
by ERb, and if you view the source of the page in your browser you should
see the HTML needed to include a stylesheet (Listing 4.14). (The extra stuff
in Listing 4.14, like ?body=1 and the long string of hexadecimal digits are,

17A newline is what comes at the end of a line, thereby starting a new line. As noted in Section 4.2.1, it is
typically represented by the character \n.

18Constantly having to check the column number is rather inconvenient, so many text editors have a visual aid
to help you. For example, if you take a look back at Figure 1.12, you may be able to make out the small vertical
line on the right side of the screen, which is designed to help keep code under 80 characters. (It’s very subtle, so
you may not be able to see it in the screenshot.) The cloud IDE (Section 1.1.1) includes such a line by default. In
Sublime Text, you can use View > Ruler > 78 or View > Ruler > 80.

https://github.com/rails/turbolinks
https://en.wikipedia.org/wiki/Hexadecimal

214 CHAPTER 4. RAILS-FLAVORED RUBY

inserted by Rails to ensure that browsers reload the CSS when it changes on
the server. Because the hex string is by design unique, your exact version of
Listing 4.14 will differ.)

Listing 4.14: The HTML source produced by the CSS includes.
<link rel="stylesheet" media="all" href="/assets/application.self-

f0d704deea029cf000697e2c0181ec173a1b474645466ed843eb5ee7bb215794.css?body=1"

data-turbolinks-track="reload" />

4.4 Ruby classes
We’ve said before that everything in Ruby is an object, and in this section we’ll
finally get to define some of our own. Ruby, like many object-oriented lan-
guages, uses classes to organize methods; these classes are then instantiated to
create objects. If you’re new to object-oriented programming, this may sound
like gibberish, so let’s look at some concrete examples.

4.4.1 Constructors
We’ve seen lots of examples of using classes to instantiate objects, but we have
yet to do so explicitly. For example, we instantiated a string using the double
quote characters, which is a literal constructor for strings:

>> s = "foobar" # A literal constructor for strings using double quotes

=> "foobar"

>> s.class

=> String

We see here that strings respond to the method class, and simply return the
class they belong to.

Instead of using a literal constructor, we can use the equivalent named con-
structor, which involves calling the new method on the class name:19

19These results will vary based on the version of Ruby you are using. This example assumes you are using
Ruby 1.9.3 or later.

