
5.3. LAYOUT LINKS 271

Page URL Named route
Home / root_path

About /about about_path

Help /help help_path

Contact /contact contact_path

Sign up /signup signup_path

Log in /login login_path

Table 5.1: Route and URL mapping for site links.

Listing 5.21: A test for the Contact page. red
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Ruby on Rails Tutorial Sample App"

end

test "should get help" do

get static_pages_help_url

assert_response :success

assert_select "title", "Help | Ruby on Rails Tutorial Sample App"

end

test "should get about" do

get static_pages_about_url

assert_response :success

assert_select "title", "About | Ruby on Rails Tutorial Sample App"

end

test "should get contact" do

get static_pages_contact_url

assert_response :success

assert_select "title", "Contact | Ruby on Rails Tutorial Sample App"

end

end

At this point, the tests in Listing 5.21 should be red:

272 CHAPTER 5. FILLING IN THE LAYOUT

Listing 5.22: red
$ rails test

The application code parallels the addition of the About page in Section 3.3:
first we update the routes (Listing 5.23), then we add a contact action to the
Static Pages controller (Listing 5.24), and finally we create a Contact view (List-
ing 5.25).

Listing 5.23: Adding a route for the Contact page. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get 'static_pages/home'

get 'static_pages/help'

get 'static_pages/about'

get 'static_pages/contact'

end

Listing 5.24: Adding an action for the Contact page. red
app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

.

.

.

def contact

end

end

Listing 5.25: The view for the Contact page. green
app/views/static_pages/contact.html.erb

<% provide(:title, 'Contact') %>

<h1>Contact</h1>

<p>

Contact the Ruby on Rails Tutorial about the sample app at the

contact page.

</p>

5.3. LAYOUT LINKS 273

Now make sure that the tests are green:

Listing 5.26: green
$ rails test

5.3.2 Rails routes
To add the named routes for the sample app’s static pages, we’ll edit the routes
file, config/routes.rb, that Rails uses to define URL mappings. We’ll be-
gin by reviewing the route for the Home page (defined in Section 3.4.4), which
is a special case, and then define a set of routes for the remaining static pages.

So far, we’ve seen three examples of how to define a root route, starting
with the code

root 'application#hello'

in the hello app (Listing 1.11), the code

root 'users#index'

in the toy app (Listing 2.7), and the code

root 'static_pages#home'

in the sample app (Listing 3.43). In each case, the root method arranges for
the root path / to be routed to a controller and action of our choice. Defining the
root route in this way has a second important effect, which is to create named
routes that allow us to refer to routes by a name rather than by the raw URL. In
this case, these routes are root_path and root_url, with the only difference
being that the latter includes the full URL:

274 CHAPTER 5. FILLING IN THE LAYOUT

root_path -> '/'

root_url -> 'http://www.example.com/'

In the Rails Tutorial, we’ll follow the common convention of using the _path
form except when doing redirects, where we’ll use the _url form. (This is be-
cause the HTTP standard technically requires a full URL after redirects, though
in most browsers it will work either way.)

Because the default routes used in, e.g., Listing 5.21 are rather verbose,
we’ll also take this opportunity to define shorter named routes for the Help,
About, and Contact pages. To do this, we need to make changes to the get

rules from Listing 5.23, transforming lines like

get 'static_pages/help'

to

get '/help', to: 'static_pages#help'

This new pattern routes a GET request for the URL /help to the help action in
the Static Pages controller. As with the rule for the root route, this creates two
named routes, help_path and help_url:

help_path -> '/help'

help_url -> 'http://www.example.com/help'

Applying this rule change to the remaining static page routes from Listing 5.23
gives Listing 5.27.

Listing 5.27: Routes for static pages. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

end

5.3. LAYOUT LINKS 275

Note that Listing 5.27 also removes the route for 'static_pages/home', as
we’ll always use root_path or root_url instead.

Because the tests in Listing 5.21 used the old routes, they are now red. To
get them green again, we need to update the routes as shown in Listing 5.28.
Note that we’ve taken this opportunity to update to the (optional) convention
of using the *_path form of each named route.

Listing 5.28: The static pages tests with the new named routes. green
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get root_path

assert_response :success

assert_select "title", "Ruby on Rails Tutorial Sample App"

end

test "should get help" do

get help_path

assert_response :success

assert_select "title", "Help | Ruby on Rails Tutorial Sample App"

end

test "should get about" do

get about_path

assert_response :success

assert_select "title", "About | Ruby on Rails Tutorial Sample App"

end

test "should get contact" do

get contact_path

assert_response :success

assert_select "title", "Contact | Ruby on Rails Tutorial Sample App"

end

end

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

276 CHAPTER 5. FILLING IN THE LAYOUT

1. It’s possible to use a named route other than the default using the as: op-
tion. Drawing inspiration from this famous Far Side comic strip, change
the route for the Help page to use helf (Listing 5.29).

2. Confirm that the tests are now red. Get them to green by updating the
route in Listing 5.28.

3. Revert the changes from these exercises using Undo.

Listing 5.29: Changing ‘help’ to ‘helf’.
Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help', as: 'helf'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

end

5.3.3 Using named routes
With the routes defined in Listing 5.27, we’re now in a position to use the result-
ing named routes in the site layout. This simply involves filling in the second
arguments of the link_to functions with the proper named routes. For exam-
ple, we’ll convert

<%= link_to "About", '#' %>

to

<%= link_to "About", about_path %>

and so on.
We’ll start in the header partial, _header.html.erb (Listing 5.30), which

has links to the Home and Help pages. While we’re at it, we’ll follow a common
web convention and link the logo to the Home page as well.

https://www.google.com/search?q=far+side+helf

5.3. LAYOUT LINKS 277

Listing 5.30: Header partial with links.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", root_path, id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", root_path %>

<%= link_to "Help", help_path %>

<%= link_to "Log in", '#' %>

</nav>

</div>

</header>

We won’t have a named route for the “Log in” link until Chapter 8, so we’ve
left it as '#' for now.

The other place with links is the footer partial, _footer.html.erb,
which has links for the About and Contact pages (Listing 5.31).

Listing 5.31: Footer partial with links.
app/views/layouts/_footer.html.erb

<footer class="footer">

<small>

The Ruby on Rails Tutorial

by Michael Hartl

</small>

<nav>

<%= link_to "About", about_path %>

<%= link_to "Contact", contact_path %>

News

</nav>

</footer>

With that, our layout has links to all the static pages created in Chapter 3,
so that, for example, /about goes to the About page (Figure 5.10).

278 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.10: The About page at /about.

5.3. LAYOUT LINKS 279

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Update the layout links to use the helf route from Listing 5.29.

2. Revert the changes using Undo.

5.3.4 Layout link tests
Now that we’ve filled in several of the layout links, it’s a good idea to test
them to make sure they’re working correctly. We could do this by hand with
a browser, first visiting the root path and then checking the links by hand, but
this quickly becomes cumbersome. Instead, we’ll simulate the same series of
steps using an integration test, which allows us to write an end-to-end test of
our application’s behavior. We can get started by generating a template test,
which we’ll call site_layout:

$ rails generate integration_test site_layout

invoke test_unit

create test/integration/site_layout_test.rb

Note that the Rails generator automatically appends _test to the name of the
test file.

Our plan for testing the layout links involves checking the HTML structure
of our site:

1. Get the root path (Home page).

2. Verify that the right page template is rendered.

3. Check for the correct links to the Home, Help, About, and Contact pages.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

280 CHAPTER 5. FILLING IN THE LAYOUT

Listing 5.32 shows how we can use Rails integration tests to translate these
steps into code, beginning with the assert_template method to verify that
the Home page is rendered using the correct view.18

Listing 5.32: A test for the links on the layout. green
test/integration/site_layout_test.rb

require 'test_helper'

class SiteLayoutTest < ActionDispatch::IntegrationTest

test "layout links" do

get root_path

assert_template 'static_pages/home'

assert_select "a[href=?]", root_path, count: 2

assert_select "a[href=?]", help_path

assert_select "a[href=?]", about_path

assert_select "a[href=?]", contact_path

end

end

Listing 5.32 uses some of the more advanced options of the assert_select
method, seen before in Listing 3.26 and Listing 5.21. In this case, we use a syn-
tax that allows us to test for the presence of a particular link–URL combination
by specifying the tag name a and attribute href, as in

assert_select "a[href=?]", about_path

Here Rails automatically inserts the value of about_path in place of the ques-
tion mark (escaping any special characters if necessary), thereby checking for
an HTML tag of the form

18Some developers insist that a single test shouldn’t contain multiple assertions. I find this practice to be unnec-
essarily complicated, while also incurring an extra overhead if there are common setup tasks needed before each
test. In addition, a well-written test tells a coherent story, and breaking it up into individual pieces disrupts the
narrative. I thus have a strong preference for including multiple assertions in a test, relying on Ruby (via minitest)
to tell me the exact lines of any failed assertions.

5.3. LAYOUT LINKS 281

Code Matching HTML
assert_select "div" <div>foobar</div>

assert_select "div", "foobar" <div>foobar</div>

assert_select "div.nav" <div class="nav">foobar</div>

assert_select "div#profile" <div id="profile">foobar</div>

assert_select "div[name=yo]" <div name="yo">hey</div>

assert_select "a[href=?]", '/', count: 1 foo

assert_select "a[href=?]", '/', text: "foo" foo

Table 5.2: Some uses of assert_select.

...

Note that the assertion for the root path verifies that there are two such links
(one each for the logo and navigation menu element):

assert_select "a[href=?]", root_path, count: 2

This ensures that both links to the Home page defined in Listing 5.30 are present.
Some more uses of assert_select appear in Table 5.2. While assert_-

select is flexible and powerful (having many more options than the ones
shown here), experience shows that it’s wise to take a lightweight approach
by testing only HTML elements (such as site layout links) that are unlikely to
change much over time.

To check that the new test in Listing 5.32 passes, we can run just the inte-
gration tests using the following Rake task:

Listing 5.33: green
$ rails test:integration

If all went well, you should run the full test suite to verify that all the tests are
green:

282 CHAPTER 5. FILLING IN THE LAYOUT

Listing 5.34: green
$ rails test

With the added integration test for layout links, we are now in a good position
to catch regressions quickly using our test suite.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In the footer partial, change about_path to contact_path and verify
that the tests catch the error.

2. It’s convenient to use the full_title helper in the tests by including
the Application helper into the test helper, as shown in Listing 5.35. We
can then test for the right title using code like Listing 5.36. This is brit-
tle, though, because now any typo in the base title (such as “Ruby on
Rails Tutoial”) won’t be caught by the test suite. Fix this problem by
writing a direct test of the full_title helper, which involves creating
a file to test the application helper and then filling in the code indicated
with FILL_IN in Listing 5.37. (Listing 5.37 uses assert_equal <ex-
pected>, <actual>, which verifies that the expected result
matches the actual value when compared with the == operator.)

Listing 5.35: Including the Application helper in tests.
test/test_helper.rb

ENV['RAILS_ENV'] ||= 'test'

.

.

.

class ActiveSupport::TestCase

fixtures :all

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

5.4. USER SIGNUP: A FIRST STEP 283

include ApplicationHelper

.

.

.

end

Listing 5.36: Using the full_title helper in a test. green
test/integration/site_layout_test.rb

require 'test_helper'

class SiteLayoutTest < ActionDispatch::IntegrationTest

test "layout links" do

get root_path

assert_template 'static_pages/home'

assert_select "a[href=?]", root_path, count: 2

assert_select "a[href=?]", help_path

assert_select "a[href=?]", about_path

assert_select "a[href=?]", contact_path

get contact_path

assert_select "title", full_title("Contact")

end

end

Listing 5.37: A direct test of the full_title helper.
test/helpers/application_helper_test.rb

require 'test_helper'

class ApplicationHelperTest < ActionView::TestCase

test "full title helper" do

assert_equal full_title, FILL_IN

assert_equal full_title("Help"), FILL_IN

end

end

5.4 User signup: A first step
As a capstone to our work on the layout and routing, in this section we’ll make
a route for the signup page, which will mean creating a second controller along

