
Chapter 5

Filling in the layout
In the process of taking a brief tour of Ruby in Chapter 4, we learned about
including the application stylesheet into the sample application (Section 4.1),
but (as noted in Section 4.3.4) the stylesheet doesn’t yet contain any CSS. In
this chapter, we’ll start filling in the custom stylesheet by incorporating a CSS
framework into our application, and then we’ll add some custom styles of our
own.1 We’ll also start filling in the layout with links to the pages (such as Home
and About) that we’ve created so far (Section 5.1). Along the way, we’ll learn
about partials, Rails routes, and the asset pipeline, including an introduction
to Sass (Section 5.2). We’ll end by taking a first important step toward letting
users sign up to our site (Section 5.4).

Most of the changes in this chapter involve adding and editing markup in
the sample application’s site layout, which (based on the guidelines in Box 3.3)
is exactly the kind of work that we wouldn’t ordinarily test-drive, or even test
at all. As a result, we’ll spend most of our time in our text editor and browser,
using TDD only to add a Contact page (Section 5.3.1). We will add an important
new test, though, writing our first integration test to check that the links on the
final layout are correct (Section 5.3.4).

1Thanks to reader Colm Tuite for his excellent work in helping to convert the sample application over to the
Bootstrap CSS framework.

231

https://twitter.com/colmtuite

232 CHAPTER 5. FILLING IN THE LAYOUT

5.1 Adding some structure
The Ruby on Rails Tutorial is a book on web development, not web design,
but it would be depressing to work on an application that looks like complete
crap, so in this section we’ll add some structure to the layout and give it some
minimal styling with CSS. In addition to using some custom CSS rules, we’ll
make use of Bootstrap, an open-source web design framework from Twitter.2
We’ll also give our code some styling, so to speak, using partials to tidy up the
layout once it gets a little cluttered.

When building web applications, it is often useful to get a high-level over-
view of the user interface as early as possible. Throughout the rest of this book,
I will thus often include mockups (in a web context often called wireframes),
which are rough sketches of what the eventual application will look like.3 In
this chapter, we will principally be developing the static pages introduced in
Section 3.2, including a site logo, a navigation header, and a site footer. A
mockup for the most important of these pages, the Home page, appears in Fig-
ure 5.1. You can see the final result in Figure 5.9. You’ll note that it differs in
some details—for example, we’ll end up adding a Rails logo on the page—but
that’s fine, since a mockup need not be exact.

As usual, if you’re using Git for version control, now would be a good time
to make a new branch:

$ git checkout -b filling-in-layout

5.1.1 Site navigation
As a first step toward adding links and styles to the sample application, we’ll up-
date the site layout file application.html.erb (last seen in Listing 4.3) with
additional HTML structure. This includes some additional divisions, some CSS

2Although more recent versions of Bootstrap are now available, this tutorial standardizes on Bootstrap 3 in
order to retain compatibility with the design and HTML structure from previous editions.

3The mockups in the Ruby on Rails Tutorial are made with an excellent online mockup application called
Mockingbird.

https://getbootstrap.com/docs/3.4/
https://gomockingbird.com/

5.1. ADDING SOME STRUCTURE 233

Figure 5.1: A mockup of the sample application’s Home page.

234 CHAPTER 5. FILLING IN THE LAYOUT

classes, and the start of our site navigation. The full file is in Listing 5.1; ex-
planations for the various pieces follow immediately thereafter. If you’d rather
not delay gratification, you can see the results in Figure 5.2. (Note: it’s not (yet)
very gratifying.)

Listing 5.1: The site layout with added structure.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

<!--[if lt IE 9]>

<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/r29/html5.min.js">

</script>

<![endif]-->

</head>

<body>

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

</div>

</header>

<div class="container">

<%= yield %>

</div>

</body>

</html>

Let’s look at the new elements in Listing 5.1 from top to bottom. As alluded
to briefly in Section 3.4.1, Rails uses HTML5 by default (as indicated by the
doctype <!DOCTYPE html>) which at this point most browsers support, but we

5.1. ADDING SOME STRUCTURE 235

can make our site more accessible to older browsers by adding some JavaScript
code, known as an “HTML5 shim (or shiv)”:4

<!--[if lt IE 9]>

<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/r29/html5.min.js">

</script>

<![endif]-->

The somewhat odd syntax

<!--[if lt IE 9]>

includes the enclosed line only if the version of Microsoft Internet Explorer (IE)
is less than 9 (if lt IE 9). The weird [if lt IE 9] syntax is not part
of Rails; it’s actually a conditional comment supported by Internet Explorer
browsers for just this sort of situation. It’s a good thing, too, because it means we
can include the HTML5 shim only for IE browsers less than version 9, leaving
other browsers such as Firefox, Chrome, and Safari unaffected.

The next section includes a header for the site’s (plain-text) logo, a couple
of divisions (using the div tag), and a list of elements with navigation links:

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

</div>

</header>

4The words shim and shiv are used interchangably in this context; the former is the proper term, based on the
English word whose meaning is “a washer or thin strip of material used to align parts, make them fit, or reduce
wear”, while the latter (meaning “a knife or razor used as a weapon”) is apparently a play on the name of the
shim’s original author, Sjoerd Visscher.

https://github.com/aFarkas/html5shiv
https://en.wikipedia.org/wiki/Conditional_comment

236 CHAPTER 5. FILLING IN THE LAYOUT

Here the header tag indicates elements that should go at the top of the page.
We’ve given the header tag three CSS classes,5 called navbar, navbar-
fixed-top, and navbar-inverse, separated by spaces:

<header class="navbar navbar-fixed-top navbar-inverse">

All HTML elements can be assigned both classes and ids;6 these are merely
labels, and are useful for styling with CSS (Section 5.1.2). The main difference
between classes and ids is that classes can be used multiple times on a page,
but ids can be used only once. In the present case, all the navbar classes have
special meaning to the Bootstrap framework, which we’ll install and use in
Section 5.1.2.

Inside the header tag, we see a div tag:

<div class="container">

The div tag is a generic division; it doesn’t do anything apart from divide the
document into distinct parts. In older-style HTML, div tags are used for nearly
all site divisions, but HTML5 adds the header, nav, and section elements
for divisions common to many applications. In this case, the div has a CSS
class as well (container). As with the header tag’s classes, this class has
special meaning to Bootstrap.

After the div, we encounter some embedded Ruby:

<%= link_to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

5These are completely unrelated to Ruby classes.
6Short for “identification” and pronounced as the separate letters “I D”. The usual convention in English is to

use all-caps (“ID”), reserving “id” for a term in Freudian psychoanalysis. Because HTML is usually typed in all
lower-case letters, though, it’s more common in this context to write “id” instead.

https://en.wiktionary.org/wiki/id#English

5.1. ADDING SOME STRUCTURE 237

This uses the Rails helper link_to to create links (which we created directly
with the anchor tag a in Section 3.2.2); the first argument to link_to is the link
text, while the second is the URL. We’ll fill in the URLs with named routes in
Section 5.3.3, but for now we use the stub URL '#' commonly used in web
design (i.e., '#' is just a “stub”, or placeholder, for the real URL). The third
argument is an options hash, in this case adding the CSS id logo to the sample
app link. (The other three links have no options hash, which is fine since it’s
optional.) Rails helpers often take options hashes in this way, giving us the
flexibility to add arbitrary HTML options without ever leaving Rails.

The second element inside the divs is a list of navigation links, made using
the unordered list tag ul, together with the list item tag li:

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

The <nav> tag, though formally unnecessary here, is used to more clearly com-
municate the purpose of the navigation links. Meanwhile, the nav,
navbar-nav, and navbar-right classes on the ul tag have special mean-
ing to Bootstrap and will be styled automatically when we include the Boot-
strap CSS in Section 5.1.2. As you can verify by inspecting the navigation in
your browser,7 once Rails has processed the layout and evaluated the embedded
Ruby the list looks like this:8

<nav>

<ul class="nav navbar-nav navbar-right">

Home

Help

Log in

</nav>

7All modern browsers have the capability to inspect the HTML source of a page. If you’ve never used a web
inspector before, do a web search for something like “web inspector <name of browser>” to learn more.

8The spacing might look slightly different, which is fine because (as noted in Section 3.4.1) HTML is insensitive
to whitespace.

238 CHAPTER 5. FILLING IN THE LAYOUT

This is the text that will be returned to the browser.
The final part of the layout is a div for the main content:

<div class="container">

<%= yield %>

</div>

As before, the container class has special meaning to Bootstrap. As we
learned in Section 3.4.3, the yield method inserts the contents of each page
into the site layout.

Apart from the site footer, which we’ll add in Section 5.1.3, our layout is
now complete, and we can look at the results by visiting the Home page. To
take advantage of the upcoming style elements, we’ll add some extra elements
to the home.html.erb view (Listing 5.2).

Listing 5.2: The Home page with a link to the signup page.
app/views/static_pages/home.html.erb

<div class="center jumbotron">

<h1>Welcome to the Sample App</h1>

<h2>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</h2>

<%= link_to "Sign up now!", '#', class: "btn btn-lg btn-primary" %>

</div>

<%= link_to image_tag("rails.svg", alt: "Rails logo", width: "200"),

"https://rubyonrails.org/" %>

In preparation for adding users to our site in Chapter 7, the first link_to creates
a stub link of the form

Sign up now!

5.1. ADDING SOME STRUCTURE 239

In the div tag, the jumbotron CSS class has a special meaning to Bootstrap,
as do the btn, btn-lg, and btn-primary classes in the signup button.

The second link_to shows off the image_tag helper, which takes as ar-
guments the path to an image and an optional options hash, in this case setting
the alt and width attributes of the image tag using symbols. For this to work,
there needs to be an image called rails.svg, which you should download
from the Learn Enough website at https://cdn.learnenough.com/rails.svg and
place in the app/assets/images/ directory.

If you’re using the cloud IDE or another Unix-like system, you can accom-
plish this with the curl utility, as shown in Listing 5.3.9

Listing 5.3: Downloading an image.
$ curl -o app/assets/images/rails.svg -OL https://cdn.learnenough.com/rails.svg

Because we used the image_tag helper in Listing 5.2, Rails will automati-
cally find any images in the app/assets/images/ directory using the asset
pipeline (Section 5.2).

Now we’re finally ready to see the fruits of our labors. You may have to
restart the Rails server to see the changes (Box 1.2), and the results should
appear as shown in Figure 5.2.

To make the effects of image_tag clearer, let’s look at the HTML it pro-
duces by inspecting the image in our browser:10

<img alt="Rails logo" width="200px" src="/assets/rails-<long string>.svg">

Here the <long string> is a random value added by Rails to ensure that the
filename is unique, which causes browsers to load images properly when they
have been updated (instead of retrieving them from the browser cache). Note
that the src attribute doesn’t include images, instead using an assets direc-
tory common to all assets (images, JavaScript, CSS, etc.). On the server, Rails

9See Learn Enough Command Line to Be Dangerous for more information about curl.
10You might notice that the img tag, rather than looking like ..., instead looks like

. Tags that follow this form are known as self-closing tags.

https://cdn.learnenough.com/rails.svg
https://www.learnenough.com/command-line
https://www.learnenough.com/r/learn_enough_command_line/inspecting_files/downloading_a_file#sec-downloading_a_file

240 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.2: The Home page with no custom CSS.

5.1. ADDING SOME STRUCTURE 241

associates images in the assets directory with the proper app/assets/-
images directory, but as far as the browser is concerned all the assets look like
they are in the same directory, which allows them to be served faster. Mean-
while, the alt attribute is what will be displayed if the page is accessed by a
program that can’t display images (such as screen readers for the visually im-
paired).

As for the result shown in Figure 5.2, it might look a little underwhelming.
Happily, though, we’ve done a good job of giving our HTML elements sensible
classes, which puts us in a great position to add style to the site with CSS.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. It’s well-known that no web page is complete without a cat image. Using
the command in Listing 5.4, arrange to download the kitten pic shown in
Figure 5.3.11

2. Using the mv command, move kitten.jpg to the correct asset directory
for images (Section 5.2.1).

3. Using image_tag, add kitten.jpg to the Home page, as shown in
Figure 5.4.

Listing 5.4: Downloading a cat picture from the Internet.
$ curl -OL https://cdn.learnenough.com/kitten.jpg

11Image retrieved from https://www.flickr.com/photos/deborah_s_perspective/14144861329 on 2016-01-09.
Copyright © 2009 by Deborah and used unaltered under the terms of the Creative Commons Attribution 2.0
Generic license.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.flickr.com/photos/deborah_s_perspective/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

242 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.3: An obligatory kitten pic.

5.1. ADDING SOME STRUCTURE 243

Figure 5.4: The result of adding a kitten image to the Home page.

244 CHAPTER 5. FILLING IN THE LAYOUT

5.1.2 Bootstrap and custom CSS
In Section 5.1.1, we associated many of the HTML elements with CSS classes,
which gives us considerable flexibility in constructing a layout based on CSS.
As noted in Section 5.1.1, many of these classes are specific to Bootstrap, a CSS
framework that makes it easy to add nice web design and user interface elements
to an HTML5 application. In this section, we’ll combine Bootstrap with some
custom CSS rules to start adding some style to the sample application. It’s
worth noting that using Bootstrap automatically makes our application’s design
responsive, ensuring that it looks sensible across a wide range of devices.

Our first step is to add Bootstrap, which in Rails applications can be ac-
complished with the bootstrap-sass gem, as shown in Listing 5.5.12 The
Bootstrap framework natively uses the Less CSS language for making dynamic
stylesheets, but the Rails asset pipeline supports the (very similar) Sass lan-
guage by default (Section 5.2), so bootstrap-sass converts Less to Sass
and makes all the necessary Bootstrap files available to the current application.

Listing 5.5: Adding the bootstrap-sass gem to the Gemfile.
source 'https://rubygems.org'

gem 'rails', '6.0.1'

gem 'bootstrap-sass', '3.4.1'

gem 'puma', '3.12.1'

.

.

.

To install Bootstrap, we run bundle install as usual:

$ bundle install

Although rails generate automatically creates a separate CSS file for
each controller, it’s surprisingly hard to include them all properly and in the

12As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://getbootstrap.com/docs/3.4/
https://en.wikipedia.org/wiki/Responsive_web_design
http://lesscss.org/
https://gemfiles-6th-ed.railstutorial.org/

5.1. ADDING SOME STRUCTURE 245

right order, so for simplicity we’ll put all of the CSS needed for this tutorial in
a single file. The first step toward getting custom CSS to work is to create such
a custom CSS file:

$ touch app/assets/stylesheets/custom.scss

(This uses the touch trick from Section 3.3.3 en route, but you can create the
file however you like.) Here both the directory name and filename extension
are important. The directory

app/assets/stylesheets/

is part of the asset pipeline (Section 5.2), and any stylesheets in this directory
will automatically be included as part of the application.css file included
in the site layout. Furthermore, the filename custom.scss includes the .scss
extension, which indicates a “Sassy CSS” file and arranges for the asset pipeline
to process the file using Sass. (We won’t be using Sass until Section 5.2.2, but
it’s needed now for the bootstrap-sass gem to work its magic.)

Inside the file for the custom CSS, we can use the @import function to
include Bootstrap (together with the associated Sprockets utility), as shown in
Listing 5.6.13

Listing 5.6: Adding Bootstrap CSS.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

The two lines in Listing 5.6 include the entire Bootstrap CSS framework. Af-
ter restarting the webserver to incorporate the changes into the development
application (by pressing Ctrl-C and then running rails server as in Sec-
tion 1.2.2), the results appear as in Figure 5.5. The placement of the text isn’t

13If these steps seem mysterious, take heart: I’m just following the instructions from the bootstrap-sass
README file.

https://github.com/twbs/bootstrap-sass#bootstrap-for-sass---
https://github.com/twbs/bootstrap-sass#bootstrap-for-sass---

246 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.5: The sample application with Bootstrap CSS.

good and the logo doesn’t have any style, but the colors and signup button look
promising.

Next we’ll add some CSS that will be used site-wide for styling the layout
and each individual page, as shown in Listing 5.7. The result is shown in Fig-
ure 5.6. (There are quite a few rules in Listing 5.7; to get a sense of what a
CSS rule does, it’s often helpful to comment it out using CSS comments, i.e.,
by putting it inside /* … */, and seeing what changes.)

Listing 5.7: Adding CSS for some universal styling applying to all pages.
app/assets/stylesheets/custom.scss

5.1. ADDING SOME STRUCTURE 247

@import "bootstrap-sprockets";

@import "bootstrap";

/* universal */

body {

padding-top: 60px;

}

section {

overflow: auto;

}

textarea {

resize: vertical;

}

.center {

text-align: center;

}

.center h1 {

margin-bottom: 10px;

}

Note that the CSS in Listing 5.7 has a consistent form. In general, CSS
rules refer either to a class, an id, an HTML tag, or some combination thereof,
followed by a list of styling commands. For example,

body {

padding-top: 60px;

}

puts 60 pixels of padding at the top of the page. Because of the
navbar-fixed-top class in the header tag, Bootstrap fixes the navigation
bar to the top of the page, so the padding serves to separate the main text from
the navigation. (Because the default navbar color changed after Bootstrap 2.0,
we need the navbar-inverse class to make it dark instead of light.) Mean-
while, the CSS in the rule

248 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.6: Adding some spacing and other universal styling.

5.1. ADDING SOME STRUCTURE 249

.center {

text-align: center;

}

associates the center class with the text-align: center property. In
other words, the dot . in .center indicates that the rule styles a class. (As
we’ll see in Listing 5.9, the pound sign # identifies a rule to style a CSS id.)
This means that elements inside any tag (such as a div) with class center will
be centered on the page. (We saw an example of this class in Listing 5.2.)

Although Bootstrap comes with CSS rules for nice typography, we’ll also
add some custom rules for the appearance of the text on our site, as shown in
Listing 5.8. (Not all of these rules apply to the Home page, but each rule here
will be used at some point in the sample application.) The result of Listing 5.8
is shown in Figure 5.7.

Listing 5.8: Adding CSS for nice typography.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

.

.

.

/* typography */

h1, h2, h3, h4, h5, h6 {

line-height: 1;

}

h1 {

font-size: 3em;

letter-spacing: -2px;

margin-bottom: 30px;

text-align: center;

}

h2 {

font-size: 1.2em;

letter-spacing: -1px;

margin-bottom: 30px;

text-align: center;

font-weight: normal;

color: #777;

250 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.7: Adding some typographic styling.

}

p {

font-size: 1.1em;

line-height: 1.7em;

}

Finally, we’ll add some rules to style the site’s logo, which simply consists
of the text “sample app”. The CSS in Listing 5.9 converts the text to uppercase
and modifies its size, color, and placement. (We’ve used a CSS id because we
expect the site logo to appear on the page only once, but you could use a class
instead.)

5.1. ADDING SOME STRUCTURE 251

Listing 5.9: Adding CSS for the site logo.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

.

.

.

/* header */

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: #fff;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

}

#logo:hover {

color: #fff;

text-decoration: none;

}

Here color: #fff changes the color of the logo to white. HTML colors can
be coded with three pairs of base-16 (hexadecimal) numbers, one each for the
primary colors red, green, and blue (in that order). The code #ffffff maxes
out all three colors, yielding pure white, and #fff is a shorthand for the full
#ffffff. The CSS standard also defines a large number of synonyms for com-
mon HTML colors, including white for #fff. The result of the CSS in List-
ing 5.9 is shown in Figure 5.8.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using code like that shown in Listing 5.10, comment out the cat image

https://www.w3schools.com/colors/colors_names.asp
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

252 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.8: The sample app with nicely styled logo.

5.1. ADDING SOME STRUCTURE 253

from Section 5.1.1. Verify using a web inspector that the HTML for the
image no longer appears in the page source.

2. By adding the CSS in Listing 5.11 to custom.scss, hide all images in
the application—currently just the Rails logo on the Home page). Verify
with a web inspector that, although the image doesn’t appear, the HTML
source is still present.

Listing 5.10: Code to comment out embedded Ruby.
<%#= image_tag("kitten.jpg", alt: "Kitten") %>

Listing 5.11: CSS to hide all images.
img {

display: none;

}

5.1.3 Partials
Although the layout in Listing 5.1 serves its purpose, it’s getting a little clut-
tered. The HTML shim takes up three lines and uses weird IE-specific syntax,
so it would be nice to tuck it away somewhere on its own. In addition, the header
HTML forms a logical unit, so it should all be packaged up in one place. The
way to achieve this in Rails is to use a facility called partials. Let’s first take a
look at what the layout looks like after the partials are defined (Listing 5.12).

Listing 5.12: The site layout with partials for the stylesheets and header.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

254 CHAPTER 5. FILLING IN THE LAYOUT

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

<%= render 'layouts/shim' %>

</head>

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

</div>

</body>

</html>

In Listing 5.12, we’ve replaced the HTML shim stylesheet lines with a sin-
gle call to a Rails helper called render:

<%= render 'layouts/shim' %>

The effect of this line is to look for a file called app/views/layouts/-

_shim.html.erb, evaluate its contents, and insert the results into the view.14

(Recall that <%= ... %> is the embedded Ruby syntax needed to evaluate a
Ruby expression and then insert the results into the template.) Note the leading
underscore on the filename _shim.html.erb; this underscore is the universal
convention for naming partials, and among other things makes it possible to
identify all the partials in a directory at a glance.

To get the partial to work, we have to create the corresponding file and fill
it with some content. In the case of the shim partial, this is just the three lines
of shim code from Listing 5.1. The result appears in Listing 5.13.

Listing 5.13: A partial for the HTML shim.
app/views/layouts/_shim.html.erb

<!--[if lt IE 9]>

<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/r29/html5.min.js">

</script>

<![endif]-->

14Many Rails developers use a shared directory for partials shared across different views. I prefer to use the
shared folder for utility partials that are useful on multiple views, while putting partials that are literally on every
page (as part of the site layout) in the layouts directory. (We’ll create the shared directory starting in Chapter 7.)
That seems to me a logical division, but putting them all in the shared folder certainly works fine, too.

5.1. ADDING SOME STRUCTURE 255

Similarly, we can move the header material into the partial shown in List-
ing 5.14 and insert it into the layout with another call to render. (As usual
with partials, you will have to create the file by hand using your text editor.)

Listing 5.14: A partial for the site header.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

</div>

</header>

Now that we know how to make partials, let’s add a site footer to go along
with the header. By now you can probably guess that we’ll call it _footer.-
html.erb and put it in the layouts directory (Listing 5.15).15

Listing 5.15: A partial for the site footer.
app/views/layouts/_footer.html.erb

<footer class="footer">

<small>

The Ruby on Rails Tutorial

by Michael Hartl

</small>

<nav>

<%= link_to "About", '#' %>

<%= link_to "Contact", '#' %>

News

</nav>

</footer>

15You may wonder why we use both the footer tag and .footer class. The answer is that the tag has a clear
meaning to human readers, and the class is used by Bootstrap. Using a div tag in place of footer would work
as well.

256 CHAPTER 5. FILLING IN THE LAYOUT

As with the header, in the footer we’ve used link_to for the internal links to
the About and Contact pages and stubbed out the URLs with '#' for now. (As
with header, the footer tag is new in HTML5.)

We can render the footer partial in the layout by following the same pattern
as the stylesheets and header partials (Listing 5.16).

Listing 5.16: The site layout with a footer partial.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

<%= render 'layouts/shim' %>

</head>

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

<%= render 'layouts/footer' %>

</div>

</body>

</html>

Next, we’ll add some styling for the footer, as shown in Listing 5.17. The
results appear in Figure 5.9.

Listing 5.17: Adding the CSS for the site footer.
app/assets/stylesheets/custom.scss

.

.

.

/* footer */

footer {

margin-top: 45px;

padding-top: 5px;

5.1. ADDING SOME STRUCTURE 257

border-top: 1px solid #eaeaea;

color: #777;

}

footer a {

color: #555;

}

footer a:hover {

color: #222;

}

footer small {

float: left;

}

footer ul {

float: right;

list-style: none;

}

footer ul li {

float: left;

margin-left: 15px;

}

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Replace the default Rails head with the call to render shown in List-
ing 5.18. Hint: For convenience, cut the default header rather than just
deleting it.

2. Because we haven’t yet created the partial needed by Listing 5.18, the
tests should be red. Confirm that this is the case.

3. Create the necessary partial in the layouts directory, paste in the con-
tents, and verify that the tests are now green again.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

258 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.9: The Home page with an added footer.

5.2. SASS AND THE ASSET PIPELINE 259

Listing 5.18: Replacing the default Rails head with a call to render.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<%= render 'layouts/rails_default' %>

<%= render 'layouts/shim' %>

</head>

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

<%= render 'layouts/footer' %>

</div>

</body>

</html>

5.2 Sass and the asset pipeline
One of the most useful features of Rails is the asset pipeline, which significantly
simplifies the production and management of static assets such as CSS and im-
ages. The asset pipline also works well in parallel with Webpack (a JavaScript
asset bundler) and Yarn (a dependency manager mentioned in Section 1.1.2),
both of which are supported by default in Rails. This section first gives a high-
level overview of the asset pipeline, and then shows how to use Sass, a powerful
tool for writing CSS.

5.2.1 The asset pipeline
From the perspective of a typical Rails developer, there are three main features
to understand about the asset pipeline: asset directories, manifest files, and pre-
processor engines.16 Let’s consider each in turn.

16The original structure of this section was based on the excellent blog post “The Rails 3 Asset Pipeline in
(about) 5 Minutes” by Michael Erasmus.

https://webpack.js.org

260 CHAPTER 5. FILLING IN THE LAYOUT

Asset directories
The Rails asset pipeline uses three standard directories for static assets, each
with its own purpose:

• app/assets: assets specific to the present application

• lib/assets: assets for libraries written by your dev team

• vendor/assets: assets from third-party vendors (not present by de-
fault)

Each of these directories has a subdirectory for each of two asset classes—
images and Cascading Style Sheets:

$ ls app/assets/

config images stylesheets

At this point, we’re in a position to understand the motivation behind the
location of the custom CSS file in Section 5.1.2: custom.scss is specific to
the sample application, so it goes in app/assets/stylesheets.

Manifest files
Once you’ve placed your assets in their logical locations, you can use manifest
files to tell Rails (via the Sprockets gem) how to combine them to form single
files. (This applies to CSS and JavaScript but not to images.) As an example,
let’s take a look at the default manifest file for app stylesheets (Listing 5.19).

Listing 5.19: The manifest file for app-specific CSS.
app/assets/stylesheets/application.css

/*

* This is a manifest file that'll be compiled into application.css, which will

* include all the files listed below.

*

* Any CSS and SCSS file within this directory, lib/assets/stylesheets, or any

https://github.com/rails/sprockets

5.2. SASS AND THE ASSET PIPELINE 261

* plugin's vendor/assets/stylesheets directory can be referenced here using a

* relative path.

*

* You're free to add application-wide styles to this file and they'll appear at

* the bottom of the compiled file so the styles you add here take precedence

* over styles defined in any other CSS/SCSS files in this directory. Styles in

* this file should be added after the last require_* statement.

* It is generally better to create a new file per style scope.

*

*= require_tree .

*= require_self

*/

The key lines here are actually CSS comments, but they are used by Sprockets
to include the proper files:

/*

.

.

.

*= require_tree .

*= require_self

*/

Here

*= require_tree .

ensures that all CSS files in the app/assets/stylesheets directory (includ-
ing the tree subdirectories) are included into the application CSS. The line

*= require_self

specifies where in the loading sequence the CSS in application.css itself
gets included.

Rails comes with sensible default manifest files, and in the Rails Tutorial
we won’t need to make any changes, but the Rails Guides entry on the asset
pipeline has more detail if you need it.

http://guides.rubyonrails.org/asset_pipeline.html
http://guides.rubyonrails.org/asset_pipeline.html

262 CHAPTER 5. FILLING IN THE LAYOUT

Preprocessor engines

After you’ve assembled your assets, Rails prepares them for the site template by
running them through several preprocessing engines and using the manifest files
to combine them for delivery to the browser. We tell Rails which processor to
use using filename extensions; the two most common cases are .scss for Sass
and .erb for embedded Ruby (ERb). We first covered ERb in Section 3.4.3
and cover Sass in Section 5.2.2.

Efficiency in production

One of the best things about the asset pipeline is that it automatically results in
assets that are optimized to be efficient in a production application. Traditional
methods for organizing CSS involves splitting functionality into separate files
and using nice formatting (with lots of indentation). While convenient for the
programmer, this is inefficient in production. In particular, including multiple
full-sized files can significantly slow page-load times, which is one of the most
important factors affecting the quality of the user experience.

With the asset pipeline, we don’t have to choose between speed and con-
venience: we can work with multiple nicely formatted files in development,
and then use the asset pipeline to make efficient files in production. In partic-
ular, the asset pipeline combines all the application stylesheets into one CSS
file (application.css) and then minifies it to remove the unnecessary spac-
ing and indentation that bloats file size. The result is the best of both worlds:
convenience in development and efficiency in production.

5.2.2 Syntactically awesome stylesheets
Sass is a language for writing stylesheets that improves on CSS in many ways.
In this section, we cover two of the most important improvements, nesting and
variables. (A third technique, mixins, is introduced in Section 7.1.1.)

As noted briefly in Section 5.1.2, Sass supports a format called SCSS (in-
dicated with a .scss filename extension), which is a strict superset of CSS
itself; that is, SCSS only adds features to CSS, rather than defining an entirely

5.2. SASS AND THE ASSET PIPELINE 263

new syntax.17 This means that every valid CSS file is also a valid SCSS file,
which is convenient for projects with existing style rules. In our case, we used
SCSS from the start in order to take advantage of Bootstrap. Since the Rails as-
set pipeline automatically uses Sass to process files with the .scss extension,
the custom.scss file will be run through the Sass preprocessor before being
packaged up for delivery to the browser.

Nesting

A common pattern in stylesheets is having rules that apply to nested elements.
For example, in Listing 5.7 we have rules both for .center and for .center
h1:

.center {

text-align: center;

}

.center h1 {

margin-bottom: 10px;

}

We can replace this in Sass with

.center {

text-align: center;

h1 {

margin-bottom: 10px;

}

}

Here the nested h1 rule automatically inherits the .center context.
There’s a second candidate for nesting that requires a slightly different syn-

tax. In Listing 5.9, we have the code

17Sass also supports an alternate syntax that does define a new language, which is less verbose (and has fewer
curly braces) but is less convenient for existing projects and is harder to learn for those already familiar with CSS.

264 CHAPTER 5. FILLING IN THE LAYOUT

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: #fff;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

}

#logo:hover {

color: #fff;

text-decoration: none;

}

Here the logo id #logo appears twice, once by itself and once with the hover
attribute (which controls its appearance when the mouse pointer hovers over
the element in question). In order to nest the second rule, we need to reference
the parent element #logo; in SCSS, this is accomplished with the ampersand
character & as follows:

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: #fff;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

&:hover {

color: #fff;

text-decoration: none;

}

}

Sass changes &:hover into #logo:hover as part of converting from SCSS to
CSS.

Both of these nesting techniques apply to the footer CSS in Listing 5.17,
which can be transformed into the following:

5.2. SASS AND THE ASSET PIPELINE 265

footer {

margin-top: 45px;

padding-top: 5px;

border-top: 1px solid #eaeaea;

color: #777;

a {

color: #555;

&:hover {

color: #222;

}

}

small {

float: left;

}

ul {

float: right;

list-style: none;

li {

float: left;

margin-left: 15px;

}

}

}

Converting Listing 5.17 by hand is a good exercise (Section 5.2.2), and you
should verify that the CSS still works properly after the conversion.

Variables
Sass allows us to define variables to eliminate duplication and write more ex-
pressive code. For example, looking at Listing 5.8 and Listing 5.17, we see that
there are repeated references to the same color:

h2 {

.

.

.

color: #777;

}

.

.

.

footer {

.

.

266 CHAPTER 5. FILLING IN THE LAYOUT

.

color: #777;

}

In this case, #777 is a light gray, and we can give it a name by defining a variable
as follows:

$light-gray: #777;

This allows us to rewrite our SCSS like this:

$light-gray: #777;

.

.

.

h2 {

.

.

.

color: $light-gray;

}

.

.

.

footer {

.

.

.

color: $light-gray;

}

Because variable names such as $light-gray are more descriptive than
#777, it’s often useful to define variables even for values that aren’t repeated.
Indeed, the Bootstrap framework defines a large number of variables for colors,
available online on the Bootstrap page of Less variables. That page defines
variables using Less, not Sass, but the bootstrap-sass gem provides the
Sass equivalents. It is not difficult to guess the correspondence; where Less uses
an “at” sign @, Sass uses a dollar sign $. For example, looking at the Bootstrap
variable page, we see that there is a variable for light gray:

https://getbootstrap.com/docs/3.4/customize/#less-variables

5.2. SASS AND THE ASSET PIPELINE 267

@gray-light: #777;

This means that, via the bootstrap-sass gem, there should be a corre-
sponding SCSS variable $gray-light. We can use this to replace our custom
variable, $light-gray, which gives

h2 {

.

.

.

color: $gray-light;

}

.

.

.

footer {

.

.

.

color: $gray-light;

}

Applying the Sass nesting and variable definition features to the full SCSS
file gives the file in Listing 5.20. This uses both Sass variables (as inferred
from the Bootstrap Less variable page) and built-in named colors (i.e., white
for #fff). Note in particular the dramatic improvement in the rules for the
footer tag.

Listing 5.20: The initial SCSS file converted to use nesting and variables.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

/* mixins, variables, etc. */

$gray-medium-light: #eaeaea;

/* universal */

body {

268 CHAPTER 5. FILLING IN THE LAYOUT

padding-top: 60px;

}

section {

overflow: auto;

}

textarea {

resize: vertical;

}

.center {

text-align: center;

h1 {

margin-bottom: 10px;

}

}

/* typography */

h1, h2, h3, h4, h5, h6 {

line-height: 1;

}

h1 {

font-size: 3em;

letter-spacing: -2px;

margin-bottom: 30px;

text-align: center;

}

h2 {

font-size: 1.2em;

letter-spacing: -1px;

margin-bottom: 30px;

text-align: center;

font-weight: normal;

color: $gray-light;

}

p {

font-size: 1.1em;

line-height: 1.7em;

}

/* header */

#logo {

float: left;

margin-right: 10px;

5.2. SASS AND THE ASSET PIPELINE 269

font-size: 1.7em;

color: white;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

&:hover {

color: white;

text-decoration: none;

}

}

/* footer */

footer {

margin-top: 45px;

padding-top: 5px;

border-top: 1px solid $gray-medium-light;

color: $gray-light;

a {

color: $gray;

&:hover {

color: $gray-darker;

}

}

small {

float: left;

}

ul {

float: right;

list-style: none;

li {

float: left;

margin-left: 15px;

}

}

}

Sass gives us even more ways to simplify our stylesheets, but the code in
Listing 5.20 uses the most important features and gives us a great start. See the
Sass website for more details.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

http://sass-lang.com/
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads

270 CHAPTER 5. FILLING IN THE LAYOUT

Tutorial course or to the Learn Enough All Access Bundle.

1. As suggested in Section 5.2.2, go through the steps to convert the footer
CSS from Listing 5.17 to Listing 5.20 to SCSS by hand.

5.3 Layout links
Now that we’ve finished a site layout with decent styling, it’s time to start filling
in the links we’ve stubbed out with '#'. Because plain HTML is valid in Rails
ERb templates, we could hard-code links like

About

but that isn’t the Rails Way™. For one, it would be nice if the URL for the
about page were /about rather than /static_pages/about. Moreover, Rails con-
ventionally uses named routes, which involves code like

<%= link_to "About", about_path %>

This way the code has a more transparent meaning, and it’s also more flexible
since we can change the definition of about_path and have the URL change
everywhere about_path is used.

The full list of our planned links appears in Table 5.1, along with their map-
ping to URLs and routes. We took care of the first route in Section 3.4.4, and
we’ll have implemented all but the last one by the end of this chapter. (We’ll
make the last one in Chapter 8.)

5.3.1 Contact page
For completeness, we’ll add the Contact page, which was left as an exercise in
Chapter 3. The test appears as in Listing 5.21, which simply follows the model
last seen in Listing 3.26.

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

5.3. LAYOUT LINKS 271

Page URL Named route
Home / root_path

About /about about_path

Help /help help_path

Contact /contact contact_path

Sign up /signup signup_path

Log in /login login_path

Table 5.1: Route and URL mapping for site links.

Listing 5.21: A test for the Contact page. red
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Ruby on Rails Tutorial Sample App"

end

test "should get help" do

get static_pages_help_url

assert_response :success

assert_select "title", "Help | Ruby on Rails Tutorial Sample App"

end

test "should get about" do

get static_pages_about_url

assert_response :success

assert_select "title", "About | Ruby on Rails Tutorial Sample App"

end

test "should get contact" do

get static_pages_contact_url

assert_response :success

assert_select "title", "Contact | Ruby on Rails Tutorial Sample App"

end

end

At this point, the tests in Listing 5.21 should be red:

272 CHAPTER 5. FILLING IN THE LAYOUT

Listing 5.22: red
$ rails test

The application code parallels the addition of the About page in Section 3.3:
first we update the routes (Listing 5.23), then we add a contact action to the
Static Pages controller (Listing 5.24), and finally we create a Contact view (List-
ing 5.25).

Listing 5.23: Adding a route for the Contact page. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get 'static_pages/home'

get 'static_pages/help'

get 'static_pages/about'

get 'static_pages/contact'

end

Listing 5.24: Adding an action for the Contact page. red
app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

.

.

.

def contact

end

end

Listing 5.25: The view for the Contact page. green
app/views/static_pages/contact.html.erb

<% provide(:title, 'Contact') %>

<h1>Contact</h1>

<p>

Contact the Ruby on Rails Tutorial about the sample app at the

contact page.

</p>

5.3. LAYOUT LINKS 273

Now make sure that the tests are green:

Listing 5.26: green
$ rails test

5.3.2 Rails routes
To add the named routes for the sample app’s static pages, we’ll edit the routes
file, config/routes.rb, that Rails uses to define URL mappings. We’ll be-
gin by reviewing the route for the Home page (defined in Section 3.4.4), which
is a special case, and then define a set of routes for the remaining static pages.

So far, we’ve seen three examples of how to define a root route, starting
with the code

root 'application#hello'

in the hello app (Listing 1.11), the code

root 'users#index'

in the toy app (Listing 2.7), and the code

root 'static_pages#home'

in the sample app (Listing 3.43). In each case, the root method arranges for
the root path / to be routed to a controller and action of our choice. Defining the
root route in this way has a second important effect, which is to create named
routes that allow us to refer to routes by a name rather than by the raw URL. In
this case, these routes are root_path and root_url, with the only difference
being that the latter includes the full URL:

274 CHAPTER 5. FILLING IN THE LAYOUT

root_path -> '/'

root_url -> 'http://www.example.com/'

In the Rails Tutorial, we’ll follow the common convention of using the _path
form except when doing redirects, where we’ll use the _url form. (This is be-
cause the HTTP standard technically requires a full URL after redirects, though
in most browsers it will work either way.)

Because the default routes used in, e.g., Listing 5.21 are rather verbose,
we’ll also take this opportunity to define shorter named routes for the Help,
About, and Contact pages. To do this, we need to make changes to the get

rules from Listing 5.23, transforming lines like

get 'static_pages/help'

to

get '/help', to: 'static_pages#help'

This new pattern routes a GET request for the URL /help to the help action in
the Static Pages controller. As with the rule for the root route, this creates two
named routes, help_path and help_url:

help_path -> '/help'

help_url -> 'http://www.example.com/help'

Applying this rule change to the remaining static page routes from Listing 5.23
gives Listing 5.27.

Listing 5.27: Routes for static pages. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

end

5.3. LAYOUT LINKS 275

Note that Listing 5.27 also removes the route for 'static_pages/home', as
we’ll always use root_path or root_url instead.

Because the tests in Listing 5.21 used the old routes, they are now red. To
get them green again, we need to update the routes as shown in Listing 5.28.
Note that we’ve taken this opportunity to update to the (optional) convention
of using the *_path form of each named route.

Listing 5.28: The static pages tests with the new named routes. green
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get root_path

assert_response :success

assert_select "title", "Ruby on Rails Tutorial Sample App"

end

test "should get help" do

get help_path

assert_response :success

assert_select "title", "Help | Ruby on Rails Tutorial Sample App"

end

test "should get about" do

get about_path

assert_response :success

assert_select "title", "About | Ruby on Rails Tutorial Sample App"

end

test "should get contact" do

get contact_path

assert_response :success

assert_select "title", "Contact | Ruby on Rails Tutorial Sample App"

end

end

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

276 CHAPTER 5. FILLING IN THE LAYOUT

1. It’s possible to use a named route other than the default using the as: op-
tion. Drawing inspiration from this famous Far Side comic strip, change
the route for the Help page to use helf (Listing 5.29).

2. Confirm that the tests are now red. Get them to green by updating the
route in Listing 5.28.

3. Revert the changes from these exercises using Undo.

Listing 5.29: Changing ‘help’ to ‘helf’.
Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help', as: 'helf'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

end

5.3.3 Using named routes
With the routes defined in Listing 5.27, we’re now in a position to use the result-
ing named routes in the site layout. This simply involves filling in the second
arguments of the link_to functions with the proper named routes. For exam-
ple, we’ll convert

<%= link_to "About", '#' %>

to

<%= link_to "About", about_path %>

and so on.
We’ll start in the header partial, _header.html.erb (Listing 5.30), which

has links to the Home and Help pages. While we’re at it, we’ll follow a common
web convention and link the logo to the Home page as well.

https://www.google.com/search?q=far+side+helf

5.3. LAYOUT LINKS 277

Listing 5.30: Header partial with links.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", root_path, id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", root_path %>

<%= link_to "Help", help_path %>

<%= link_to "Log in", '#' %>

</nav>

</div>

</header>

We won’t have a named route for the “Log in” link until Chapter 8, so we’ve
left it as '#' for now.

The other place with links is the footer partial, _footer.html.erb,
which has links for the About and Contact pages (Listing 5.31).

Listing 5.31: Footer partial with links.
app/views/layouts/_footer.html.erb

<footer class="footer">

<small>

The Ruby on Rails Tutorial

by Michael Hartl

</small>

<nav>

<%= link_to "About", about_path %>

<%= link_to "Contact", contact_path %>

News

</nav>

</footer>

With that, our layout has links to all the static pages created in Chapter 3,
so that, for example, /about goes to the About page (Figure 5.10).

278 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.10: The About page at /about.

5.3. LAYOUT LINKS 279

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Update the layout links to use the helf route from Listing 5.29.

2. Revert the changes using Undo.

5.3.4 Layout link tests
Now that we’ve filled in several of the layout links, it’s a good idea to test
them to make sure they’re working correctly. We could do this by hand with
a browser, first visiting the root path and then checking the links by hand, but
this quickly becomes cumbersome. Instead, we’ll simulate the same series of
steps using an integration test, which allows us to write an end-to-end test of
our application’s behavior. We can get started by generating a template test,
which we’ll call site_layout:

$ rails generate integration_test site_layout

invoke test_unit

create test/integration/site_layout_test.rb

Note that the Rails generator automatically appends _test to the name of the
test file.

Our plan for testing the layout links involves checking the HTML structure
of our site:

1. Get the root path (Home page).

2. Verify that the right page template is rendered.

3. Check for the correct links to the Home, Help, About, and Contact pages.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

280 CHAPTER 5. FILLING IN THE LAYOUT

Listing 5.32 shows how we can use Rails integration tests to translate these
steps into code, beginning with the assert_template method to verify that
the Home page is rendered using the correct view.18

Listing 5.32: A test for the links on the layout. green
test/integration/site_layout_test.rb

require 'test_helper'

class SiteLayoutTest < ActionDispatch::IntegrationTest

test "layout links" do

get root_path

assert_template 'static_pages/home'

assert_select "a[href=?]", root_path, count: 2

assert_select "a[href=?]", help_path

assert_select "a[href=?]", about_path

assert_select "a[href=?]", contact_path

end

end

Listing 5.32 uses some of the more advanced options of the assert_select
method, seen before in Listing 3.26 and Listing 5.21. In this case, we use a syn-
tax that allows us to test for the presence of a particular link–URL combination
by specifying the tag name a and attribute href, as in

assert_select "a[href=?]", about_path

Here Rails automatically inserts the value of about_path in place of the ques-
tion mark (escaping any special characters if necessary), thereby checking for
an HTML tag of the form

18Some developers insist that a single test shouldn’t contain multiple assertions. I find this practice to be unnec-
essarily complicated, while also incurring an extra overhead if there are common setup tasks needed before each
test. In addition, a well-written test tells a coherent story, and breaking it up into individual pieces disrupts the
narrative. I thus have a strong preference for including multiple assertions in a test, relying on Ruby (via minitest)
to tell me the exact lines of any failed assertions.

5.3. LAYOUT LINKS 281

Code Matching HTML
assert_select "div" <div>foobar</div>

assert_select "div", "foobar" <div>foobar</div>

assert_select "div.nav" <div class="nav">foobar</div>

assert_select "div#profile" <div id="profile">foobar</div>

assert_select "div[name=yo]" <div name="yo">hey</div>

assert_select "a[href=?]", '/', count: 1 foo

assert_select "a[href=?]", '/', text: "foo" foo

Table 5.2: Some uses of assert_select.

...

Note that the assertion for the root path verifies that there are two such links
(one each for the logo and navigation menu element):

assert_select "a[href=?]", root_path, count: 2

This ensures that both links to the Home page defined in Listing 5.30 are present.
Some more uses of assert_select appear in Table 5.2. While assert_-

select is flexible and powerful (having many more options than the ones
shown here), experience shows that it’s wise to take a lightweight approach
by testing only HTML elements (such as site layout links) that are unlikely to
change much over time.

To check that the new test in Listing 5.32 passes, we can run just the inte-
gration tests using the following Rake task:

Listing 5.33: green
$ rails test:integration

If all went well, you should run the full test suite to verify that all the tests are
green:

282 CHAPTER 5. FILLING IN THE LAYOUT

Listing 5.34: green
$ rails test

With the added integration test for layout links, we are now in a good position
to catch regressions quickly using our test suite.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In the footer partial, change about_path to contact_path and verify
that the tests catch the error.

2. It’s convenient to use the full_title helper in the tests by including
the Application helper into the test helper, as shown in Listing 5.35. We
can then test for the right title using code like Listing 5.36. This is brit-
tle, though, because now any typo in the base title (such as “Ruby on
Rails Tutoial”) won’t be caught by the test suite. Fix this problem by
writing a direct test of the full_title helper, which involves creating
a file to test the application helper and then filling in the code indicated
with FILL_IN in Listing 5.37. (Listing 5.37 uses assert_equal <ex-
pected>, <actual>, which verifies that the expected result
matches the actual value when compared with the == operator.)

Listing 5.35: Including the Application helper in tests.
test/test_helper.rb

ENV['RAILS_ENV'] ||= 'test'

.

.

.

class ActiveSupport::TestCase

fixtures :all

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

5.4. USER SIGNUP: A FIRST STEP 283

include ApplicationHelper

.

.

.

end

Listing 5.36: Using the full_title helper in a test. green
test/integration/site_layout_test.rb

require 'test_helper'

class SiteLayoutTest < ActionDispatch::IntegrationTest

test "layout links" do

get root_path

assert_template 'static_pages/home'

assert_select "a[href=?]", root_path, count: 2

assert_select "a[href=?]", help_path

assert_select "a[href=?]", about_path

assert_select "a[href=?]", contact_path

get contact_path

assert_select "title", full_title("Contact")

end

end

Listing 5.37: A direct test of the full_title helper.
test/helpers/application_helper_test.rb

require 'test_helper'

class ApplicationHelperTest < ActionView::TestCase

test "full title helper" do

assert_equal full_title, FILL_IN

assert_equal full_title("Help"), FILL_IN

end

end

5.4 User signup: A first step
As a capstone to our work on the layout and routing, in this section we’ll make
a route for the signup page, which will mean creating a second controller along

284 CHAPTER 5. FILLING IN THE LAYOUT

the way. This is a first important step toward allowing users to register for our
site; we’ll take the next step, modeling users, in Chapter 6, and we’ll finish the
job in Chapter 7.

5.4.1 Users controller
We created our first controller, the Static Pages controller, in Section 3.2. It’s
time to create a second one, the Users controller. As before, we’ll use gener-
ate to make the simplest controller that meets our present needs, namely, one
with a stub signup page for new users. Following the conventional REST archi-
tecture favored by Rails, we’ll call the action for new users new, which we can
arrange to create automatically by passing new as an argument to generate.
The result is shown in Listing 5.38.

Listing 5.38: Generating a Users controller (with a new action).
$ rails generate controller Users new

create app/controllers/users_controller.rb

route get 'users/new'

invoke erb

create app/views/users

create app/views/users/new.html.erb

invoke test_unit

create test/controllers/users_controller_test.rb

invoke helper

create app/helpers/users_helper.rb

invoke test_unit

invoke assets

invoke scss

create app/assets/stylesheets/users.scss

As required, Listing 5.38 creates a Users controller with a new action (List-
ing 5.39) and a stub user view (Listing 5.40). It also creates a minimal test for
the new user page (Listing 5.41).

Listing 5.39: The initial Users controller, with a new action.
app/controllers/users_controller.rb

https://en.wikipedia.org/wiki/Representational_State_Transfer
https://en.wikipedia.org/wiki/Representational_State_Transfer

5.4. USER SIGNUP: A FIRST STEP 285

class UsersController < ApplicationController

def new

end

end

Listing 5.40: The initial new view for Users.
app/views/users/new.html.erb

<h1>Users#new</h1>

<p>Find me in app/views/users/new.html.erb</p>

Listing 5.41: The generated test for the new user page. green
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

test "should get new" do

get users_new_url

assert_response :success

end

end

At this point, the tests should be green:

Listing 5.42: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

286 CHAPTER 5. FILLING IN THE LAYOUT

1. Per Table 5.1, change the route in Listing 5.41 to use signup_path in-
stead of users_new_url.

2. The route in the previous exercise doesn’t yet exist, so confirm that the
tests are now red. (This is intended to help us get comfortable with the
red/green flow of Test Driven Development (TDD, Box 3.3); we’ll get
the tests back to green in Section 5.4.2.)

5.4.2 Signup URL
With the code from Section 5.4.1, we already have a working page for new users
at /users/new, but recall from Table 5.1 that we want the URL to be /signup in-
stead. We’ll follow the examples from Listing 5.27 and add a get '/signup'
rule for the signup URL, as shown in Listing 5.43.

Listing 5.43: A route for the signup page. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

end

With the routes in Listing 5.43, we also need to update the test generated in
Listing 5.38 with the new signup route, as shown in Listing 5.44.

Listing 5.44: Updating the Users controller test to use the signup route. green
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

test "should get new" do

get signup_path

assert_response :success

end

end

5.4. USER SIGNUP: A FIRST STEP 287

Next, we’ll use the newly defined named route to add the proper link to the
button on the Home page. As with the other routes, get 'signup' automat-
ically gives us the named route signup_path, which we put to use in List-
ing 5.45. Adding a test for the signup page is left as an exercise (Section 5.3.2.)

Listing 5.45: Linking the button to the signup page.
app/views/static_pages/home.html.erb

<div class="center jumbotron">

<h1>Welcome to the Sample App</h1>

<h2>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</h2>

<%= link_to "Sign up now!", signup_path, class: "btn btn-lg btn-primary" %>

</div>

<%= link_to image_tag("rails.svg", alt: "Rails logo", width: "200"),

"https://rubyonrails.org/" %>

Finally, we’ll add a custom stub view for the signup page (Listing 5.46).

Listing 5.46: The initial (stub) signup page.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

<p>This will be a signup page for new users.</p>

With that, we’re done with the links and named routes, at least until we add
a route for logging in (Chapter 8). The resulting new user page (at the URL
/signup) appears in Figure 5.11.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

288 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.11: The new signup page at /signup.

5.5. CONCLUSION 289

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. If you didn’t solve the exercise in Section 5.4.1, change the test in List-
ing 5.41 to use the named route signup_path. Because of the route
defined in Listing 5.43, this test should initially be green.

2. In order to verify the correctness of the test in the previous exercise, com-
ment out the signup route to get to red, then uncomment to get to green.

3. In the integration test from Listing 5.32, add code to visit the signup page
using the get method and verify that the resulting page title is correct.
Hint: Use the full_title helper as in Listing 5.36.

5.5 Conclusion
In this chapter, we’ve hammered our application layout into shape and polished
up the routes. The rest of the book is dedicated to fleshing out the sample ap-
plication: first, by adding users who can sign up, log in, and log out; next, by
adding user microposts; and, finally, by adding the ability to follow other users.

At this point, if you are using Git, you should merge your changes back into
the master branch:

$ git add -A

$ git commit -m "Finish layout and routes"

$ git checkout master

$ git merge filling-in-layout

Then push up to GitHub (running the test suite first for safety):

$ rails test

$ git push

Finally, deploy to Heroku:

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

290 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.12: The sample application in production.

$ git push heroku

The result of the deployment should be a working sample application on the
production server (Figure 5.12).

5.5.1 What we learned in this chapter
• Using HTML5, we can define a site layout with logo, header, footer, and

main body content.

5.5. CONCLUSION 291

• Rails partials are used to place markup in a separate file for convenience.

• CSS allows us to style the site layout based on CSS classes and ids.

• The Bootstrap framework makes it easy to make a nicely designed site
quickly.

• Sass and the asset pipeline allow us to eliminate duplication in our CSS
while packaging up the results efficiently for production.

• Rails allows us to define custom routing rules, thereby providing named
routes.

• Integration tests effectively simulate a browser clicking from page to
page.

