
244 CHAPTER 5. FILLING IN THE LAYOUT

5.1.2 Bootstrap and custom CSS
In Section 5.1.1, we associated many of the HTML elements with CSS classes,
which gives us considerable flexibility in constructing a layout based on CSS.
As noted in Section 5.1.1, many of these classes are specific to Bootstrap, a CSS
framework that makes it easy to add nice web design and user interface elements
to an HTML5 application. In this section, we’ll combine Bootstrap with some
custom CSS rules to start adding some style to the sample application. It’s
worth noting that using Bootstrap automatically makes our application’s design
responsive, ensuring that it looks sensible across a wide range of devices.

Our first step is to add Bootstrap, which in Rails applications can be ac-
complished with the bootstrap-sass gem, as shown in Listing 5.5.12 The
Bootstrap framework natively uses the Less CSS language for making dynamic
stylesheets, but the Rails asset pipeline supports the (very similar) Sass lan-
guage by default (Section 5.2), so bootstrap-sass converts Less to Sass
and makes all the necessary Bootstrap files available to the current application.

Listing 5.5: Adding the bootstrap-sass gem to the Gemfile.
source 'https://rubygems.org'

gem 'rails', '6.0.1'

gem 'bootstrap-sass', '3.4.1'

gem 'puma', '3.12.1'

.

.

.

To install Bootstrap, we run bundle install as usual:

$ bundle install

Although rails generate automatically creates a separate CSS file for
each controller, it’s surprisingly hard to include them all properly and in the

12As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://getbootstrap.com/docs/3.4/
https://en.wikipedia.org/wiki/Responsive_web_design
http://lesscss.org/
https://gemfiles-6th-ed.railstutorial.org/

5.1. ADDING SOME STRUCTURE 245

right order, so for simplicity we’ll put all of the CSS needed for this tutorial in
a single file. The first step toward getting custom CSS to work is to create such
a custom CSS file:

$ touch app/assets/stylesheets/custom.scss

(This uses the touch trick from Section 3.3.3 en route, but you can create the
file however you like.) Here both the directory name and filename extension
are important. The directory

app/assets/stylesheets/

is part of the asset pipeline (Section 5.2), and any stylesheets in this directory
will automatically be included as part of the application.css file included
in the site layout. Furthermore, the filename custom.scss includes the .scss
extension, which indicates a “Sassy CSS” file and arranges for the asset pipeline
to process the file using Sass. (We won’t be using Sass until Section 5.2.2, but
it’s needed now for the bootstrap-sass gem to work its magic.)

Inside the file for the custom CSS, we can use the @import function to
include Bootstrap (together with the associated Sprockets utility), as shown in
Listing 5.6.13

Listing 5.6: Adding Bootstrap CSS.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

The two lines in Listing 5.6 include the entire Bootstrap CSS framework. Af-
ter restarting the webserver to incorporate the changes into the development
application (by pressing Ctrl-C and then running rails server as in Sec-
tion 1.2.2), the results appear as in Figure 5.5. The placement of the text isn’t

13If these steps seem mysterious, take heart: I’m just following the instructions from the bootstrap-sass
README file.

https://github.com/twbs/bootstrap-sass#bootstrap-for-sass---
https://github.com/twbs/bootstrap-sass#bootstrap-for-sass---

246 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.5: The sample application with Bootstrap CSS.

good and the logo doesn’t have any style, but the colors and signup button look
promising.

Next we’ll add some CSS that will be used site-wide for styling the layout
and each individual page, as shown in Listing 5.7. The result is shown in Fig-
ure 5.6. (There are quite a few rules in Listing 5.7; to get a sense of what a
CSS rule does, it’s often helpful to comment it out using CSS comments, i.e.,
by putting it inside /* … */, and seeing what changes.)

Listing 5.7: Adding CSS for some universal styling applying to all pages.
app/assets/stylesheets/custom.scss

5.1. ADDING SOME STRUCTURE 247

@import "bootstrap-sprockets";

@import "bootstrap";

/* universal */

body {

padding-top: 60px;

}

section {

overflow: auto;

}

textarea {

resize: vertical;

}

.center {

text-align: center;

}

.center h1 {

margin-bottom: 10px;

}

Note that the CSS in Listing 5.7 has a consistent form. In general, CSS
rules refer either to a class, an id, an HTML tag, or some combination thereof,
followed by a list of styling commands. For example,

body {

padding-top: 60px;

}

puts 60 pixels of padding at the top of the page. Because of the
navbar-fixed-top class in the header tag, Bootstrap fixes the navigation
bar to the top of the page, so the padding serves to separate the main text from
the navigation. (Because the default navbar color changed after Bootstrap 2.0,
we need the navbar-inverse class to make it dark instead of light.) Mean-
while, the CSS in the rule

248 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.6: Adding some spacing and other universal styling.

5.1. ADDING SOME STRUCTURE 249

.center {

text-align: center;

}

associates the center class with the text-align: center property. In
other words, the dot . in .center indicates that the rule styles a class. (As
we’ll see in Listing 5.9, the pound sign # identifies a rule to style a CSS id.)
This means that elements inside any tag (such as a div) with class center will
be centered on the page. (We saw an example of this class in Listing 5.2.)

Although Bootstrap comes with CSS rules for nice typography, we’ll also
add some custom rules for the appearance of the text on our site, as shown in
Listing 5.8. (Not all of these rules apply to the Home page, but each rule here
will be used at some point in the sample application.) The result of Listing 5.8
is shown in Figure 5.7.

Listing 5.8: Adding CSS for nice typography.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

.

.

.

/* typography */

h1, h2, h3, h4, h5, h6 {

line-height: 1;

}

h1 {

font-size: 3em;

letter-spacing: -2px;

margin-bottom: 30px;

text-align: center;

}

h2 {

font-size: 1.2em;

letter-spacing: -1px;

margin-bottom: 30px;

text-align: center;

font-weight: normal;

color: #777;

250 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.7: Adding some typographic styling.

}

p {

font-size: 1.1em;

line-height: 1.7em;

}

Finally, we’ll add some rules to style the site’s logo, which simply consists
of the text “sample app”. The CSS in Listing 5.9 converts the text to uppercase
and modifies its size, color, and placement. (We’ve used a CSS id because we
expect the site logo to appear on the page only once, but you could use a class
instead.)

5.1. ADDING SOME STRUCTURE 251

Listing 5.9: Adding CSS for the site logo.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

.

.

.

/* header */

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: #fff;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

}

#logo:hover {

color: #fff;

text-decoration: none;

}

Here color: #fff changes the color of the logo to white. HTML colors can
be coded with three pairs of base-16 (hexadecimal) numbers, one each for the
primary colors red, green, and blue (in that order). The code #ffffff maxes
out all three colors, yielding pure white, and #fff is a shorthand for the full
#ffffff. The CSS standard also defines a large number of synonyms for com-
mon HTML colors, including white for #fff. The result of the CSS in List-
ing 5.9 is shown in Figure 5.8.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using code like that shown in Listing 5.10, comment out the cat image

https://www.w3schools.com/colors/colors_names.asp
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

252 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.8: The sample app with nicely styled logo.

5.1. ADDING SOME STRUCTURE 253

from Section 5.1.1. Verify using a web inspector that the HTML for the
image no longer appears in the page source.

2. By adding the CSS in Listing 5.11 to custom.scss, hide all images in
the application—currently just the Rails logo on the Home page). Verify
with a web inspector that, although the image doesn’t appear, the HTML
source is still present.

Listing 5.10: Code to comment out embedded Ruby.
<%#= image_tag("kitten.jpg", alt: "Kitten") %>

Listing 5.11: CSS to hide all images.
img {

display: none;

}

5.1.3 Partials
Although the layout in Listing 5.1 serves its purpose, it’s getting a little clut-
tered. The HTML shim takes up three lines and uses weird IE-specific syntax,
so it would be nice to tuck it away somewhere on its own. In addition, the header
HTML forms a logical unit, so it should all be packaged up in one place. The
way to achieve this in Rails is to use a facility called partials. Let’s first take a
look at what the layout looks like after the partials are defined (Listing 5.12).

Listing 5.12: The site layout with partials for the stylesheets and header.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

254 CHAPTER 5. FILLING IN THE LAYOUT

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

<%= render 'layouts/shim' %>

</head>

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

</div>

</body>

</html>

In Listing 5.12, we’ve replaced the HTML shim stylesheet lines with a sin-
gle call to a Rails helper called render:

<%= render 'layouts/shim' %>

The effect of this line is to look for a file called app/views/layouts/-

_shim.html.erb, evaluate its contents, and insert the results into the view.14

(Recall that <%= ... %> is the embedded Ruby syntax needed to evaluate a
Ruby expression and then insert the results into the template.) Note the leading
underscore on the filename _shim.html.erb; this underscore is the universal
convention for naming partials, and among other things makes it possible to
identify all the partials in a directory at a glance.

To get the partial to work, we have to create the corresponding file and fill
it with some content. In the case of the shim partial, this is just the three lines
of shim code from Listing 5.1. The result appears in Listing 5.13.

Listing 5.13: A partial for the HTML shim.
app/views/layouts/_shim.html.erb

<!--[if lt IE 9]>

<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/r29/html5.min.js">

</script>

<![endif]-->

14Many Rails developers use a shared directory for partials shared across different views. I prefer to use the
shared folder for utility partials that are useful on multiple views, while putting partials that are literally on every
page (as part of the site layout) in the layouts directory. (We’ll create the shared directory starting in Chapter 7.)
That seems to me a logical division, but putting them all in the shared folder certainly works fine, too.

5.1. ADDING SOME STRUCTURE 255

Similarly, we can move the header material into the partial shown in List-
ing 5.14 and insert it into the layout with another call to render. (As usual
with partials, you will have to create the file by hand using your text editor.)

Listing 5.14: A partial for the site header.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

</div>

</header>

Now that we know how to make partials, let’s add a site footer to go along
with the header. By now you can probably guess that we’ll call it _footer.-
html.erb and put it in the layouts directory (Listing 5.15).15

Listing 5.15: A partial for the site footer.
app/views/layouts/_footer.html.erb

<footer class="footer">

<small>

The Ruby on Rails Tutorial

by Michael Hartl

</small>

<nav>

<%= link_to "About", '#' %>

<%= link_to "Contact", '#' %>

News

</nav>

</footer>

15You may wonder why we use both the footer tag and .footer class. The answer is that the tag has a clear
meaning to human readers, and the class is used by Bootstrap. Using a div tag in place of footer would work
as well.

256 CHAPTER 5. FILLING IN THE LAYOUT

As with the header, in the footer we’ve used link_to for the internal links to
the About and Contact pages and stubbed out the URLs with '#' for now. (As
with header, the footer tag is new in HTML5.)

We can render the footer partial in the layout by following the same pattern
as the stylesheets and header partials (Listing 5.16).

Listing 5.16: The site layout with a footer partial.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

<%= render 'layouts/shim' %>

</head>

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

<%= render 'layouts/footer' %>

</div>

</body>

</html>

Next, we’ll add some styling for the footer, as shown in Listing 5.17. The
results appear in Figure 5.9.

Listing 5.17: Adding the CSS for the site footer.
app/assets/stylesheets/custom.scss

.

.

.

/* footer */

footer {

margin-top: 45px;

padding-top: 5px;

5.1. ADDING SOME STRUCTURE 257

border-top: 1px solid #eaeaea;

color: #777;

}

footer a {

color: #555;

}

footer a:hover {

color: #222;

}

footer small {

float: left;

}

footer ul {

float: right;

list-style: none;

}

footer ul li {

float: left;

margin-left: 15px;

}

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Replace the default Rails head with the call to render shown in List-
ing 5.18. Hint: For convenience, cut the default header rather than just
deleting it.

2. Because we haven’t yet created the partial needed by Listing 5.18, the
tests should be red. Confirm that this is the case.

3. Create the necessary partial in the layouts directory, paste in the con-
tents, and verify that the tests are now green again.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

258 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.9: The Home page with an added footer.

