
232 CHAPTER 5. FILLING IN THE LAYOUT

5.1 Adding some structure
The Ruby on Rails Tutorial is a book on web development, not web design,
but it would be depressing to work on an application that looks like complete
crap, so in this section we’ll add some structure to the layout and give it some
minimal styling with CSS. In addition to using some custom CSS rules, we’ll
make use of Bootstrap, an open-source web design framework from Twitter.2
We’ll also give our code some styling, so to speak, using partials to tidy up the
layout once it gets a little cluttered.

When building web applications, it is often useful to get a high-level over-
view of the user interface as early as possible. Throughout the rest of this book,
I will thus often include mockups (in a web context often called wireframes),
which are rough sketches of what the eventual application will look like.3 In
this chapter, we will principally be developing the static pages introduced in
Section 3.2, including a site logo, a navigation header, and a site footer. A
mockup for the most important of these pages, the Home page, appears in Fig-
ure 5.1. You can see the final result in Figure 5.9. You’ll note that it differs in
some details—for example, we’ll end up adding a Rails logo on the page—but
that’s fine, since a mockup need not be exact.

As usual, if you’re using Git for version control, now would be a good time
to make a new branch:

$ git checkout -b filling-in-layout

5.1.1 Site navigation
As a first step toward adding links and styles to the sample application, we’ll up-
date the site layout file application.html.erb (last seen in Listing 4.3) with
additional HTML structure. This includes some additional divisions, some CSS

2Although more recent versions of Bootstrap are now available, this tutorial standardizes on Bootstrap 3 in
order to retain compatibility with the design and HTML structure from previous editions.

3The mockups in the Ruby on Rails Tutorial are made with an excellent online mockup application called
Mockingbird.

https://getbootstrap.com/docs/3.4/
https://gomockingbird.com/

5.1. ADDING SOME STRUCTURE 233

Figure 5.1: A mockup of the sample application’s Home page.

234 CHAPTER 5. FILLING IN THE LAYOUT

classes, and the start of our site navigation. The full file is in Listing 5.1; ex-
planations for the various pieces follow immediately thereafter. If you’d rather
not delay gratification, you can see the results in Figure 5.2. (Note: it’s not (yet)
very gratifying.)

Listing 5.1: The site layout with added structure.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

<!--[if lt IE 9]>

<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/r29/html5.min.js">

</script>

<![endif]-->

</head>

<body>

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

</div>

</header>

<div class="container">

<%= yield %>

</div>

</body>

</html>

Let’s look at the new elements in Listing 5.1 from top to bottom. As alluded
to briefly in Section 3.4.1, Rails uses HTML5 by default (as indicated by the
doctype <!DOCTYPE html>) which at this point most browsers support, but we

5.1. ADDING SOME STRUCTURE 235

can make our site more accessible to older browsers by adding some JavaScript
code, known as an “HTML5 shim (or shiv)”:4

<!--[if lt IE 9]>

<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/r29/html5.min.js">

</script>

<![endif]-->

The somewhat odd syntax

<!--[if lt IE 9]>

includes the enclosed line only if the version of Microsoft Internet Explorer (IE)
is less than 9 (if lt IE 9). The weird [if lt IE 9] syntax is not part
of Rails; it’s actually a conditional comment supported by Internet Explorer
browsers for just this sort of situation. It’s a good thing, too, because it means we
can include the HTML5 shim only for IE browsers less than version 9, leaving
other browsers such as Firefox, Chrome, and Safari unaffected.

The next section includes a header for the site’s (plain-text) logo, a couple
of divisions (using the div tag), and a list of elements with navigation links:

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

</div>

</header>

4The words shim and shiv are used interchangably in this context; the former is the proper term, based on the
English word whose meaning is “a washer or thin strip of material used to align parts, make them fit, or reduce
wear”, while the latter (meaning “a knife or razor used as a weapon”) is apparently a play on the name of the
shim’s original author, Sjoerd Visscher.

https://github.com/aFarkas/html5shiv
https://en.wikipedia.org/wiki/Conditional_comment

236 CHAPTER 5. FILLING IN THE LAYOUT

Here the header tag indicates elements that should go at the top of the page.
We’ve given the header tag three CSS classes,5 called navbar, navbar-
fixed-top, and navbar-inverse, separated by spaces:

<header class="navbar navbar-fixed-top navbar-inverse">

All HTML elements can be assigned both classes and ids;6 these are merely
labels, and are useful for styling with CSS (Section 5.1.2). The main difference
between classes and ids is that classes can be used multiple times on a page,
but ids can be used only once. In the present case, all the navbar classes have
special meaning to the Bootstrap framework, which we’ll install and use in
Section 5.1.2.

Inside the header tag, we see a div tag:

<div class="container">

The div tag is a generic division; it doesn’t do anything apart from divide the
document into distinct parts. In older-style HTML, div tags are used for nearly
all site divisions, but HTML5 adds the header, nav, and section elements
for divisions common to many applications. In this case, the div has a CSS
class as well (container). As with the header tag’s classes, this class has
special meaning to Bootstrap.

After the div, we encounter some embedded Ruby:

<%= link_to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

5These are completely unrelated to Ruby classes.
6Short for “identification” and pronounced as the separate letters “I D”. The usual convention in English is to

use all-caps (“ID”), reserving “id” for a term in Freudian psychoanalysis. Because HTML is usually typed in all
lower-case letters, though, it’s more common in this context to write “id” instead.

https://en.wiktionary.org/wiki/id#English

5.1. ADDING SOME STRUCTURE 237

This uses the Rails helper link_to to create links (which we created directly
with the anchor tag a in Section 3.2.2); the first argument to link_to is the link
text, while the second is the URL. We’ll fill in the URLs with named routes in
Section 5.3.3, but for now we use the stub URL '#' commonly used in web
design (i.e., '#' is just a “stub”, or placeholder, for the real URL). The third
argument is an options hash, in this case adding the CSS id logo to the sample
app link. (The other three links have no options hash, which is fine since it’s
optional.) Rails helpers often take options hashes in this way, giving us the
flexibility to add arbitrary HTML options without ever leaving Rails.

The second element inside the divs is a list of navigation links, made using
the unordered list tag ul, together with the list item tag li:

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

The <nav> tag, though formally unnecessary here, is used to more clearly com-
municate the purpose of the navigation links. Meanwhile, the nav,
navbar-nav, and navbar-right classes on the ul tag have special mean-
ing to Bootstrap and will be styled automatically when we include the Boot-
strap CSS in Section 5.1.2. As you can verify by inspecting the navigation in
your browser,7 once Rails has processed the layout and evaluated the embedded
Ruby the list looks like this:8

<nav>

<ul class="nav navbar-nav navbar-right">

Home

Help

Log in

</nav>

7All modern browsers have the capability to inspect the HTML source of a page. If you’ve never used a web
inspector before, do a web search for something like “web inspector <name of browser>” to learn more.

8The spacing might look slightly different, which is fine because (as noted in Section 3.4.1) HTML is insensitive
to whitespace.

238 CHAPTER 5. FILLING IN THE LAYOUT

This is the text that will be returned to the browser.
The final part of the layout is a div for the main content:

<div class="container">

<%= yield %>

</div>

As before, the container class has special meaning to Bootstrap. As we
learned in Section 3.4.3, the yield method inserts the contents of each page
into the site layout.

Apart from the site footer, which we’ll add in Section 5.1.3, our layout is
now complete, and we can look at the results by visiting the Home page. To
take advantage of the upcoming style elements, we’ll add some extra elements
to the home.html.erb view (Listing 5.2).

Listing 5.2: The Home page with a link to the signup page.
app/views/static_pages/home.html.erb

<div class="center jumbotron">

<h1>Welcome to the Sample App</h1>

<h2>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</h2>

<%= link_to "Sign up now!", '#', class: "btn btn-lg btn-primary" %>

</div>

<%= link_to image_tag("rails.svg", alt: "Rails logo", width: "200"),

"https://rubyonrails.org/" %>

In preparation for adding users to our site in Chapter 7, the first link_to creates
a stub link of the form

Sign up now!

5.1. ADDING SOME STRUCTURE 239

In the div tag, the jumbotron CSS class has a special meaning to Bootstrap,
as do the btn, btn-lg, and btn-primary classes in the signup button.

The second link_to shows off the image_tag helper, which takes as ar-
guments the path to an image and an optional options hash, in this case setting
the alt and width attributes of the image tag using symbols. For this to work,
there needs to be an image called rails.svg, which you should download
from the Learn Enough website at https://cdn.learnenough.com/rails.svg and
place in the app/assets/images/ directory.

If you’re using the cloud IDE or another Unix-like system, you can accom-
plish this with the curl utility, as shown in Listing 5.3.9

Listing 5.3: Downloading an image.
$ curl -o app/assets/images/rails.svg -OL https://cdn.learnenough.com/rails.svg

Because we used the image_tag helper in Listing 5.2, Rails will automati-
cally find any images in the app/assets/images/ directory using the asset
pipeline (Section 5.2).

Now we’re finally ready to see the fruits of our labors. You may have to
restart the Rails server to see the changes (Box 1.2), and the results should
appear as shown in Figure 5.2.

To make the effects of image_tag clearer, let’s look at the HTML it pro-
duces by inspecting the image in our browser:10

<img alt="Rails logo" width="200px" src="/assets/rails-<long string>.svg">

Here the <long string> is a random value added by Rails to ensure that the
filename is unique, which causes browsers to load images properly when they
have been updated (instead of retrieving them from the browser cache). Note
that the src attribute doesn’t include images, instead using an assets direc-
tory common to all assets (images, JavaScript, CSS, etc.). On the server, Rails

9See Learn Enough Command Line to Be Dangerous for more information about curl.
10You might notice that the img tag, rather than looking like ..., instead looks like

. Tags that follow this form are known as self-closing tags.

https://cdn.learnenough.com/rails.svg
https://www.learnenough.com/command-line
https://www.learnenough.com/r/learn_enough_command_line/inspecting_files/downloading_a_file#sec-downloading_a_file

240 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.2: The Home page with no custom CSS.

5.1. ADDING SOME STRUCTURE 241

associates images in the assets directory with the proper app/assets/-
images directory, but as far as the browser is concerned all the assets look like
they are in the same directory, which allows them to be served faster. Mean-
while, the alt attribute is what will be displayed if the page is accessed by a
program that can’t display images (such as screen readers for the visually im-
paired).

As for the result shown in Figure 5.2, it might look a little underwhelming.
Happily, though, we’ve done a good job of giving our HTML elements sensible
classes, which puts us in a great position to add style to the site with CSS.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. It’s well-known that no web page is complete without a cat image. Using
the command in Listing 5.4, arrange to download the kitten pic shown in
Figure 5.3.11

2. Using the mv command, move kitten.jpg to the correct asset directory
for images (Section 5.2.1).

3. Using image_tag, add kitten.jpg to the Home page, as shown in
Figure 5.4.

Listing 5.4: Downloading a cat picture from the Internet.
$ curl -OL https://cdn.learnenough.com/kitten.jpg

11Image retrieved from https://www.flickr.com/photos/deborah_s_perspective/14144861329 on 2016-01-09.
Copyright © 2009 by Deborah and used unaltered under the terms of the Creative Commons Attribution 2.0
Generic license.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.flickr.com/photos/deborah_s_perspective/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

242 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.3: An obligatory kitten pic.

5.1. ADDING SOME STRUCTURE 243

Figure 5.4: The result of adding a kitten image to the Home page.

