
Chapter 4

Rails-flavored Ruby
Grounded in examples from Chapter 3, this chapter explores some elements of
the Ruby programming language that are important for Rails. Ruby is a big lan-
guage, but fortunately the subset needed to be productive as a Rails developer is
relatively small. It also differs somewhat from the usual material covered in an
introduction to Ruby. This chapter is designed to give you a solid foundation in
Rails-flavored Ruby, whether or not you have prior experience in the language.
It covers a lot of material, and it’s OK not to get it all on the first pass. We’ll
refer back to it frequently in future chapters.1

4.1 Motivation
As we saw in the last chapter, it’s possible to develop the skeleton of a Rails
application, and even start testing it, with essentially no knowledge of the un-
derlying Ruby language. We did this by relying on the test code provided by the
tutorial and addressing each error message until the test suite was passing. This
situation can’t last forever, though, and we’ll open this chapter with an addition
to the site that brings us face-to-face with our Ruby limitations.

As in Section 3.2, we’ll use a separate topic branch to keep our changes
self-contained:

1For a more systematic introduction to Ruby, see Learn Enough Ruby to Be Dangerous.

179

https://www.learnenough.com/ruby

180 CHAPTER 4. RAILS-FLAVORED RUBY

$ git checkout -b rails-flavored-ruby

We’ll merge our changes into master in Section 4.5.

4.1.1 Built-in helpers
When we last saw our new application, we had just updated our mostly static
pages to use Rails layouts to eliminate duplication in our views, as shown in
Listing 4.1 (which is the same as Listing 3.37).

Listing 4.1: The sample application site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

</head>

<body>

<%= yield %>

</body>

</html>

Let’s focus on one particular line in Listing 4.1:

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

This uses the built-in Rails function stylesheet_link_tag (which you can
read more about at the Rails API)2 to include application.css for all media

2An “API” is an Application Programming Interface, which is a set of methods and other conventions that

https://api.rubyonrails.org/classes/ActionView/Helpers/AssetTagHelper.html#method-i-stylesheet_link_tag
https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/Media_type

4.1. MOTIVATION 181

types (including computer screens and printers). To an experienced Rails de-
veloper, this line looks simple, but there are at least four potentially confusing
Ruby ideas: built-in Rails methods, method invocation with missing parenthe-
ses, symbols, and hashes. We’ll cover all of these ideas in this chapter.

4.1.2 Custom helpers
In addition to coming equipped with a large number of built-in functions for
use in the views, Rails also allows the creation of new ones. Such functions are
called helpers; to see how to make a custom helper, let’s start by examining the
title line from Listing 4.1:

<%= yield(:title) %> | Ruby on Rails Tutorial Sample App

This relies on the definition of a page title (using provide) in each view, as in

<% provide(:title, "Home") %>

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

But what if we don’t provide a title? It’s a good convention to have a base title
we use on every page, with an optional page title if we want to be more specific.
We’ve almost achieved that with our current layout, with one wrinkle: as you
can see if you delete the provide call in one of the views, in the absence of a
page-specific title the full title appears as follows:

serves as an abstraction layer for interacting with a software system. The practical effect is that we as developers
don’t need to understand the program internals; we need only be famliar with the public-facing API. In the present
case, this means that, rather than be concerned with how stylesheet_link_tag is implemented, we need only
know how it behaves.

https://en.wikipedia.org/wiki/Abstraction_layer

182 CHAPTER 4. RAILS-FLAVORED RUBY

| Ruby on Rails Tutorial Sample App

In other words, there’s a suitable base title, but there’s also a leading vertical
bar character | at the beginning.

To solve the problem of a missing page title, we’ll define a custom helper
called full_title. The full_title helper returns a base title, “Ruby on
Rails Tutorial Sample App”, if no page title is defined, and adds a vertical bar
preceded by the page title if one is defined (Listing 4.2).3

Listing 4.2: Defining a full_title helper.
app/helpers/application_helper.rb

module ApplicationHelper

Returns the full title on a per-page basis.

def full_title(page_title = '')

base_title = "Ruby on Rails Tutorial Sample App"

if page_title.empty?

base_title

else

page_title + " | " + base_title

end

end

end

Now that we have a helper, we can use it to simplify our layout by replacing

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

with

3If a helper is specific to a particular controller, you should put it in the corresponding helper file; for example,
helpers for the Static Pages controller generally go in app/helpers/static_pages_helper.rb. In our case,
we expect the full_title helper to be used on all the site’s pages, and Rails has a special helper file for this
case: app/helpers/application_helper.rb.

4.1. MOTIVATION 183

<title><%= full_title(yield(:title)) %></title>

as seen in Listing 4.3.

Listing 4.3: The site layout with the full_title helper. green
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

</head>

<body>

<%= yield %>

</body>

</html>

To put our helper to work, we can eliminate the unnecessary word “Home”
from the Home page, allowing it to revert to the base title. We do this by first
updating our test with the code in Listing 4.4, which updates the previous title
test and adds one to test for the absence of the custom "Home" string in the title.

Listing 4.4: An updated test for the Home page’s title. red
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Ruby on Rails Tutorial Sample App"

end

test "should get help" do

184 CHAPTER 4. RAILS-FLAVORED RUBY

get static_pages_help_url

assert_response :success

assert_select "title", "Help | Ruby on Rails Tutorial Sample App"

end

test "should get about" do

get static_pages_about_url

assert_response :success

assert_select "title", "About | Ruby on Rails Tutorial Sample App"

end

end

Let’s run the test suite to verify that one test fails:4

Listing 4.5: red
$ rails test

3 tests, 6 assertions, 1 failures, 0 errors, 0 skips

To get the test suite to pass, we’ll remove the provide line from the Home
page’s view, as seen in Listing 4.6.

Listing 4.6: The Home page with no custom page title. green
app/views/static_pages/home.html.erb

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

At this point the tests should pass:

Listing 4.7: green
$ rails test

4I’ll generally run the test suite explicitly for completeness, but in practice I usually just use Guard as described
in Section 3.6.2.

4.2. STRINGS AND METHODS 185

(Previous examples have included partial output of running rails test, in-
cluding the number of passing and failing tests, but for brevity these will usually
be omitted from now on.)

As with the line to include the application stylesheet in Section 4.1.1, the
code in Listing 4.2 may look simple to the eyes of an experienced Rails de-
veloper, but it’s full of important Ruby ideas: modules, method definition, op-
tional method arguments, comments, local variable assignment, booleans, con-
trol flow, string concatenation, and return values. This chapter will cover all of
these ideas as well.

4.2 Strings and methods
Our principal tool for learning Ruby will be the Rails console, a command-line
program for interacting with Rails applications first seen in Section 2.3.3. The
console itself is built on top of interactive Ruby (irb), and thus has access to
the full power of the Ruby language. (As we’ll see in Section 4.4.4, the console
also has access to the Rails environment.)

If you’re using the cloud IDE, there are a couple of irb configuration pa-
rameters I recommend including. Using the simple nano text editor, open a file
called .irbrc in the home directory:5

$ nano ~/.irbrc

Then fill it with the contents of Listing 4.8, which arranges to simplify the irb
prompt and suppress some annoying auto-indent behavior.

Listing 4.8: Adding some irb configuration.
~/.irbrc

IRB.conf[:PROMPT_MODE] = :SIMPLE

IRB.conf[:AUTO_INDENT_MODE] = false

5The nano editor is easier for beginners, but for this sort of short edit I would almost always use Vim instead.
To learn Minimum Viable Vim™, see Learn Enough Text Editor to Be Dangerous.

https://www.learnenough.com/text-editor

186 CHAPTER 4. RAILS-FLAVORED RUBY

Finally, exit nano with Ctrl-X and save ~/.irbrc by typing y to confirm.
We can now start the console at the command line as follows:

$ rails console

Loading development environment

>>

By default, the console starts in a development environment, which is one of
three separate environments defined by Rails (the others are test and produc-
tion). This distinction won’t be important in this chapter, but it will in the future,
and we’ll learn more about environments in Section 7.1.1.

The console is a great learning tool, and you should feel free to explore.
Don’t worry—you (probably) won’t break anything. When using the console,
type Ctrl-C if you get stuck, or type Ctrl-D to exit the console altogether. As
with a regular terminal shell, you can also use up-arrow to retrieve previous
commands, which can be a significant time-saver.

Throughout the rest of this chapter, you might find it helpful to consult the
Ruby API. It’s packed (perhaps even too packed) with information; for exam-
ple, to learn more about Ruby strings you can look at the Ruby API entry for
the String class.

During this discussion, we’ll sometimes use Ruby comments, which start
with the pound sign # (also called the “hash mark” or (more poetically) the
“octothorpe”) and extend to the end of the line. Ruby ignores comments, but
they are useful for human readers (including, often, the original author!). In the
code

Returns the full title on a per-page basis.

def full_title(page_title = '')

.

.

.

end

the first line is a comment indicating the purpose of the subsequent function
definition.

https://www.learnenough.com/r/learn_enough_command_line/basics/our_first_command#aside-getting_out_of_trouble
https://ruby-doc.org

4.2. STRINGS AND METHODS 187

You don’t ordinarily include comments in console sessions, but for instruc-
tional purposes I’ll include some comments in what follows, like this:

$ rails console

>> 17 + 42 # Integer addition

=> 59

If you follow along in this section by typing or copying-and-pasting commands
into your own console, you can of course omit the comments if you like; the
console will ignore them in any case.

4.2.1 Strings
Strings are probably the most important data structure for web applications,
since web pages ultimately consist of strings of characters sent from the server
to the browser. Let’s start exploring strings with the console:

$ rails console

>> "" # An empty string

=> ""

>> "foo" # A nonempty string

=> "foo"

These are string literals (also called literal strings), created using the double
quote character ". The console prints the result of evaluating each line, which
in the case of a string literal is just the string itself.

We can also concatenate strings with the + operator:

>> "foo" + "bar" # String concatenation

=> "foobar"

Here the result of evaluating "foo" plus "bar" is the string "foobar".6

6For more on the origins of “foo” and “bar”—and, in particular, the possible non-relation of “foobar” to
“FUBAR”—see the Jargon File entry on “foo”.

http://www.catb.org/jargon/html/F/foo.html

188 CHAPTER 4. RAILS-FLAVORED RUBY

Another way to build up strings is via interpolation using the special syntax
#{}:7

>> first_name = "Michael" # Variable assignment

=> "Michael"

>> "#{first_name} Hartl" # String interpolation

=> "Michael Hartl"

Here we’ve assigned the value "Michael" to the variable first_name and
then interpolated it into the string "#{first_name} Hartl". We could also
assign both strings a variable name:

>> first_name = "Michael"

=> "Michael"

>> last_name = "Hartl"

=> "Hartl"

>> first_name + " " + last_name # Concatenation, with a space in between

=> "Michael Hartl"

>> "#{first_name} #{last_name}" # The equivalent interpolation

=> "Michael Hartl"

Note that the final two expressions are equivalent, but I prefer the interpolated
version; having to add the single space " " seems a bit awkward.

Printing

To print a string to the screen, the most commonly used Ruby function is puts
(pronounced “put ess”, for “put string”, though some people do pronounce it
like the word “puts” instead):

>> puts "foo" # put string

foo

=> nil

7Programmers familiar with Perl or PHP should compare this to the automatic interpolation of dollar sign
variables in expressions like "foo $bar".

4.2. STRINGS AND METHODS 189

The puts method operates as a side-effect: the expression puts "foo" prints
the string to the screen and then returns literally nothing: nil is a special Ruby
value for “nothing at all”. (In what follows, I’ll sometimes suppress the =>

nil part for simplicity.)
As seen in the examples above, using puts automatically includes a new

line after the string gets printed (the same as the behavior of the echo command
covered in Learn Enough Command Line to Be Dangerous). The closely related
print command prints the raw string without the extra line:

>> print "foo" # print string without extra line

foo=> nil

You can see here that the output foo bumps right up against the prompt in the
second line.

The technical name for an extra line of blank space is a newline, typically
represented by “backslash n” \n. We can arrange for print to replicate the
behavior of puts by including an explicit newline character in the string:

>> print "foo\n" # Same as puts "foo"

foo

=> nil

Single-quoted strings
All the examples so far have used double-quoted strings, but Ruby also supports
single-quoted strings. For many uses, the two types of strings are effectively
identical:

>> 'foo' # A single-quoted string

=> "foo"

>> 'foo' + 'bar'

=> "foobar"

There’s an important difference, though; Ruby won’t interpolate into
single-quoted strings:

https://en.wiktionary.org/wiki/nil
https://www.learnenough.com/r/learn_enough_command_line/basics/our_first_command#sec-our_first_command
https://www.learnenough.com/command-line

190 CHAPTER 4. RAILS-FLAVORED RUBY

>> '#{foo} bar' # Single-quoted strings don't allow interpolation

=> "\#{foo} bar"

Note how the console returns values using double-quoted strings, which re-
quires a backslash to escape special character combinations such as #{.

If double-quoted strings can do everything that single-quoted strings can
do, and interpolate to boot, what’s the point of single-quoted strings? They are
often useful because they are truly literal, containing exactly the characters you
type. For example, the “backslash” character is special on most systems, as
in the literal newline \n. If you want a variable to contain a literal backslash,
single quotes make it easier:

>> '\n' # A literal 'backslash n' combination

=> "\\n"

As with the #{ combination in our previous example, Ruby needs to escape the
backslash with an additional backslash; inside double-quoted strings, a literal
backslash is represented with two backslashes. For a small example like this,
there’s not much savings, but if there are lots of things to escape it can be a real
help:

>> 'Newlines (\n) and tabs (\t) both use the backslash character \.'

=> "Newlines (\\n) and tabs (\\t) both use the backslash character \\."

Finally, it’s worth noting that, in the common case that both single and dou-
ble quotes work just fine, you’ll often find that the source code switches between
the two without any apparent pattern. There’s really nothing to be done about
this, except to say, “Welcome to Ruby! You’ll get used to it soon enough.”

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.2. STRINGS AND METHODS 191

1. Assign variables city and state to your current city and state of resi-
dence. (If residing outside the U.S., substitute the analogous quantities.)

2. Using interpolation, print (using puts) a string consisting of the city and
state separated by a comma and a space, as in “Los Angeles, CA”.

3. Repeat the previous exercise but with the city and state separated by a tab
character.

4. What is the result if you replace double quotes with single quotes in the
previous exercise?

4.2.2 Objects and message passing
Everything in Ruby, including strings and even nil, is an object. We’ll see
the technical meaning of this in Section 4.4.2, but I don’t think anyone ever
understood objects by reading the definition in a book; you have to build up
your intuition for objects by seeing lots of examples.

It’s easier to describe what objects do, which is respond to messages. An
object like a string, for example, can respond to the message length, which
returns the number of characters in the string:

>> "foobar".length # Passing the "length" message to a string

=> 6

Typically, the messages that get passed to objects are methods, which are func-
tions defined on those objects.8 Strings also respond to the empty? method:

>> "foobar".empty?

=> false

>> "".empty?

=> true

8Apologies in advance for switching haphazardly between function and method throughout this chapter; in
Ruby, they’re the same thing: all methods are functions, and all functions are methods, because everything is an
object.

192 CHAPTER 4. RAILS-FLAVORED RUBY

Note the question mark at the end of the empty? method. This is a Ruby con-
vention indicating that the return value is boolean: true or false. Booleans
are especially useful for control flow:

>> s = "foobar"

>> if s.empty?

>> "The string is empty"

>> else

>> "The string is nonempty"

>> end

=> "The string is nonempty"

To include more than one clause, we can use elsif (else + if):

>> if s.nil?

>> "The variable is nil"

>> elsif s.empty?

>> "The string is empty"

>> elsif s.include?("foo")

>> "The string includes 'foo'"

>> end

=> "The string includes 'foo'"

Booleans can also be combined using the && (“and”), || (“or”), and ! (“not”)
operators:

>> x = "foo"

=> "foo"

>> y = ""

=> ""

>> puts "Both strings are empty" if x.empty? && y.empty?

=> nil

>> puts "One of the strings is empty" if x.empty? || y.empty?

"One of the strings is empty"

=> nil

>> puts "x is not empty" if !x.empty?

"x is not empty"

=> nil

Since everything in Ruby is an object, it follows that nil is an object, so it
too can respond to methods. One example is the to_s method that can convert
virtually any object to a string:

4.2. STRINGS AND METHODS 193

>> nil.to_s

=> ""

This certainly appears to be an empty string, as we can verify by passing mul-
tiple methods to nil, a technique known as method chaining:

>> nil.empty?

NoMethodError: undefined method `empty?' for nil:NilClass

>> nil.to_s.empty? # Message chaining

=> true

We see here that the nil object doesn’t itself respond to the empty? method,
but nil.to_s does.

There’s a special method for testing for nil-ness, which you might be able
to guess:

>> "foo".nil?

=> false

>> "".nil?

=> false

>> nil.nil?

=> true

The code

puts "x is not empty" if !x.empty?

also shows an alternate use of the if keyword: Ruby allows you to write a
statement that is evaluated only if the statement following if is true. There’s a
complementary unless keyword that works the same way:

>> string = "foobar"

>> puts "The string '#{string}' is nonempty." unless string.empty?

The string 'foobar' is nonempty.

=> nil

194 CHAPTER 4. RAILS-FLAVORED RUBY

It’s worth noting that the nil object is special, in that it is the only Ruby
object that is false in a boolean context, apart from false itself. We can see this
using !! (read “bang bang”), which negates an object twice, thereby coercing
it to its boolean value:

>> !!nil

=> false

In particular, all other Ruby objects are true, even 0:

>> !!0

=> true

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. What is the length of the string “racecar”?

2. Confirm using the reverse method that the string in the previous exer-
cise is the same when its letters are reversed.

3. Assign the string “racecar” to the variable s. Confirm using the compar-
ison operator == that s and s.reverse are equal.

4. What is the result of running the code shown in Listing 4.9? How does it
change if you reassign the variable s to the string “onomatopoeia”? Hint:
Use up-arrow to retrieve and edit previous commands

Listing 4.9: A simple palindrome test.
>> puts "It's a palindrome!" if s == s.reverse

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wiktionary.org/wiki/onomatopoeia#English

4.2. STRINGS AND METHODS 195

4.2.3 Method definitions
The console allows us to define methods the same way we did with the home
action from Listing 3.9 or the full_title helper from Listing 4.2. (Defining
methods in the console is a bit cumbersome, and ordinarily you would use a
file, but it’s convenient for demonstration purposes.) For example, let’s define a
function string_message that takes a single argument and returns a message
based on whether the argument is empty or not:

>> def string_message(str = '')

>> if str.empty?

>> "It's an empty string!"

>> else

>> "The string is nonempty."

>> end

>> end

=> :string_message

>> puts string_message("foobar")

The string is nonempty.

>> puts string_message("")

It's an empty string!

>> puts string_message

It's an empty string!

As seen in the final example, it’s possible to leave out the argument entirely (in
which case we can also omit the parentheses). This is because the code

def string_message(str = '')

contains a default argument, which in this case is the empty string. This makes
the str argument optional, and if we leave it off it automatically takes the given
default value.

Note that Ruby functions have an implicit return, meaning they return the
last statement evaluated—in this case, one of the two message strings, depend-
ing on whether the method’s argument str is empty or not. Ruby also has an
explicit return option; the following function is equivalent to the one above:

196 CHAPTER 4. RAILS-FLAVORED RUBY

>> def string_message(str = '')

>> return "It's an empty string!" if str.empty?

>> return "The string is nonempty."

>> end

(The alert reader might notice at this point that the second return here is ac-
tually unnecessary—being the last expression in the function, the string "The

string is nonempty."will be returned regardless of the return keyword,
but using return in both places has a pleasing symmetry to it.)

It’s also important to understand that the name of the function argument
is irrelevant as far as the caller is concerned. In other words, the first ex-
ample above could replace str with any other valid variable name, such as
the_function_argument, and it would work just the same:

>> def string_message(the_function_argument = '')

>> if the_function_argument.empty?

>> "It's an empty string!"

>> else

>> "The string is nonempty."

>> end

>> end

=> nil

>> puts string_message("")

It's an empty string!

>> puts string_message("foobar")

The string is nonempty.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By replacing FILL_IN with the appropriate comparison test shown in
Listing 4.10, define a method for testing palindromes. Hint: Use the
comparison shown in Listing 4.9.

2. By running your palindrome tester on “racecar” and “onomatopoeia”,
confirm that the first is a palindrome and the second isn’t.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.2. STRINGS AND METHODS 197

3. By calling the nil? method on palindrome_tester("racecar"),
confirm that its return value is nil (i.e., calling nil? on the result of the
method should return true). This is because the code in Listing 4.10
prints its responses instead of returning them.

Listing 4.10: A simple tester for palindromes.
>> def palindrome_tester(s)

>> if FILL_IN

>> puts "It's a palindrome!"

>> else

>> puts "It's not a palindrome."

>> end

>> end

4.2.4 Back to the title helper
We are now in a position to understand the full_title helper from List-
ing 4.2,9 which appears with commented annotations in Listing 4.11.

Listing 4.11: An annotated title_helper.
app/helpers/application_helper.rb

module ApplicationHelper

Returns the full title on a per-page basis. # Documentation comment

def full_title(page_title = '') # Method def, optional arg

base_title = "Ruby on Rails Tutorial Sample App" # Variable assignment

if page_title.empty? # Boolean test

base_title # Implicit return

else

page_title + " | " + base_title # String concatenation

end

end

end

9Well, there will still be one thing left that we don’t understand, which is how Rails ties this all together:
mapping URLs to actions, making the full_title helper available in views, etc. This is an interesting subject,
and I encourage you to investigate it further, but knowing exactly how Rails works is not necessary when using
Rails.

198 CHAPTER 4. RAILS-FLAVORED RUBY

These elements—function definition (with an optional argument), variable
assignment, boolean tests, control flow, and string concatenation10—come to-
gether to make a compact helper method for use in our site layout. The final
element is module ApplicationHelper: modules give us a way to pack-
age together related methods, which can then be mixed in to Ruby classes using
include. When writing ordinary Ruby, you often write modules and include
them explicitly yourself, but in the case of a helper module Rails handles the
inclusion for us. The result is that the full_title method is automagically
available in all our views.

4.3 Other data structures
Although web apps are ultimately about strings, actually making those strings
requires using other data structures as well. In this section, we’ll learn about
some Ruby data structures important for writing Rails applications.

4.3.1 Arrays and ranges
An array is just a list of elements in a particular order. We haven’t discussed
arrays yet in the Rails Tutorial, but understanding them gives a good foundation
for understanding hashes (Section 4.3.3) and for aspects of Rails data modeling
(such as the has_many association seen in Section 2.3.3 and covered more in
Section 13.1.3).

So far we’ve spent a lot of time understanding strings, and there’s a natural
way to get from strings to arrays using the split method:

>> "foo bar baz".split # Split a string into a three-element array.

=> ["foo", "bar", "baz"]

10It’s tempting to use string interpolation instead—indeed, this was the technique used in all previous versions
of the tutorial—but in fact the call to provide converts the string into a so-called SafeBuffer object instead of
an ordinary string. Interpolating and inserting into a view template then over-escapes any inserted HTML, so a
title such as “Help’s on the way” would be converted to “Help&#39;s on the way”. (Thanks to reader Jeremy
Fleischman for pointing out this subtle issue.)

http://catb.org/jargon/html/A/automagically.html

4.3. OTHER DATA STRUCTURES 199

The result of this operation is an array of three strings. By default, split
divides a string into an array by splitting on whitespace, but you can split on
nearly anything else as well:

>> "fooxbarxbaz".split('x')

=> ["foo", "bar", "baz"]

As is conventional in most computer languages, Ruby arrays are zero-offset,
which means that the first element in the array has index 0, the second has
index 1, and so on:

>> a = [42, 8, 17]

=> [42, 8, 17]

>> a[0] # Ruby uses square brackets for array access.

=> 42

>> a[1]

=> 8

>> a[2]

=> 17

>> a[-1] # Indices can even be negative!

=> 17

We see here that Ruby uses square brackets to access array elements. In addition
to this bracket notation, Ruby offers synonyms for some commonly accessed
elements:11

>> a # Just a reminder of what 'a' is

=> [42, 8, 17]

>> a.first

=> 42

>> a.second

=> 8

>> a.last

=> 17

>> a.last == a[-1] # Comparison using ==

=> true

11The second method used here isn’t currently part of Ruby itself, but rather is added by Rails. It works in this
case because the Rails console automatically includes the Rails extensions to Ruby.

200 CHAPTER 4. RAILS-FLAVORED RUBY

This last line introduces the equality comparison operator ==, which Ruby
shares with many other languages, along with the associated != (“not equal”),
etc.:

>> x = a.length # Like strings, arrays respond to the 'length' method.

=> 3

>> x == 3

=> true

>> x == 1

=> false

>> x != 1

=> true

>> x >= 1

=> true

>> x < 1

=> false

In addition to length (seen in the first line above), arrays respond to a
wealth of other methods:

>> a

=> [42, 8, 17]

>> a.empty?

=> false

>> a.include?(42)

=> true

>> a.sort

=> [8, 17, 42]

>> a.reverse

=> [17, 8, 42]

>> a.shuffle

=> [17, 42, 8]

>> a

=> [42, 8, 17]

Note that none of the methods above changes a itself. To mutate the array, use
the corresponding “bang” methods (so-called because the exclamation point is
usually pronounced “bang” in this context):

>> a

=> [42, 8, 17]

>> a.sort!

4.3. OTHER DATA STRUCTURES 201

=> [8, 17, 42]

>> a

=> [8, 17, 42]

You can also add to arrays with the push method or its equivalent operator,
<<, called the “shovel operator”:

>> a.push(6) # Pushing 6 onto an array

=> [42, 8, 17, 6]

>> a << 7 # Pushing 7 onto an array

=> [42, 8, 17, 6, 7]

>> a << "foo" << "bar" # Chaining array pushes

=> [42, 8, 17, 6, 7, "foo", "bar"]

This last example shows that you can chain pushes together, and also that, unlike
arrays in many other languages, Ruby arrays can contain a mixture of different
types (in this case, integers and strings).

Before we saw split convert a string to an array. We can also go the other
way with the join method:

>> a

=> [42, 8, 17, 6, 7, "foo", "bar"]

>> a.join # Join on nothing.

=> "4281767foobar"

>> a.join(', ') # Join on comma-space.

=> "42, 8, 17, 6, 7, foo, bar"

Closely related to arrays are ranges, which can probably most easily be
understood by converting them to arrays using the to_a method:

>> 0..9

=> 0..9

>> 0..9.to_a # Oops, call to_a on 9.

NoMethodError: undefined method `to_a' for 9:Fixnum

>> (0..9).to_a # Use parentheses to call to_a on the range.

=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Though 0..9 is a valid range, the second expression above shows that we need
to add parentheses to call a method on it.

202 CHAPTER 4. RAILS-FLAVORED RUBY

Ranges are useful for pulling out array elements:

>> a = %w[foo bar baz quux] # Use %w to make a string array.

=> ["foo", "bar", "baz", "quux"]

>> a[0..2]

=> ["foo", "bar", "baz"]

A particularly useful trick is to use the index -1 at the end of the range to select
every element from the starting point to the end of the array without explicitly
having to use the array’s length:

>> a = (0..9).to_a

=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>> a[2..(a.length-1)] # Explicitly use the array's length.

=> [2, 3, 4, 5, 6, 7, 8, 9]

>> a[2..-1] # Use the index -1 trick.

=> [2, 3, 4, 5, 6, 7, 8, 9]

Ranges also work with characters:

>> ('a'..'e').to_a

=> ["a", "b", "c", "d", "e"]

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Assign a to be to the result of splitting the string “A man, a plan, a canal,
Panama” on comma-space.

2. Assign s to the string resulting from joining a on nothing.

3. Split s on whitespace and rejoin on nothing. Use the palindrome test
from Listing 4.10 to confirm that the resulting string s is not a palin-
drome by the current definition. Using the downcase method, show that
s.downcase is a palindrome.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.3. OTHER DATA STRUCTURES 203

4. What is the result of selecting element 7 from the range of letters a

through z? What about the same range reversed? Hint: In both cases
you will have to convert the range to an array.

4.3.2 Blocks
Both arrays and ranges respond to a host of methods that accept blocks, which
are simultaneously one of Ruby’s most powerful and most confusing features:

>> (1..5).each { |i| puts 2 * i }

2

4

6

8

10

=> 1..5

This code calls the each method on the range (1..5) and passes it the block {
|i| puts 2 * i }. The vertical bars around the variable name in |i| are
Ruby syntax for a block variable, and it’s up to the method to know what to do
with the block. In this case, the range’s each method can handle a block with
a single local variable, which we’ve called i, and it just executes the block for
each value in the range.

Curly braces are one way to indicate a block, but there is a second way as
well:

>> (1..5).each do |i|

?> puts 2 * i

>> end

2

4

6

8

10

=> 1..5

Blocks can be more than one line, and often are. In the Rails Tutorial we’ll
follow the common convention of using curly braces only for short one-line
blocks and the do..end syntax for longer one-liners and for multi-line blocks:

204 CHAPTER 4. RAILS-FLAVORED RUBY

>> (1..5).each do |number|

?> puts 2 * number

>> puts '--'

>> end

2

--

4

--

6

--

8

--

10

--

=> 1..5

Here I’ve used number in place of i just to emphasize that any variable name
will do.

Unless you already have a substantial programming background, there is no
shortcut to understanding blocks; you just have to see them a lot, and eventually
you’ll get used to them.12 Luckily, humans are quite good at making general-
izations from concrete examples; here are a few more, including a couple using
the map method:

>> 3.times { puts "Betelgeuse!" } # 3.times takes a block with no variables.

"Betelgeuse!"

"Betelgeuse!"

"Betelgeuse!"

=> 3

>> (1..5).map { |i| i**2 } # The ** notation is for 'power'.

=> [1, 4, 9, 16, 25]

>> %w[a b c] # Recall that %w makes string arrays.

=> ["a", "b", "c"]

>> %w[a b c].map { |char| char.upcase }

=> ["A", "B", "C"]

>> %w[A B C].map { |char| char.downcase }

=> ["a", "b", "c"]

As you can see, the map method returns the result of applying the given block to
each element in the array or range. In the final two examples, the block inside

12Programming experts, on the other hand, might benefit from knowing that blocks are closures, which are
one-shot anonymous functions with data attached.

4.3. OTHER DATA STRUCTURES 205

map involves calling a particular method on the block variable, and in this case
there’s a commonly used shorthand called “symbol-to-proc”:

>> %w[A B C].map { |char| char.downcase }

=> ["a", "b", "c"]

>> %w[A B C].map(&:downcase)

=> ["a", "b", "c"]

(This strange-looking but compact code uses a symbol, which we’ll discuss in
Section 4.3.3.) One interesting thing about this construction is that it was orig-
inally added to Ruby on Rails, and people liked it so much that it has now been
incorporated into core Ruby.

As one final example of blocks, we can take a look at an individual test from
the file in Listing 4.4:

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Ruby on Rails Tutorial Sample App"

end

It’s not important to understand the details (and in fact I don’t know the details
offhand), but we can infer from the presence of the do keyword that the body of
the test is a block. The testmethod takes in a string argument (the description)
and a block, and then executes the body of the block as part of running the test
suite.

By the way, we’re now in a position to understand the line of Ruby I threw
into Section 1.4.3 to generate random subdomains:13

('a'..'z').to_a.shuffle[0..7].join

Let’s build it up step-by-step:

13As noted in Chapter 1, in this case the code ('a'..'z').to_a.sample(8).join is an even more compact
way of getting the same result.

206 CHAPTER 4. RAILS-FLAVORED RUBY

>> ('a'..'z').to_a # An alphabet array

=> ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o",

"p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]

>> ('a'..'z').to_a.shuffle # Shuffle it.

=> ["c", "g", "l", "k", "h", "z", "s", "i", "n", "d", "y", "u", "t", "j", "q",

"b", "r", "o", "f", "e", "w", "v", "m", "a", "x", "p"]

>> ('a'..'z').to_a.shuffle[0..7] # Pull out the first eight elements.

=> ["f", "w", "i", "a", "h", "p", "c", "x"]

>> ('a'..'z').to_a.shuffle[0..7].join # Join them together to make one string.

=> "mznpybuj"

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the range 0..16, print out the first 17 powers of 2.

2. Define a method called yeller that takes in an array of characters and
returns a string with an ALLCAPS version of the input. Verify that yel-
ler(['o', 'l', 'd']) returns "OLD". Hint: Combine map, up-
case, and join.

3. Define a method called random_subdomain that returns a randomly
generated string of eight letters.

4. By replacing the question marks in Listing 4.12 with the appropriate
methods, combine split, shuffle, and join to write a function that
shuffles the letters in a given string.

Listing 4.12: Skeleton for a string shuffle function.
>> def string_shuffle(s)

>> s.?('').?.?

>> end

>> string_shuffle("foobar")

=> "oobfra"

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.3. OTHER DATA STRUCTURES 207

4.3.3 Hashes and symbols
Hashes are essentially arrays that aren’t limited to integer indices. (In fact, some
languages, especially Perl, sometimes call hashes associative arrays for this
reason.) Instead, hash indices, or keys, can be almost any object. For example,
we can use strings as keys:

>> user = {} # {} is an empty hash.

=> {}

>> user["first_name"] = "Michael" # Key "first_name", value "Michael"

=> "Michael"

>> user["last_name"] = "Hartl" # Key "last_name", value "Hartl"

=> "Hartl"

>> user["first_name"] # Element access is like arrays.

=> "Michael"

>> user # A literal representation of the hash

=> {"last_name"=>"Hartl", "first_name"=>"Michael"}

Hashes are indicated with curly braces containing key-value pairs; a pair of
braces with no key-value pairs—i.e., {}—is an empty hash. It’s important to
note that the curly braces for hashes have nothing to do with the curly braces
for blocks. (Yes, this can be confusing.) Although hashes resemble arrays,
one important difference is that hashes don’t generally guarantee keeping their
elements in a particular order.14 If order matters, use an array.

Instead of defining hashes one item at a time using square brackets, it’s
easy to use a literal representation with keys and values separated by =>, called
a “hashrocket”:

>> user = { "first_name" => "Michael", "last_name" => "Hartl" }

=> {"last_name"=>"Hartl", "first_name"=>"Michael"}

Here I’ve used the usual Ruby convention of putting an extra space at the two
ends of the hash—a convention ignored by the console output. (Don’t ask me
why the spaces are conventional; probably some early influential Ruby pro-
grammer liked the look of the extra spaces, and the convention stuck.)

14Ruby versions 1.9 and later actually guarantee that hashes keep their elements in the same order entered, but
it would be unwise ever to count on a particular ordering.

208 CHAPTER 4. RAILS-FLAVORED RUBY

So far we’ve used strings as hash keys, but in Rails it is much more common
to use symbols instead. Symbols look kind of like strings, but prefixed with a
colon instead of surrounded by quotes. For example, :name is a symbol. You
can think of symbols as basically strings without all the extra baggage:15

>> "name".split('')

=> ["n", "a", "m", "e"]

>> :name.split('')

NoMethodError: undefined method `split' for :name:Symbol

>> "foobar".reverse

=> "raboof"

>> :foobar.reverse

NoMethodError: undefined method `reverse' for :foobar:Symbol

Symbols are a special Ruby data type shared with very few other languages, so
they may seem weird at first, but Rails uses them a lot, so you’ll get used to
them fast. Unlike strings, not all characters are valid:

>> :foo-bar

NameError: undefined local variable or method `bar' for main:Object

>> :2foo

SyntaxError

As long as you start your symbols with a letter and stick to normal word char-
acters, you should be fine.

In terms of symbols as hash keys, we can define a user hash as follows:

>> user = { :name => "Michael Hartl", :email => "michael@example.com" }

=> {:name=>"Michael Hartl", :email=>"michael@example.com"}

>> user[:name] # Access the value corresponding to :name.

=> "Michael Hartl"

>> user[:password] # Access the value of an undefined key.

=> nil

We see here from the last example that the hash value for an undefined key is
simply nil.

15As a result of having less baggage, symbols are easier to compare to each other; strings need to be compared
character by character, while symbols can be compared all in one go. This makes them ideal for use as hash keys.

4.3. OTHER DATA STRUCTURES 209

Because it’s so common for hashes to use symbols as keys, as of version 1.9
Ruby supports a new syntax just for this special case:

>> h1 = { :name => "Michael Hartl", :email => "michael@example.com" }

=> {:name=>"Michael Hartl", :email=>"michael@example.com"}

>> h2 = { name: "Michael Hartl", email: "michael@example.com" }

=> {:name=>"Michael Hartl", :email=>"michael@example.com"}

>> h1 == h2

=> true

The second syntax replaces the symbol/hashrocket combination with the name
of the key followed by a colon and a value:

{ name: "Michael Hartl", email: "michael@example.com" }

This construction more closely follows the hash notation in other languages
(such as JavaScript) and enjoys growing popularity in the Rails community.
Because both hash syntaxes are still in common use, it’s essential to be able to
recognize both of them. Unfortunately, this can be confusing, especially since
:name is valid on its own (as a standalone symbol) but name: has no meaning
by itself. The bottom line is that :name => and name: are effectively the same
only inside literal hashes, so that

{ :name => "Michael Hartl" }

and

{ name: "Michael Hartl" }

are equivalent, but otherwise you need to use :name (with the colon coming
first) to denote a symbol.

Hash values can be virtually anything, even other hashes, as seen in List-
ing 4.13.

210 CHAPTER 4. RAILS-FLAVORED RUBY

Listing 4.13: Nested hashes.
>> params = {} # Define a hash called 'params' (short for 'parameters').

=> {}

>> params[:user] = { name: "Michael Hartl", email: "mhartl@example.com" }

=> {:name=>"Michael Hartl", :email=>"mhartl@example.com"}

>> params

=> {:user=>{:name=>"Michael Hartl", :email=>"mhartl@example.com"}}

>> params[:user][:email]

=> "mhartl@example.com"

These sorts of hashes-of-hashes, or nested hashes, are heavily used by Rails, as
we’ll see starting in Section 7.3.

As with arrays and ranges, hashes respond to the each method. For exam-
ple, consider a hash named flash with keys for two conditions, :success
and :danger:

>> flash = { success: "It worked!", danger: "It failed." }

=> {:success=>"It worked!", :danger=>"It failed."}

>> flash.each do |key, value|

?> puts "Key #{key.inspect} has value #{value.inspect}"

>> end

Key :success has value "It worked!"

Key :danger has value "It failed."

Note that, while the each method for arrays takes a block with only one vari-
able, each for hashes takes two, a key and a value. Thus, the each method for
a hash iterates through the hash one key-value pair at a time.

The last example uses the useful inspect method, which returns a string
with a literal representation of the object it’s called on:

>> puts (1..5).to_a # Put an array as a string.

1

2

3

4

5

>> puts (1..5).to_a.inspect # Put a literal array.

[1, 2, 3, 4, 5]

>> puts :name, :name.inspect

4.3. OTHER DATA STRUCTURES 211

name

:name

>> puts "It worked!", "It worked!".inspect

It worked!

"It worked!"

By the way, using inspect to print an object is common enough that there’s a
shortcut for it, the p function:16

>> p :name # Same output as 'puts :name.inspect'

:name

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Define a hash with the keys 'one', 'two', and 'three', and the val-
ues 'uno', 'dos', and 'tres'. Iterate over the hash, and for each
key/value pair print out "'#{key}' in Spanish is '#{value}'".

2. Create three hashes called person1, person2, and person3, with first
and last names under the keys :first and :last. Then create a
params h a s h s o t h a t params[:father] is person1,
params[:mother] is person2, and params[:child] is person3.
Verify that, for example, params[:father][:first] has the right
value.

3. Define a hash with symbol keys corresponding to name, email, and a
“password digest”, and values equal to your name, your email address,
and a random string of 16 lower-case letters.

16There’s actually a subtle difference, which is that p returns the object being printed while puts always returns
nil. (Thanks to reader Katarzyna Siwek for pointing this out.)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

212 CHAPTER 4. RAILS-FLAVORED RUBY

4. Find an online version of the Ruby API and read about the Hash method
merge. What is the value of the following expression?

{ "a" => 100, "b" => 200 }.merge({ "b" => 300 })

4.3.4 CSS revisited
It’s time now to revisit the line from Listing 4.1 used in the layout to include
the Cascading Style Sheets:

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

We are now nearly in a position to understand this. As mentioned briefly in
Section 4.1, Rails defines a special function to include stylesheets, and

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

is a call to this function. But there are several mysteries. First, where are the
parentheses? In Ruby, they are optional, so these two are equivalent:

Parentheses on function calls are optional.

This:

stylesheet_link_tag('application', media: 'all',

'data-turbolinks-track': 'reload')

is the same as this:

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

Second, the media argument sure looks like a hash, but where are the curly
braces? When hashes are the last argument in a function call, the curly braces
are optional, so these two are equivalent:

4.3. OTHER DATA STRUCTURES 213

Curly braces on final hash arguments are optional.

This:

stylesheet_link_tag 'application', { media: 'all',

'data-turbolinks-track': 'reload' }

is the same as this:

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

Finally, why does Ruby correctly interpret the lines

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

even with a line break between the final elements? The answer is that Ruby
doesn’t distinguish between newlines and other whitespace in this context.17

The reason I chose to break the code into pieces is that I prefer to keep lines of
source code under 80 characters for legibility.18

So, we see now that the line

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

calls the stylesheet_link_tag function with two arguments: a string, in-
dicating the path to the stylesheet, and a hash with two elements, indicating the
media type and telling Rails to use the turbolinks feature added in Rails 4.0.
Because of the <%= ... %> brackets, the results are inserted into the template
by ERb, and if you view the source of the page in your browser you should
see the HTML needed to include a stylesheet (Listing 4.14). (The extra stuff
in Listing 4.14, like ?body=1 and the long string of hexadecimal digits are,

17A newline is what comes at the end of a line, thereby starting a new line. As noted in Section 4.2.1, it is
typically represented by the character \n.

18Constantly having to check the column number is rather inconvenient, so many text editors have a visual aid
to help you. For example, if you take a look back at Figure 1.12, you may be able to make out the small vertical
line on the right side of the screen, which is designed to help keep code under 80 characters. (It’s very subtle, so
you may not be able to see it in the screenshot.) The cloud IDE (Section 1.1.1) includes such a line by default. In
Sublime Text, you can use View > Ruler > 78 or View > Ruler > 80.

https://github.com/rails/turbolinks
https://en.wikipedia.org/wiki/Hexadecimal

214 CHAPTER 4. RAILS-FLAVORED RUBY

inserted by Rails to ensure that browsers reload the CSS when it changes on
the server. Because the hex string is by design unique, your exact version of
Listing 4.14 will differ.)

Listing 4.14: The HTML source produced by the CSS includes.
<link rel="stylesheet" media="all" href="/assets/application.self-

f0d704deea029cf000697e2c0181ec173a1b474645466ed843eb5ee7bb215794.css?body=1"

data-turbolinks-track="reload" />

4.4 Ruby classes
We’ve said before that everything in Ruby is an object, and in this section we’ll
finally get to define some of our own. Ruby, like many object-oriented lan-
guages, uses classes to organize methods; these classes are then instantiated to
create objects. If you’re new to object-oriented programming, this may sound
like gibberish, so let’s look at some concrete examples.

4.4.1 Constructors
We’ve seen lots of examples of using classes to instantiate objects, but we have
yet to do so explicitly. For example, we instantiated a string using the double
quote characters, which is a literal constructor for strings:

>> s = "foobar" # A literal constructor for strings using double quotes

=> "foobar"

>> s.class

=> String

We see here that strings respond to the method class, and simply return the
class they belong to.

Instead of using a literal constructor, we can use the equivalent named con-
structor, which involves calling the new method on the class name:19

19These results will vary based on the version of Ruby you are using. This example assumes you are using
Ruby 1.9.3 or later.

4.4. RUBY CLASSES 215

>> s = String.new("foobar") # A named constructor for a string

=> "foobar"

>> s.class

=> String

>> s == "foobar"

=> true

This is equivalent to the literal constructor, but it’s more explicit about what
we’re doing.

Arrays work the same way as strings:

>> a = Array.new([1, 3, 2])

=> [1, 3, 2]

Hashes, in contrast, are different. While the array constructor Array.new takes
an initial value for the array, Hash.new takes a default value for the hash, which
is the value of the hash for a nonexistent key:

>> h = Hash.new

=> {}

>> h[:foo] # Try to access the value for the nonexistent key :foo.

=> nil

>> h = Hash.new(0) # Arrange for nonexistent keys to return 0 instead of nil.

=> {}

>> h[:foo]

=> 0

When a method gets called on the class itself, as in the case of new, it’s
called a class method. The result of calling new on a class is an object of that
class, also called an instance of the class. A method called on an instance, such
as length, is called an instance method.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

216 CHAPTER 4. RAILS-FLAVORED RUBY

1. What is the literal constructor for the range of integers from 1 to 10?

2. What is the constructor using the Range class and the new method? Hint:
new takes two arguments in this context.

3. Confirm using the == operator that the literal and named constructors
from the previous two exercises are identical.

4.4.2 Class inheritance
When learning about classes, it’s useful to find out the class hierarchy using the
superclass method:

>> s = String.new("foobar")

=> "foobar"

>> s.class # Find the class of s.

=> String

>> s.class.superclass # Find the superclass of String.

=> Object

>> s.class.superclass.superclass # Ruby has a BasicObject base class as of 1.9

=> BasicObject

>> s.class.superclass.superclass.superclass

=> nil

A diagram of this inheritance hierarchy appears in Figure 4.1. We see here that
the superclass of String is Object and the superclass of Object is Basic-
Object, but BasicObject has no superclass. This pattern is true of every
Ruby object: trace back the class hierarchy far enough and every class in Ruby
ultimately inherits from BasicObject, which has no superclass itself. This is
the technical meaning of “everything in Ruby is an object”.

To understand classes a little more deeply, there’s no substitute for making
one of our own. Let’s make a Word class with a palindrome? method that
returns true if the word is the same spelled forward and backward:

>> class Word

>> def palindrome?(string)

>> string == string.reverse

>> end

>> end

=> :palindrome?

4.4. RUBY CLASSES 217

Object

String

BasicObject

Figure 4.1: The inheritance hierarchy for the String class.

We can use it as follows:

>> w = Word.new # Make a new Word object.

=> #<Word:0x22d0b20>

>> w.palindrome?("foobar")

=> false

>> w.palindrome?("level")

=> true

If this example strikes you as a bit contrived, good—this is by design. It’s
odd to create a new class just to create a method that takes a string as an argu-
ment. Since a word is a string, it’s more natural to have our Word class inherit
from String, as seen in Listing 4.15. (You should exit the console and re-enter
it to clear out the old definition of Word.)

Listing 4.15: Defining a Word class in the console.
>> class Word < String # Word inherits from String.

>> # Returns true if the string is its own reverse.

218 CHAPTER 4. RAILS-FLAVORED RUBY

>> def palindrome?

>> self == self.reverse # self is the string itself.

>> end

>> end

=> nil

Here Word < String is the Ruby syntax for inheritance (discussed briefly in
Section 3.2), which ensures that, in addition to the new palindrome? method,
words also have all the same methods as strings:

>> s = Word.new("level") # Make a new Word, initialized with "level".

=> "level"

>> s.palindrome? # Words have the palindrome? method.

=> true

>> s.length # Words also inherit all the normal string methods.

=> 5

Since the Word class inherits from String, we can use the console to see the
class hierarchy explicitly:

>> s.class

=> Word

>> s.class.superclass

=> String

>> s.class.superclass.superclass

=> Object

This hierarchy is illustrated in Figure 4.2.
In Listing 4.15, note that checking that the word is its own reverse involves

accessing the word inside the Word class. Ruby allows us to do this using the
self keyword: inside the Word class, self is the object itself, which means
we can use

self == self.reverse

to check if the word is a palindrome. In fact, inside the String class the use
of self. is optional on a method or attribute (unless we’re making an assign-
ment), so

4.4. RUBY CLASSES 219

Object

Word

String

BasicObject

Figure 4.2: The inheritance hierarchy for the (non-built-in) Word class from
Listing 4.15.

220 CHAPTER 4. RAILS-FLAVORED RUBY

self == reverse

would work as well.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. What is the class hierarchy for a range? For a hash? For a symbol?

2. Confirm that the method shown in Listing 4.15 works even if we replace
self.reverse with just reverse.

4.4.3 Modifying built-in classes
While inheritance is a powerful idea, in the case of palindromes it might be even
more natural to add the palindrome? method to the String class itself, so
that (among other things) we can call palindrome? on a string literal, which
we currently can’t do:

>> "level".palindrome?

NoMethodError: undefined method `palindrome?' for "level":String

Amazingly, Ruby lets you do just this; Ruby classes can be opened and modi-
fied, allowing ordinary mortals such as ourselves to add methods to them:

>> class String

>> # Returns true if the string is its own reverse.

>> def palindrome?

>> self == self.reverse

>> end

>> end

=> nil

>> "deified".palindrome?

=> true

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.4. RUBY CLASSES 221

(I don’t know which is cooler: that Ruby lets you add methods to built-in
classes, or that "deified" is a palindrome.)

Modifying built-in classes is a powerful technique, but with great power
comes great responsibility, and it’s considered bad form to add methods to built-
in classes without having a really good reason for doing so. Rails does have
some good reasons; for example, in web applications we often want to prevent
variables from being blank—e.g., a user’s name should be something other than
spaces and other whitespace—so Rails adds a blank? method to Ruby. Since
the Rails console automatically includes the Rails extensions, we can see an
example here (this won’t work in plain irb):

>> "".blank?

=> true

>> " ".empty?

=> false

>> " ".blank?

=> true

>> nil.blank?

=> true

We see that a string of spaces is not empty, but it is blank. Note also that nil is
blank; since nil isn’t a string, this is a hint that Rails actually adds blank? to
String’s base class, which (as we saw at the beginning of this section) is Ob-
ject itself. We’ll see some other examples of Rails additions to Ruby classes
in Section 9.1.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that “racecar” is a palindrome and “onomatopoeia” is not. What
about the name of the South Indian language “Malayalam”? Hint: Down-
case it first.

https://en.wikipedia.org/wiki/Whitespace_(computer_science)
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

222 CHAPTER 4. RAILS-FLAVORED RUBY

2. Using Listing 4.16 as a guide, add a shuffle method to the String

class. Hint: Refer to Listing 4.12.

3. Verify that Listing 4.16 works even if you remove self..

Listing 4.16: Skeleton for a shuffle method attached to the String class.
>> class String

>> def shuffle

>> self.?('').?.?

>> end

>> end

>> "foobar".shuffle

=> "borafo"

4.4.4 A controller class
All this talk about classes and inheritance may have triggered a flash of recog-
nition, because we have seen both before, in the Static Pages controller (List-
ing 3.22):

class StaticPagesController < ApplicationController

def home

end

def help

end

def about

end

end

You’re now in a position to appreciate, at least vaguely, what this code means:
StaticPagesController is a class that inherits from ApplicationCon-

troller, and comes equipped with home, help, and about methods. Since
each Rails console session loads the local Rails environment, we can even create
a controller explicitly and examine its class hierarchy:20

20You don’t have to know what each class in this hierarchy does. I don’t know what they all do, and I’ve been

4.4. RUBY CLASSES 223

>> controller = StaticPagesController.new

=> #<StaticPagesController:0x22855d0>

>> controller.class

=> StaticPagesController

>> controller.class.superclass

=> ApplicationController

>> controller.class.superclass.superclass

=> ActionController::Base

>> controller.class.superclass.superclass.superclass

=> ActionController::Metal

>> controller.class.superclass.superclass.superclass.superclass

=> AbstractController::Base

>> controller.class.superclass.superclass.superclass.superclass.superclass

=> Object

A diagram of this hierarchy appears in Figure 4.3.
We can even call the controller actions inside the console, which are just

methods:

>> controller.home

=> nil

Here the return value is nil because the home action is blank.
But wait—actions don’t have return values, at least not ones that matter.

The point of the home action, as we saw in Chapter 3, is to render a web page,
not to return a value. And I sure don’t remember ever calling StaticPages-

Controller.new anywhere. What’s going on?
What’s going on is that Rails is written in Ruby, but Rails isn’t Ruby. Some

Rails classes are used like ordinary Ruby objects, but some are just grist for
Rails’ magic mill. Rails is sui generis, and should be studied and understood
separately from Ruby.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
programming in Ruby on Rails since 2005. This means either that (a) I’m grossly incompetent or (b) you can be
a skilled Rails developer without knowing all its innards. I hope for both our sakes that it’s the latter.

https://en.wiktionary.org/wiki/grist#English
https://en.wikipedia.org/wiki/Sui_generis
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

224 CHAPTER 4. RAILS-FLAVORED RUBY

ActionController::Base

StaticPagesController

ApplicationController

Object

ActionController::Metal

AbstractController::Base

BasicObject

Figure 4.3: The inheritance hierarchy for the Static Pages.

4.4. RUBY CLASSES 225

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By running the Rails console in the toy app’s directory from Chapter 2,
confirm that you can create a user object using User.new.

2. Determine the class hierarchy of the user object.

4.4.5 A user class
We end our tour of Ruby with a complete class of our own, a User class that
anticipates the User model coming up in Chapter 6.

So far we’ve entered class definitions at the console, but this quickly be-
comes tiresome; instead, create the file example_user.rb in your application
root directory and fill it with the contents of Listing 4.17.

Listing 4.17: Code for an example user.
example_user.rb

class User

attr_accessor :name, :email

def initialize(attributes = {})

@name = attributes[:name]

@email = attributes[:email]

end

def formatted_email

"#{@name} <#{@email}>"

end

end

There’s quite a bit going on here, so let’s take it step by step. The first line,

attr_accessor :name, :email

creates attribute accessors corresponding to a user’s name and email address.
This creates “getter” and “setter” methods that allow us to retrieve (get) and as-
sign (set) @name and @email instance variables, which were mentioned briefly

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

226 CHAPTER 4. RAILS-FLAVORED RUBY

in Section 2.2.2 and Section 3.4.2. In Rails, the principal importance of instance
variables is that they are automatically available in the views, but in general they
are used for variables that need to be available throughout a Ruby class. (We’ll
have more to say about this in a moment.) Instance variables always begin with
an @ sign, and are nil when undefined.

The first method, initialize, is special in Ruby: it’s the method called
when we execute User.new. This particular initialize takes one argument,
attributes:

def initialize(attributes = {})

@name = attributes[:name]

@email = attributes[:email]

end

Here the attributes variable has a default value equal to the empty hash,
so that we can define a user with no name or email address. (Recall from
Section 4.3.3 that hashes return nil for nonexistent keys, so attributes-

[:name] will be nil if there is no :name key, and similarly for attributes-
[:email].)

Finally, our class defines a method called formatted_email that uses the
values of the assigned @name and @email variables to build up a nicely format-
ted version of the user’s email address using string interpolation (Section 4.2.1):

def formatted_email

"#{@name} <#{@email}>"

end

Because @name and @email are both instance variables (as indicated with the @
sign), they are automatically available in the formatted_email method.

Let’s fire up the console, require the example user code, and take our User
class out for a spin:

>> require './example_user' # This is how you load the example_user code.

=> true

>> example = User.new

4.4. RUBY CLASSES 227

=> #<User:0x224ceec @email=nil, @name=nil>

>> example.name # nil since attributes[:name] is nil

=> nil

>> example.name = "Example User" # Assign a non-nil name

=> "Example User"

>> example.email = "user@example.com" # and a non-nil email address

=> "user@example.com"

>> example.formatted_email

=> "Example User <user@example.com>"

Here the '.' is Unix for “current directory”, and './example_user' tells
Ruby to look for an example user file relative to that location. The subsequent
code creates an empty example user and then fills in the name and email ad-
dress by assigning directly to the corresponding attributes (assignments made
possible by the attr_accessor line in Listing 4.17). When we write

example.name = "Example User"

Ruby is setting the @name variable to "Example User" (and similarly for the
email attribute), which we then use in the formatted_email method.

Recalling from Section 4.3.4 we can omit the curly braces for final hash
arguments, we can create another user by passing a hash to the initialize
method to create a user with pre-defined attributes:

>> user = User.new(name: "Michael Hartl", email: "mhartl@example.com")

=> #<User:0x225167c @email="mhartl@example.com", @name="Michael Hartl">

>> user.formatted_email

=> "Michael Hartl <mhartl@example.com>"

We will see starting in Chapter 7 that initializing objects using a hash argument,
a technique known as mass assignment, is common in Rails applications.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

228 CHAPTER 4. RAILS-FLAVORED RUBY

1. In the example User class, change from name to separate first and last
name attributes, and then add a method called full_name that returns
the first and last names separated by a space. Use it to replace the use of
name in the formatted email method.

2. Add a method called alphabetical_name that returns the last name
and first name separated by comma-space.

3. Verify that full_name.split is the same as alphabetical_name.-
split(', ').reverse.

4.5 Conclusion
This concludes our overview of the Ruby language. In Chapter 5, we’ll start
putting it to good use in developing the sample application.

We won’t be using the example_user.rb file from Section 4.4.5, so I
suggest removing it:

$ rm example_user.rb

Then commit the other changes to the main source code repository and merge
into the master branch, push up to GitHub, and deploy to Heroku:

$ git commit -am "Add a full_title helper"

$ git checkout master

$ git merge rails-flavored-ruby

As a reality check, it’s a good practice to run the test suite before pushing or
deploying:

$ rails test

Then push up to GitHub:

4.5. CONCLUSION 229

$ git push

Finally, deploy to Heroku:

$ git push heroku

4.5.1 What we learned in this chapter
• Ruby has a large number of methods for manipulating strings of charac-

ters.

• Everything in Ruby is an object.

• Ruby supports method definition via the def keyword.

• Ruby supports class definition via the class keyword.

• Rails views can contain static HTML or embedded Ruby (ERb).

• Built-in Ruby data structures include arrays, ranges, and hashes.

• Ruby blocks are a flexible construct that (among other things) allow nat-
ural iteration over enumerable data structures.

• Symbols are labels, like strings without any additional structure.

• Ruby supports object inheritance.

• It is possible to open up and modify built-in Ruby classes.

• The word “deified” is a palindrome.

