
5.2. SASS AND THE ASSET PIPELINE 259

Listing 5.18: Replacing the default Rails head with a call to render.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<%= render 'layouts/rails_default' %>

<%= render 'layouts/shim' %>

</head>

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

<%= render 'layouts/footer' %>

</div>

</body>

</html>

5.2 Sass and the asset pipeline
One of the most useful features of Rails is the asset pipeline, which significantly
simplifies the production and management of static assets such as CSS and im-
ages. The asset pipline also works well in parallel with Webpack (a JavaScript
asset bundler) and Yarn (a dependency manager mentioned in Section 1.1.2),
both of which are supported by default in Rails. This section first gives a high-
level overview of the asset pipeline, and then shows how to use Sass, a powerful
tool for writing CSS.

5.2.1 The asset pipeline
From the perspective of a typical Rails developer, there are three main features
to understand about the asset pipeline: asset directories, manifest files, and pre-
processor engines.16 Let’s consider each in turn.

16The original structure of this section was based on the excellent blog post “The Rails 3 Asset Pipeline in
(about) 5 Minutes” by Michael Erasmus.

https://webpack.js.org

260 CHAPTER 5. FILLING IN THE LAYOUT

Asset directories
The Rails asset pipeline uses three standard directories for static assets, each
with its own purpose:

• app/assets: assets specific to the present application

• lib/assets: assets for libraries written by your dev team

• vendor/assets: assets from third-party vendors (not present by de-
fault)

Each of these directories has a subdirectory for each of two asset classes—
images and Cascading Style Sheets:

$ ls app/assets/

config images stylesheets

At this point, we’re in a position to understand the motivation behind the
location of the custom CSS file in Section 5.1.2: custom.scss is specific to
the sample application, so it goes in app/assets/stylesheets.

Manifest files
Once you’ve placed your assets in their logical locations, you can use manifest
files to tell Rails (via the Sprockets gem) how to combine them to form single
files. (This applies to CSS and JavaScript but not to images.) As an example,
let’s take a look at the default manifest file for app stylesheets (Listing 5.19).

Listing 5.19: The manifest file for app-specific CSS.
app/assets/stylesheets/application.css

/*

* This is a manifest file that'll be compiled into application.css, which will

* include all the files listed below.

*

* Any CSS and SCSS file within this directory, lib/assets/stylesheets, or any

https://github.com/rails/sprockets

5.2. SASS AND THE ASSET PIPELINE 261

* plugin's vendor/assets/stylesheets directory can be referenced here using a

* relative path.

*

* You're free to add application-wide styles to this file and they'll appear at

* the bottom of the compiled file so the styles you add here take precedence

* over styles defined in any other CSS/SCSS files in this directory. Styles in

* this file should be added after the last require_* statement.

* It is generally better to create a new file per style scope.

*

*= require_tree .

*= require_self

*/

The key lines here are actually CSS comments, but they are used by Sprockets
to include the proper files:

/*

.

.

.

*= require_tree .

*= require_self

*/

Here

*= require_tree .

ensures that all CSS files in the app/assets/stylesheets directory (includ-
ing the tree subdirectories) are included into the application CSS. The line

*= require_self

specifies where in the loading sequence the CSS in application.css itself
gets included.

Rails comes with sensible default manifest files, and in the Rails Tutorial
we won’t need to make any changes, but the Rails Guides entry on the asset
pipeline has more detail if you need it.

http://guides.rubyonrails.org/asset_pipeline.html
http://guides.rubyonrails.org/asset_pipeline.html

262 CHAPTER 5. FILLING IN THE LAYOUT

Preprocessor engines

After you’ve assembled your assets, Rails prepares them for the site template by
running them through several preprocessing engines and using the manifest files
to combine them for delivery to the browser. We tell Rails which processor to
use using filename extensions; the two most common cases are .scss for Sass
and .erb for embedded Ruby (ERb). We first covered ERb in Section 3.4.3
and cover Sass in Section 5.2.2.

Efficiency in production

One of the best things about the asset pipeline is that it automatically results in
assets that are optimized to be efficient in a production application. Traditional
methods for organizing CSS involves splitting functionality into separate files
and using nice formatting (with lots of indentation). While convenient for the
programmer, this is inefficient in production. In particular, including multiple
full-sized files can significantly slow page-load times, which is one of the most
important factors affecting the quality of the user experience.

With the asset pipeline, we don’t have to choose between speed and con-
venience: we can work with multiple nicely formatted files in development,
and then use the asset pipeline to make efficient files in production. In partic-
ular, the asset pipeline combines all the application stylesheets into one CSS
file (application.css) and then minifies it to remove the unnecessary spac-
ing and indentation that bloats file size. The result is the best of both worlds:
convenience in development and efficiency in production.

5.2.2 Syntactically awesome stylesheets
Sass is a language for writing stylesheets that improves on CSS in many ways.
In this section, we cover two of the most important improvements, nesting and
variables. (A third technique, mixins, is introduced in Section 7.1.1.)

As noted briefly in Section 5.1.2, Sass supports a format called SCSS (in-
dicated with a .scss filename extension), which is a strict superset of CSS
itself; that is, SCSS only adds features to CSS, rather than defining an entirely

5.2. SASS AND THE ASSET PIPELINE 263

new syntax.17 This means that every valid CSS file is also a valid SCSS file,
which is convenient for projects with existing style rules. In our case, we used
SCSS from the start in order to take advantage of Bootstrap. Since the Rails as-
set pipeline automatically uses Sass to process files with the .scss extension,
the custom.scss file will be run through the Sass preprocessor before being
packaged up for delivery to the browser.

Nesting

A common pattern in stylesheets is having rules that apply to nested elements.
For example, in Listing 5.7 we have rules both for .center and for .center
h1:

.center {

text-align: center;

}

.center h1 {

margin-bottom: 10px;

}

We can replace this in Sass with

.center {

text-align: center;

h1 {

margin-bottom: 10px;

}

}

Here the nested h1 rule automatically inherits the .center context.
There’s a second candidate for nesting that requires a slightly different syn-

tax. In Listing 5.9, we have the code

17Sass also supports an alternate syntax that does define a new language, which is less verbose (and has fewer
curly braces) but is less convenient for existing projects and is harder to learn for those already familiar with CSS.

264 CHAPTER 5. FILLING IN THE LAYOUT

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: #fff;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

}

#logo:hover {

color: #fff;

text-decoration: none;

}

Here the logo id #logo appears twice, once by itself and once with the hover
attribute (which controls its appearance when the mouse pointer hovers over
the element in question). In order to nest the second rule, we need to reference
the parent element #logo; in SCSS, this is accomplished with the ampersand
character & as follows:

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: #fff;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

&:hover {

color: #fff;

text-decoration: none;

}

}

Sass changes &:hover into #logo:hover as part of converting from SCSS to
CSS.

Both of these nesting techniques apply to the footer CSS in Listing 5.17,
which can be transformed into the following:

5.2. SASS AND THE ASSET PIPELINE 265

footer {

margin-top: 45px;

padding-top: 5px;

border-top: 1px solid #eaeaea;

color: #777;

a {

color: #555;

&:hover {

color: #222;

}

}

small {

float: left;

}

ul {

float: right;

list-style: none;

li {

float: left;

margin-left: 15px;

}

}

}

Converting Listing 5.17 by hand is a good exercise (Section 5.2.2), and you
should verify that the CSS still works properly after the conversion.

Variables
Sass allows us to define variables to eliminate duplication and write more ex-
pressive code. For example, looking at Listing 5.8 and Listing 5.17, we see that
there are repeated references to the same color:

h2 {

.

.

.

color: #777;

}

.

.

.

footer {

.

.

266 CHAPTER 5. FILLING IN THE LAYOUT

.

color: #777;

}

In this case, #777 is a light gray, and we can give it a name by defining a variable
as follows:

$light-gray: #777;

This allows us to rewrite our SCSS like this:

$light-gray: #777;

.

.

.

h2 {

.

.

.

color: $light-gray;

}

.

.

.

footer {

.

.

.

color: $light-gray;

}

Because variable names such as $light-gray are more descriptive than
#777, it’s often useful to define variables even for values that aren’t repeated.
Indeed, the Bootstrap framework defines a large number of variables for colors,
available online on the Bootstrap page of Less variables. That page defines
variables using Less, not Sass, but the bootstrap-sass gem provides the
Sass equivalents. It is not difficult to guess the correspondence; where Less uses
an “at” sign @, Sass uses a dollar sign $. For example, looking at the Bootstrap
variable page, we see that there is a variable for light gray:

https://getbootstrap.com/docs/3.4/customize/#less-variables

5.2. SASS AND THE ASSET PIPELINE 267

@gray-light: #777;

This means that, via the bootstrap-sass gem, there should be a corre-
sponding SCSS variable $gray-light. We can use this to replace our custom
variable, $light-gray, which gives

h2 {

.

.

.

color: $gray-light;

}

.

.

.

footer {

.

.

.

color: $gray-light;

}

Applying the Sass nesting and variable definition features to the full SCSS
file gives the file in Listing 5.20. This uses both Sass variables (as inferred
from the Bootstrap Less variable page) and built-in named colors (i.e., white
for #fff). Note in particular the dramatic improvement in the rules for the
footer tag.

Listing 5.20: The initial SCSS file converted to use nesting and variables.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

/* mixins, variables, etc. */

$gray-medium-light: #eaeaea;

/* universal */

body {

268 CHAPTER 5. FILLING IN THE LAYOUT

padding-top: 60px;

}

section {

overflow: auto;

}

textarea {

resize: vertical;

}

.center {

text-align: center;

h1 {

margin-bottom: 10px;

}

}

/* typography */

h1, h2, h3, h4, h5, h6 {

line-height: 1;

}

h1 {

font-size: 3em;

letter-spacing: -2px;

margin-bottom: 30px;

text-align: center;

}

h2 {

font-size: 1.2em;

letter-spacing: -1px;

margin-bottom: 30px;

text-align: center;

font-weight: normal;

color: $gray-light;

}

p {

font-size: 1.1em;

line-height: 1.7em;

}

/* header */

#logo {

float: left;

margin-right: 10px;

5.2. SASS AND THE ASSET PIPELINE 269

font-size: 1.7em;

color: white;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

&:hover {

color: white;

text-decoration: none;

}

}

/* footer */

footer {

margin-top: 45px;

padding-top: 5px;

border-top: 1px solid $gray-medium-light;

color: $gray-light;

a {

color: $gray;

&:hover {

color: $gray-darker;

}

}

small {

float: left;

}

ul {

float: right;

list-style: none;

li {

float: left;

margin-left: 15px;

}

}

}

Sass gives us even more ways to simplify our stylesheets, but the code in
Listing 5.20 uses the most important features and gives us a great start. See the
Sass website for more details.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

http://sass-lang.com/
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads

270 CHAPTER 5. FILLING IN THE LAYOUT

Tutorial course or to the Learn Enough All Access Bundle.

1. As suggested in Section 5.2.2, go through the steps to convert the footer
CSS from Listing 5.17 to Listing 5.20 to SCSS by hand.

5.3 Layout links
Now that we’ve finished a site layout with decent styling, it’s time to start filling
in the links we’ve stubbed out with '#'. Because plain HTML is valid in Rails
ERb templates, we could hard-code links like

About

but that isn’t the Rails Way™. For one, it would be nice if the URL for the
about page were /about rather than /static_pages/about. Moreover, Rails con-
ventionally uses named routes, which involves code like

<%= link_to "About", about_path %>

This way the code has a more transparent meaning, and it’s also more flexible
since we can change the definition of about_path and have the URL change
everywhere about_path is used.

The full list of our planned links appears in Table 5.1, along with their map-
ping to URLs and routes. We took care of the first route in Section 3.4.4, and
we’ll have implemented all but the last one by the end of this chapter. (We’ll
make the last one in Chapter 8.)

5.3.1 Contact page
For completeness, we’ll add the Contact page, which was left as an exercise in
Chapter 3. The test appears as in Listing 5.21, which simply follows the model
last seen in Listing 3.26.

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

