
294 CHAPTER 6. MODELING USERS

Nevertheless, I believe it is a mistake to use a pre-built system like Devise in a
tutorial like this one. Off-the-shelf systems can be “black boxes” with potentially
mysterious innards, and the complicated data models used by such systems would
be utterly overwhelming for beginners (or even for experienced developers not
familiar with data modeling). For learning purposes, it’s essential to introduce the
subject more gradually.

Happily, Rails makes it possible to take such a gradual approach while still
developing an industrial-strength login and authentication system suitable for pro-
duction applications. This way, even if you do end up using a third-party system
later on, you’ll be in a much better position to understand and modify it to meet
your particular needs.

6.1 User model
Although the ultimate goal of the next three chapters is to make a signup page
for our site (as mocked up in Figure 6.1), it would do little good now to accept
information for new users: we don’t currently have any place to put it. Thus,
the first step in signing up users is to make a data structure to capture and store
their information.

In Rails, the default data structure for a data model is called, naturally
enough, a model (the M in MVC from Section 1.2.3). The default Rails solution
to the problem of persistence is to use a database for long-term data storage,
and the default library for interacting with the database is called Active Record.1
Active Record comes with a host of methods for creating, saving, and finding
data objects, all without having to use the structured query language (SQL)2

used by relational databases. Moreover, Rails has a feature called migrations
1The name comes from the “active record pattern”, identified and named in Patterns of Enterprise Application

Architecture by Martin Fowler.
2Officially pronounced “ess-cue-ell”, though the alternate pronunciation “sequel” is also common. You can

differentiate an individual author’s preference by the choice of indefinite article: those who write “a SQL database”
prefer “sequel”, whereas those who write “an SQL database” prefer “ess-cue-ell”. As you’ll soon see, I prefer the
latter.

https://en.wikipedia.org/wiki/Black_box
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Active_record_pattern


6.1. USER MODEL 295

Figure 6.1: A mockup of the user signup page.



296 CHAPTER 6. MODELING USERS

to allow data definitions to be written in pure Ruby, without having to learn
an SQL data definition language (DDL). The effect is that Rails insulates you
almost entirely from the details of the database. In this book, by using SQLite
for development and PostgreSQL (via Heroku) for deployment (Section 1.4),
we have developed this theme even further, to the point where we barely ever
have to think about how Rails stores data, even for production applications.

As usual, if you’re following along using Git for version control, now would
be a good time to make a topic branch for modeling users:

$ git checkout -b modeling-users

6.1.1 Database migrations
You may recall from Section 4.4.5 that we have already encountered, via a
custom-built User class, user objects with name and email attributes. That
class served as a useful example, but it lacked the critical property of persis-
tence: when we created a User object at the Rails console, it disappeared as
soon as we exited. Our goal in this section is to create a model for users that
won’t disappear quite so easily.

As with the User class in Section 4.4.5, we’ll start by modeling a user with
two attributes, a name and an email address, the latter of which we’ll use as
a unique username.3 (We’ll add an attribute for passwords in Section 6.3.) In
Listing 4.17, we did this with Ruby’s attr_accessor method:

class User

attr_accessor :name, :email

.

.

.

end

In contrast, when using Rails to model users we don’t need to identify the
attributes explicitly. As noted briefly above, to store data Rails uses a relational

3By using an email address as the username, we open the possibility of communicating with our users at a
future date (Chapter 11 and Chapter 12).



6.1. USER MODEL 297

users

Mallory Archer4
Lana Kane3
Sterling Archer2

id
1 Michael Hartl

name email
mhartl@example.com
archer@example.gov
lana@example.gov
boss@example.gov

Figure 6.2: A diagram of sample data in a users table.

email string

id
name string

integer
users

Figure 6.3: A sketch of the User data model.

database by default, which consists of tables composed of data rows, where each
row has columns of data attributes. For example, to store users with names and
email addresses, we’ll create a users table with name and email columns
(with each row corresponding to one user). An example of such a table appears
in Figure 6.2, corresponding to the data model shown in Figure 6.3. (Figure 6.3
is just a sketch; the full data model appears in Figure 6.4.) By naming the
columns name and email, we’ll let Active Record figure out the User object
attributes for us.

You may recall from Listing 5.38 that we created a Users controller (along
with a new action) using the command



298 CHAPTER 6. MODELING USERS

$ rails generate controller Users new

The analogous command for making a model is generate model, which we
can use to generate a User model with name and email attributes, as shown in
Listing 6.1.

Listing 6.1: Generating a User model.
$ rails generate model User name:string email:string

invoke active_record

create db/migrate/<timestamp>_create_users.rb

create app/models/user.rb

invoke test_unit

create test/models/user_test.rb

create test/fixtures/users.yml

(Note that, in contrast to the plural convention for controller names, model
names are singular: a Users controller, but a User model.) By passing the op-
tional parameters name:string and email:string, we tell Rails about the
two attributes we want, along with which types those attributes should be (in
this case, string). Compare this with including the action names in Listing 3.7
and Listing 5.38.

One of the results of the generate command in Listing 6.1 is a new file
called a migration. Migrations provide a way to alter the structure of the data-
base incrementally, so that our data model can adapt to changing requirements.
In the case of the User model, the migration is created automatically by the
model generation script; it creates a users table with two columns, name and
email, as shown in Listing 6.2. (We’ll see starting in Section 6.2.5 how to
make a migration from scratch.)

Listing 6.2: Migration for the User model (to create a users table).
db/migrate/[timestamp]_create_users.rb

class CreateUsers < ActiveRecord::Migration[6.0]

def change

create_table :users do |t|



6.1. USER MODEL 299

t.string :name

t.string :email

t.timestamps

end

end

end

Note that the name of the migration file is prefixed by a timestamp based on
when the migration was generated. In the early days of migrations, the file-
names were prefixed with incrementing integers, which caused conflicts for col-
laborating teams if multiple programmers had migrations with the same num-
ber. Barring the improbable scenario of migrations generated the same second,
using timestamps conveniently avoids such collisions.

The migration itself consists of a change method that determines the
change to be made to the database. In the case of Listing 6.2, change uses
a Rails method called create_table to create a table in the database for stor-
ing users. The create_table method accepts a block (Section 4.3.2) with
one block variable, in this case called t (for “table”). Inside the block, the
create_table method uses the t object to create name and email columns
in the database, both of type string.4 Here the table name is plural (users)
even though the model name is singular (User), which reflects a linguistic con-
vention followed by Rails: a model represents a single user, whereas a database
table consists of many users. The final line in the block, t.timestamps, is a
special command that creates two magic columns called created_at and up-
dated_at, which are timestamps that automatically record when a given user
is created and updated. (We’ll see concrete examples of the magic columns
starting in Section 6.1.3.) The full data model represented by the migration in
Listing 6.2 is shown in Figure 6.4. (Note the addition of the magic columns,
which weren’t present in the sketch shown in Figure 6.3.)

We can run the migration, known as “migrating up”, using the db:migrate
command as follows:

4Don’t worry about exactly how the t object manages to do this; the beauty of abstraction layers is that we
don’t have to know. We can just trust the t object to do its job.



300 CHAPTER 6. MODELING USERS

updated_at datetime
datetimecreated_at

email string

id
name string

integer
users

Figure 6.4: The User data model produced by Listing 6.2.

$ rails db:migrate

(You may recall that we ran this command in a similar context in Section 2.2.)
The first time db:migrate is run, it creates a file called db/development.-
sqlite3, which is an SQLite5 database. We can see the structure of the data-
base by opening development.sqlite3 with DB Browser for SQLite. (If
you’re using the cloud IDE, you should first download the database file to the
local disk, as shown in Figure 6.5.) The result appears in Figure 6.6; compare
with the diagram in Figure 6.4. You might note that there’s one column in
Figure 6.6 not accounted for in the migration: the id column. As noted briefly
in Section 2.2, this column is created automatically, and is used by Rails to
identify each row uniquely.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.
5Officially pronounced “ess-cue-ell-ite”, although the (mis)pronunciation “sequel-ite” is also common.

https://sqlite.org/
https://sqlitebrowser.org/
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


6.1. USER MODEL 301

Figure 6.5: Downloading a file from the cloud IDE.



302 CHAPTER 6. MODELING USERS

Figure 6.6: DB Browser with our new users table.



6.1. USER MODEL 303

1. Rails uses a file called schema.rb in the db/ directory to keep track
of the structure of the database (called the schema, hence the filename).
Examine your local copy of db/schema.rb and compare its contents to
the migration code in Listing 6.2.

2. Most migrations (including all the ones in this tutorial) are reversible,
which means we can “migrate down” and undo them with a single com-
mand, called db:rollback:

$ rails db:rollback

After running this command, examine db/schema.rb to confirm that
the rollback was successful. (See Box 3.1 for another technique useful
for reversing migrations.) Under the hood, this command executes the
drop_table command to remove the users table from the database. The
reason this works is that the change method knows that drop_table is
the inverse of create_table, which means that the rollback migration
can be easily inferred. In the case of an irreversible migration, such as
one to remove a database column, it is necessary to define separate up

and down methods in place of the single change method. Read about
migrations in the Rails Guides for more information.

3. Re-run the migration by executing rails db:migrate again. Confirm
that the contents of db/schema.rb have been restored.

6.1.2 The model file
We’ve seen how the User model generation in Listing 6.1 generated a migration
file (Listing 6.2), and we saw in Figure 6.6 the results of running this migration:
it updated a file called development.sqlite3 by creating a table userswith
columns id, name, email, created_at, and updated_at. Listing 6.1 also
created the model itself. The rest of this section is dedicated to understanding
it.

https://guides.rubyonrails.org/migrations.html


304 CHAPTER 6. MODELING USERS

We begin by looking at the code for the User model, which lives in the
file user.rb inside the app/models/ directory. It is, to put it mildly, very
compact (Listing 6.3).

Listing 6.3: The brand new User model.
app/models/user.rb

class User < ApplicationRecord

end

Recall from Section 4.4.2 that the syntax class User < Application-
Record means that the User class inherits from the ApplicationRecord

class, which in turn inherits from ActiveRecord::Base (Figure 2.19), so
that the User model automatically has all the functionality of the ActiveRe-
cord::Base class. Of course, this knowledge doesn’t do us any good unless
we know what ActiveRecord::Base contains, so let’s get started with some
concrete examples.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In a Rails console, use the technique from Section 4.4.4 to confirm that
User.new is of class User and inherits from ApplicationRecord.

2. Confirm that ApplicationRecord inherits from ActiveRecord::-

Base.

6.1.3 Creating user objects
As in Chapter 4, our tool of choice for exploring data models is the Rails con-
sole. Since we don’t (yet) want to make any changes to our database, we’ll start
the console in a sandbox:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


6.1. USER MODEL 305

$ rails console --sandbox

Loading development environment in sandbox

Any modifications you make will be rolled back on exit

>>

As indicated by the helpful message “Any modifications you make will be rolled
back on exit”, when started in a sandbox the console will “roll back” (i.e., undo)
any database changes introduced during the session.

In the console session in Section 4.4.5, we created a new user object with
User.new, which we had access to only after requiring the example user file in
Listing 4.17. With models, the situation is different; as you may recall from Sec-
tion 4.4.4, the Rails console automatically loads the Rails environment, which
includes the models. This means that we can make a new user object without
any further work:

>> User.new

=> #<User id: nil, name: nil, email: nil, created_at: nil, updated_at: nil>

We see here the default console representation of a user object.
When called with no arguments, User.new returns an object with all nil

attributes. In Section 4.4.5, we designed the example User class to take an
initialization hash to set the object attributes; that design choice was motivated
by Active Record, which allows objects to be initialized in the same way:

>> user = User.new(name: "Michael Hartl", email: "michael@example.com")

=> #<User id: nil, name: "Michael Hartl", email: "michael@example.com",

created_at: nil, updated_at: nil>

Here we see that the name and email attributes have been set as expected.
The notion of validity is important for understanding Active Record model

objects. We’ll explore this subject in more depth in Section 6.2, but for now
it’s worth noting that our initial user object is valid, which we can verify by
calling the boolean valid? method on it:



306 CHAPTER 6. MODELING USERS

>> user.valid?

true

So far, we haven’t touched the database: User.new only creates an object
in memory, while user.valid? merely checks to see if the object is valid. In
order to save the User object to the database, we need to call the save method
on the user variable:

>> user.save

(0.1ms) SAVEPOINT active_record_1

SQL (0.8ms) INSERT INTO "users" ("name", "email", "created_at",

"updated_at") VALUES (?, ?, ?, ?) [["name", "Michael Hartl"],

["email", "michael@example.com"], ["created_at", "2019-08-22 01:51:03.453035"],

["updated_at", "2019-08-22 01:51:03.453035"]]

(0.1ms) RELEASE SAVEPOINT active_record_1

=> true

The save method returns true if it succeeds and false otherwise. (Cur-
rently, all saves should succeed because there are as yet no validations; we’ll
see cases in Section 6.2 when some will fail.) For reference, the Rails console
also shows the SQL command corresponding to user.save (namely, INSERT
INTO "users"…). We’ll hardly ever need raw SQL in this book,6 and I’ll
omit discussion of the SQL commands from now on, but you can learn a lot by
reading the SQL corresponding to Active Record commands.

You may have noticed that the new user object had nil values for the id
and the magic columns created_at and updated_at attributes. Let’s see if
our save changed anything:

>> user

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

We see that the id has been assigned a value of 1, while the magic columns have
6The only exception is in Section 14.3.3.



6.1. USER MODEL 307

been assigned the current time and date.7 Currently, the created and updated
timestamps are identical; we’ll see them differ in Section 6.1.5.

As with the User class in Section 4.4.5, instances of the User model allow
access to their attributes using a dot notation:

>> user.name

=> "Michael Hartl"

>> user.email

=> "michael@example.com"

>> user.updated_at

=> Thu, 22 Aug 2019 01:51:03 UTC +00:00

As we’ll see in Chapter 7, it’s often convenient to make and save a model
in two steps as we have above, but Active Record also lets you combine them
into one step with User.create:

>> User.create(name: "A Nother", email: "another@example.org")

#<User id: 2, name: "A Nother", email: "another@example.org", created_at:

"2019-08-22 01:53:22", updated_at: "2019-08-22 01:53:22">

>> foo = User.create(name: "Foo", email: "foo@bar.com")

#<User id: 3, name: "Foo", email: "foo@bar.com", created_at: "2019-08-22

01:54:03", updated_at: "2019-08-22 01:54:03">

Note that User.create, rather than returning true or false, returns the User
object itself, which we can optionally assign to a variable (such as foo in the
second command above).

The inverse of create is destroy:

>> foo.destroy

(0.1ms) SAVEPOINT active_record_1

SQL (0.2ms) DELETE FROM "users" WHERE "users"."id" = ? [["id", 3]]

7The timestamps are recorded in Coordinated Universal Time (UTC), which for most practical purposes is the
same as Greenwich Mean Time. But why call it UTC? From the NIST Time and Frequency FAQ: Q: Why is UTC
used as the acronym for Coordinated Universal Time instead of CUT? A: In 1970 the Coordinated Universal Time
system was devised by an international advisory group of technical experts within the International Telecommu-
nication Union (ITU). The ITU felt it was best to designate a single abbreviation for use in all languages in order
to minimize confusion. Since unanimous agreement could not be achieved on using either the English word order,
CUT, or the French word order, TUC, the acronym UTC was chosen as a compromise.

https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Greenwich_Mean_Time
https://www.nist.gov/pml/time-and-frequency-division/nist-time-frequently-asked-questions-faq#cut


308 CHAPTER 6. MODELING USERS

(0.1ms) RELEASE SAVEPOINT active_record_1

=> #<User id: 3, name: "Foo", email: "foo@bar.com", created_at: "2019-08-22

01:54:03", updated_at: "2019-08-22 01:54:03">

Like create, destroy returns the object in question, though I can’t recall ever
having used the return value of destroy. In addition, the destroyed object still
exists in memory:

>> foo

=> #<User id: 3, name: "Foo", email: "foo@bar.com", created_at: "2019-08-22

01:54:03", updated_at: "2019-08-22 01:54:03">

So how do we know if we really destroyed an object? And for saved and non-
destroyed objects, how can we retrieve users from the database? To answer
these questions, we need to learn how to use Active Record to find user objects.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that user.name and user.email are of class String.

2. Of what class are the created_at and updated_at attributes?

6.1.4 Finding user objects
Active Record provides several options for finding objects. Let’s use them to
find the first user we created while verifying that the third user (foo) has been
destroyed. We’ll start with the existing user:

>> User.find(1)

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


6.1. USER MODEL 309

Here we’ve passed the id of the user to User.find; Active Record returns the
user with that id.

Let’s see if the user with an id of 3 still exists in the database:

>> User.find(3)

ActiveRecord::RecordNotFound: Couldn't find User with ID=3

Since we destroyed our third user in Section 6.1.3, Active Record can’t find it in
the database. Instead, find raises an exception, which is a way of indicating an
exceptional event in the execution of a program—in this case, a nonexistent Ac-
tive Record id, leading find to raise an ActiveRecord::RecordNotFound
exception.8

In addition to the generic find, Active Record also allows us to find users
by specific attributes:

>> User.find_by(email: "michael@example.com")

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

Since we will be using email addresses as usernames, this sort of find will be
useful when we learn how to let users log in to our site (Chapter 7). If you’re
worried that find_by will be inefficient if there are a large number of users,
you’re ahead of the game; we’ll cover this issue, and its solution via database
indices, in Section 6.2.5.

We’ll end with a couple of more general ways of finding users. First, there’s
first:

>> User.first

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

Naturally, first just returns the first user in the database. There’s also all:
8Exceptions and exception handling are somewhat advanced Ruby subjects, and we won’t need them much in

this book. They are important, though, and I suggest learning about them using one of the Ruby books recom-
mended in Section 14.4.1.



310 CHAPTER 6. MODELING USERS

>> User.all

=> #<ActiveRecord::Relation [#<User id: 1, name: "Michael Hartl", email:

"michael@example.com", created_at: "2019-08-22 01:51:03", updated_at:

"2019-08-22 01:51:03">, #<User id: 2, name: "A Nother", email:

"another@example.org", created_at: "2019-08-22 01:53:22", updated_at:

"2019-08-22 01:53:22">]>

As you can see from the console output, User.all returns all the users in the
database as an object of class ActiveRecord::Relation, which is effec-
tively an array (Section 4.3.1).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Find the user by name. Confirm that find_by_nameworks as well. (You
will often encounter this older style of find_by in legacy Rails applica-
tions.)

2. For most practical purposes, User.all acts like an array, but confirm
that in fact it’s of class User::ActiveRecord_Relation.

3. Confirm that you can find the length of User.all by passing it the
length method (Section 4.2.2). Ruby’s ability to manipulate objects
based on how they act rather than on their formal class type is called
duck typing, based on the aphorism that “If it looks like a duck, and it
quacks like a duck, it’s probably a duck.”

6.1.5 Updating user objects
Once we’ve created objects, we often want to update them. There are two ba-
sic ways to do this. First, we can assign attributes individually, as we did in
Section 4.4.5:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


6.1. USER MODEL 311

>> user # Just a reminder about our user's attributes

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

>> user.email = "mhartl@example.net"

=> "mhartl@example.net"

>> user.save

=> true

Note that the final step is necessary to write the changes to the database. We
can see what happens without a save by using reload, which reloads the object
based on the database information:

>> user.email

=> "mhartl@example.net"

>> user.email = "foo@bar.com"

=> "foo@bar.com"

>> user.reload.email

=> "mhartl@example.net"

Now that we’ve updated the user by running user.save, the magic col-
umns differ, as promised in Section 6.1.3:

>> user.created_at

=> Thu, 22 Aug 2019 01:51:03 UTC +00:00

>> user.updated_at

=> Thu, 22 Aug 2019 01:58:08 UTC +00:00

The second main way to update multiple attributes is to use update:9

>> user.update(name: "The Dude", email: "dude@abides.org")

=> true

>> user.name

=> "The Dude"

>> user.email

=> "dude@abides.org"

9Formerly update_attributes.



312 CHAPTER 6. MODELING USERS

The update method accepts a hash of attributes, and on success performs both
the update and the save in one step (returning true to indicate that the save
went through). Note that if any of the validations fail, such as when a password
is required to save a record (as implemented in Section 6.3), the call to up-

date will fail. If we need to update only a single attribute, using the singular
update_attribute bypasses this restriction by skipping the validations:

>> user.update_attribute(:name, "El Duderino")

=> true

>> user.name

=> "El Duderino"

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Update the user’s name using assignment and a call to save.

2. Update the user’s email address using a call to update.

3. Confirm that you can change the magic columns directly by updating
the created_at column using assignment and a save. Use the value
1.year.ago, which is a Rails way to create a timestamp one year be-
fore the present time.

6.2 User validations
The User model we created in Section 6.1 now has working name and email

attributes, but they are completely generic: any string (including an empty one)
is currently valid in either case. And yet, names and email addresses are more
specific than this. For example, name should be non-blank, and email should
match the specific format characteristic of email addresses. Moreover, since

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

