
6.3. ADDING A SECURE PASSWORD 339

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

end

6.3 Adding a secure password
Now that we’ve defined validations for the name and email fields, we’re ready
to add the last of the basic User attributes: a secure password. The method is to
require each user to have a password (with a password confirmation), and then
store a hashed version of the password in the database. (There is some potential
for confusion here. In the present context, a hash refers not to the Ruby data
structure from Section 4.3.3 but rather to the result of applying an irreversible
hash function to input data.) We’ll also add a way to authenticate a user based
on a given password, a method we’ll use in Chapter 8 to allow users to log in
to the site.

The method for authenticating users will be to take a submitted password,
hash it, and compare the result to the hashed value stored in the database. If
the two match, then the submitted password is correct and the user is authenti-
cated. By comparing hashed values instead of raw passwords, we will be able to
authenticate users without storing the passwords themselves. This means that,
even if our database is compromised, our users’ passwords will still be secure.

6.3.1 A hashed password
Most of the secure password machinery will be implemented using a single
Rails method called has_secure_password, which we’ll include in the User
model as follows:

class User < ApplicationRecord

.

.

.

has_secure_password

end

https://en.wikipedia.org/wiki/Hash_function

340 CHAPTER 6. MODELING USERS

When included in a model as above, this one method adds the following func-
tionality:

• The ability to save a securely hashed password_digest attribute to the
database

• A pair of virtual attributes19 (password and password_confirma-

tion), including presence validations upon object creation and a vali-
dation requiring that they match

• An authenticate method that returns the user when the password is
correct (and false otherwise)

The only requirement for has_secure_password to work its magic is for
the corresponding model to have an attribute called password_digest. (The
name digest comes from the terminology of cryptographic hash functions. In
this context, hashed password and password digest are synonyms.)20 In the
case of the User model, this leads to the data model shown in Figure 6.9.

To implement the data model in Figure 6.9 , we first generate an appropriate
migration for the password_digest column. We can choose any migration
name we want, but it’s convenient to end the name with to_users, since in this
case Rails automatically constructs a migration to add columns to the users

table. The result, with migration name add_password_digest_to_users,
appears as follows:

$ rails generate migration add_password_digest_to_users password_digest:string

19In this context, virtual means that the attributes exist on the model object but do not correspond to columns
in the database.

20Hashed password digests are often erroneously referred to as encrypted passwords. For example, the source
code of has_secure_passwordmakes this mistake, as did the first two editions of this tutorial. This terminology
is wrong because by design encryption is reversible—the ability to encrypt implies the ability to decrypt as well. In
contrast, the whole point of calculating a password’s hash digest is to be irreversible, so that it is computationally
intractable to infer the original password from the digest. (Thanks to reader Andy Philips for pointing out this
issue and for encouraging me to fix the broken terminology.)

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb
https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb

6.3. ADDING A SECURE PASSWORD 341

password_digest string
updated_at datetime
created_at datetime
email string

id
name string

integer
users

Figure 6.9: The User data model with an added password_digest attribute.

Here we’ve also supplied the argument password_digest:string with the
name and type of attribute we want to create. (Compare this to the original gen-
eration of the users table in Listing 6.1, which included the arguments name:-
string and email:string.) By including password_digest:string,
we’ve given Rails enough information to construct the entire migration for us,
as seen in Listing 6.36.

Listing 6.36: The migration to add a password_digest column.
db/migrate/[timestamp]_add_password_digest_to_users.rb

class AddPasswordDigestToUsers < ActiveRecord::Migration[6.0]

def change

add_column :users, :password_digest, :string

end

end

Listing 6.36 uses the add_column method to add a password_digest col-
umn to the users table. To apply it, we just migrate the database:

$ rails db:migrate

342 CHAPTER 6. MODELING USERS

To make the password digest, has_secure_password uses a state-of-the-
art hash function called bcrypt. By hashing the password with bcrypt, we ensure
that an attacker won’t be able to log in to the site even if they manage to obtain
a copy of the database. To use bcrypt in the sample application, we need to add
the bcrypt gem to our Gemfile (Listing 6.37).21

Listing 6.37: Adding bcrypt to the Gemfile.
source 'https://rubygems.org'

gem 'rails', '6.0.1'

gem 'bcrypt', '3.1.13'

gem 'bootstrap-sass', '3.4.1'

.

.

.

Then run bundle install as usual:

$ bundle install

6.3.2 User has secure password
Now that we’ve supplied the User model with the required password_digest
attribute and installed bcrypt, we’re ready to add has_secure_password to
the User model, as shown in Listing 6.38.

Listing 6.38: Adding has_secure_password to the User model. red
app/models/user.rb

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

21As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://en.wikipedia.org/wiki/Bcrypt
https://gemfiles-6th-ed.railstutorial.org/

6.3. ADDING A SECURE PASSWORD 343

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

end

As indicated by the red indicator in Listing 6.38, the tests are now failing,
as you can confirm at the command line:

Listing 6.39: red
$ rails test

The reason is that, as noted in Section 6.3.1, has_secure_password en-
forces validations on the virtual password and password_confirmation

attributes, but the tests in Listing 6.26 create an @user variable without these
attributes:

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

So, to get the test suite passing again, we just need to add a password and its
confirmation, as shown in Listing 6.40.

Listing 6.40: Adding a password and its confirmation. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

end

344 CHAPTER 6. MODELING USERS

Note that the first line inside the setupmethod includes an additional comma at
the end, as required by Ruby’s hash syntax (Section 4.3.3). Leaving this comma
off will produce a syntax error, and you should use your technical sophistication
(Box 1.2) to identify and resolve such errors if (or, more realistically, when) they
occur.

At this point the tests should be green:

Listing 6.41: green
$ rails test

We’ll see in just a moment the benefits of adding has_secure_password to
the User model (Section 6.3.4), but first we’ll add a minimal requirement on
password security.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that a user with valid name and email still isn’t valid overall.

2. What are the error messages for a user with no password?

6.3.3 Minimum password standards
It’s good practice in general to enforce some minimum standards on passwords
to make them harder to guess. There are many options for enforcing password
strength in Rails, but for simplicity we’ll just enforce a minimum length and
the requirement that the password not be blank. Picking a length of 6 as a
reasonable minimum leads to the validation test shown in Listing 6.42.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.google.com/search?q=rails+enforce+password+strength
https://www.google.com/search?q=rails+enforce+password+strength

6.3. ADDING A SECURE PASSWORD 345

Listing 6.42: Testing for a minimum password length. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

test "password should be present (nonblank)" do

@user.password = @user.password_confirmation = " " * 6

assert_not @user.valid?

end

test "password should have a minimum length" do

@user.password = @user.password_confirmation = "a" * 5

assert_not @user.valid?

end

end

Note the use of the compact multiple assignment

@user.password = @user.password_confirmation = "a" * 5

in Listing 6.42. This arranges to assign a particular value to the password and
its confirmation at the same time (in this case, a string of length 5, constructed
using string multiplication as in Listing 6.14).

You may be able to guess the code for enforcing a minimum length con-
straint by referring to the corresponding maximum validation for the user’s name
(Listing 6.16):

validates :password, length: { minimum: 6 }

Combining this with a presence validation (Section 6.2.2) to ensure nonblank
passwords, this leads to the User model shown in Listing 6.43. (It turns out the

346 CHAPTER 6. MODELING USERS

has_secure_password method includes a presence validation, but unfortu-
nately it applies only to records with empty passwords, which allows users to
create invalid passwords like ' ' (six spaces).)

Listing 6.43: The complete implementation for secure passwords. green
app/models/user.rb

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

end

At this point, the tests should be green:

Listing 6.44: green
$ rails test:models

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that a user with valid name and email but a too-short password
isn’t valid.

2. What are the associated error messages?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.3. ADDING A SECURE PASSWORD 347

6.3.4 Creating and authenticating a user
Now that the basic User model is complete, we’ll create a user in the database
as preparation for making a page to show the user’s information in Section 7.1.
We’ll also take a more concrete look at the effects of adding has_secure_-

password to the User model, including an examination of the important au-
thenticate method.

Since users can’t yet sign up for the sample application through the web—
that’s the goal of Chapter 7—we’ll use the Rails console to create a new user
by hand. For convenience, we’ll use the create method discussed in Sec-
tion 6.1.3, but in the present case we’ll take care not to start in a sandbox so that
the resulting user will be saved to the database. This means starting an ordinary
rails console session and then creating a user with a valid name and email
address together with a valid password and matching confirmation:

$ rails console

>> User.create(name: "Michael Hartl", email: "michael@example.com",

?> password: "foobar", password_confirmation: "foobar")

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 03:15:38", updated_at: "2019-08-22 03:15:38",

password_digest: [FILTERED]>

To check that this worked, let’s look at the resulting users table in the devel-
opment database using DB Browser for SQLite, as shown in Figure 6.10.22 (If
you’re using the cloud IDE, you should download the database file as in Fig-
ure 6.5.) Note that the columns correspond to the attributes of the data model
defined in Figure 6.9.

Returning to the console, we can see the effect of has_secure_password
from Listing 6.43 by looking at the password_digest attribute:

22If for any reason something went wrong, you can always reset the database as follows:
1. Quit the console.
2. Run $ rm -f development.sqlite3 at the command line to remove the database. (We’ll learn a

more elegant method for doing this in Chapter 7.)
3. Re-run the migrations using $ rails db:migrate.
4. Restart the console.

348 CHAPTER 6. MODELING USERS

Figure 6.10: A user row in the SQLite database db/development.sqlite3.

6.3. ADDING A SECURE PASSWORD 349

>> user = User.find_by(email: "michael@example.com")

>> user.password_digest

=> "$2a$12$WgjER5ovLFjC2hmCItmbTe6nAXzT3bO66GiAQ83Ev03eVp32zyNYG"

This is the hashed version of the password ("foobar") used to initialize the
user object. Because it’s constructed using bcrypt, it is computationally im-
practical to use the digest to discover the original password.23

As noted in Section 6.3.1, has_secure_password automatically adds an
authenticate method to the corresponding model objects. This method de-
termines if a given password is valid for a particular user by computing its digest
and comparing the result to password_digest in the database. In the case of
the user we just created, we can try a couple of invalid passwords as follows:

>> user.authenticate("not_the_right_password")

false

>> user.authenticate("foobaz")

false

Here user.authenticate returns false for invalid password. If we instead
authenticate with the correct password, authenticate returns the user itself:

>> user.authenticate("foobar")

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 03:15:38", updated_at: "2019-08-22 03:15:38",

password_digest: [FILTERED]>

In Chapter 8, we’ll use the authenticate method to sign registered users into
our site. In fact, it will turn out not to be important to us that authenticate
returns the user itself; all that will matter is that it returns a value that is true
in a boolean context. Recalling from Section 4.2.2 that !! converts an object to
its corresponding boolean value, we can see that user.authenticate does
the job nicely:

23By design, the bcrypt algorithm produces a salted hash, which protects against two important classes of attacks
(dictionary attacks and rainbow table attacks).

https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Dictionary_attack
https://en.wikipedia.org/wiki/Rainbow_table

350 CHAPTER 6. MODELING USERS

>> !!user.authenticate("foobar")

=> true

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Quit and restart the console, and then find the user created in this section.

2. Try changing the name by assigning a new name and calling save. Why
didn’t it work?

3. Update user’s name to use your name. Hint: The necessary technique
is covered in Section 6.1.5.

6.4 Conclusion
Starting from scratch, in this chapter we created a working User model with
name, email, and password attributes, together with validations enforcing sev-
eral important constraints on their values. In addition, we have the ability to se-
curely authenticate users using a given password. This is a remarkable amount
of functionality for only twelve lines of code.

In Chapter 7, we’ll make a working signup form to create new users, to-
gether with a page to display each user’s information. In Chapter 8, we’ll then
use the authentication machinery from Section 6.3 to let users log into the site.

If you’re using Git, now would be a good time to commit if you haven’t
done so in a while:

$ rails test

$ git add -A

$ git commit -m "Make a basic User model (including secure passwords)"

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

