
312 CHAPTER 6. MODELING USERS

The update method accepts a hash of attributes, and on success performs both
the update and the save in one step (returning true to indicate that the save
went through). Note that if any of the validations fail, such as when a password
is required to save a record (as implemented in Section 6.3), the call to up-

date will fail. If we need to update only a single attribute, using the singular
update_attribute bypasses this restriction by skipping the validations:

>> user.update_attribute(:name, "El Duderino")

=> true

>> user.name

=> "El Duderino"

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Update the user’s name using assignment and a call to save.

2. Update the user’s email address using a call to update.

3. Confirm that you can change the magic columns directly by updating
the created_at column using assignment and a save. Use the value
1.year.ago, which is a Rails way to create a timestamp one year be-
fore the present time.

6.2 User validations
The User model we created in Section 6.1 now has working name and email

attributes, but they are completely generic: any string (including an empty one)
is currently valid in either case. And yet, names and email addresses are more
specific than this. For example, name should be non-blank, and email should
match the specific format characteristic of email addresses. Moreover, since

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.2. USER VALIDATIONS 313

we’ll be using email addresses as unique usernames when users log in, we
shouldn’t allow email duplicates in the database.

In short, we shouldn’t allow name and email to be just any strings; we
should enforce certain constraints on their values. Active Record allows us to
impose such constraints using validations (seen briefly before in Section 2.3.2).
In this section, we’ll cover several of the most common cases, validating pres-
ence, length, format and uniqueness. In Section 6.3.2 we’ll add a final common
validation, confirmation. And we’ll see in Section 7.3 how validations give us
convenient error messages when users make submissions that violate them.

6.2.1 A validity test
As noted in Box 3.3, test-driven development isn’t always the right tool for the
job, but model validations are exactly the kind of features for which TDD is a
perfect fit. It’s difficult to be confident that a given validation is doing exactly
what we expect it to without writing a failing test and then getting it to pass.

Our method will be to start with a valid model object, set one of its attributes
to something we want to be invalid, and then test that it in fact is invalid. As a
safety net, we’ll first write a test to make sure the initial model object is valid.
This way, when the validation tests fail we’ll know it’s for the right reason (and
not because the initial object was invalid in the first place).

In what follows, and when doing TDD generally, it’s convenenient to work
with your editor split into two panes, with test code on the left and application
code on the right. My preferred setup with the cloud IDE is shown in Figure 6.7.

To get us started, the command in Listing 6.1 produced an initial test for
testing users, though in this case it’s practically blank (Listing 6.4).

Listing 6.4: The practically blank default User test.
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

test "the truth" do

assert true

end

end

314 CHAPTER 6. MODELING USERS

Figure 6.7: TDD with a split pane.

6.2. USER VALIDATIONS 315

To write a test for a valid object, we’ll create an initially valid User model
object @user using the special setup method (discussed briefly in the Chap-
ter 3 exercises), which automatically gets run before each test. Because @user
is an instance variable, it’s automatically available in all the tests, and we can
test its validity using the valid? method (Section 6.1.3). The result appears in
Listing 6.5.

Listing 6.5: A test for an initially valid user. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

test "should be valid" do

assert @user.valid?

end

end

Listing 6.5 uses the plain assert method, which in this case succeeds if
@user.valid? returns true and fails if it returns false.

Because our User model doesn’t currently have any validations, the initial
test should pass:

Listing 6.6: green
$ rails test:models

Here we’ve used rails test:models to run just the model tests (compare
to rails test:integration from Section 5.3.4).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

316 CHAPTER 6. MODELING USERS

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In the console, confirm that a new user is currently valid.

2. Confirm that the user created in Section 6.1.3 is also valid.

6.2.2 Validating presence
Perhaps the most elementary validation is presence, which simply verifies that
a given attribute is present. For example, in this section we’ll ensure that both
the name and email fields are present before a user gets saved to the database.
In Section 7.3.3, we’ll see how to propagate this requirement up to the signup
form for creating new users.

We’ll start with a test for the presence of a name attribute by building on
the test in Listing 6.5. As seen in Listing 6.7, all we need to do is set the @user
variable’s name attribute to a blank string (in this case, a string of spaces) and
then check (using the assert_not method) that the resulting User object is
not valid.

Listing 6.7: A test for validation of the name attribute. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

test "should be valid" do

assert @user.valid?

end

test "name should be present" do

@user.name = " "

assert_not @user.valid?

end

end

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.2. USER VALIDATIONS 317

At this point, the model tests should be red:

Listing 6.8: red
$ rails test:models

As we saw briefly before in the Chapter 2 exercises, the way to validate the
presence of the name attribute is to use the validates method with argument
presence: true, as shown in Listing 6.9. The presence: true argument
is a one-element options hash; recall from Section 4.3.4 that curly braces are
optional when passing hashes as the final argument in a method. (As noted in
Section 5.1.1, the use of options hashes is a recurring theme in Rails.)

Listing 6.9: Validating the presence of a name attribute. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true

end

Listing 6.9 may look like magic, but validates is just a method. An equiv-
alent formulation of Listing 6.9 using parentheses is as follows:

class User < ApplicationRecord

validates(:name, presence: true)

end

Let’s drop into the console to see the effects of adding a validation to our
User model:10

$ rails console --sandbox

>> user = User.new(name: "", email: "michael@example.com")

>> user.valid?

=> false

10I’ll omit the output of console commands when they are not particularly instructive—for example, the results
of User.new.

318 CHAPTER 6. MODELING USERS

Here we check the validity of the user variable using the valid? method,
which returns false when the object fails one or more validations, and true

when all validations pass. In this case, we only have one validation, so we know
which one failed, but it can still be helpful to check using the errors object
generated on failure:

>> user.errors.full_messages

=> ["Name can't be blank"]

(The error message is a hint that Rails validates the presence of an attribute
using the blank? method, which we saw at the end of Section 4.4.3.)

Because the user isn’t valid, an attempt to save the user to the database
automatically fails:

>> user.save

=> false

As a result, the test in Listing 6.7 should now be green:

Listing 6.10: green
$ rails test:models

Following the model in Listing 6.7, writing a test for email attribute pres-
ence is easy (Listing 6.11), as is the application code to get it to pass (List-
ing 6.12).

Listing 6.11: A test for validation of the email attribute. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

6.2. USER VALIDATIONS 319

end

test "should be valid" do

assert @user.valid?

end

test "name should be present" do

@user.name = ""

assert_not @user.valid?

end

test "email should be present" do

@user.email = " "

assert_not @user.valid?

end

end

Listing 6.12: Validating the presence of an email attribute. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true

validates :email, presence: true

end

At this point, the presence validations are complete, and the test suite should
be green:

Listing 6.13: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Make a new user called u and confirm that it’s initially invalid. What are
the full error messages?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

320 CHAPTER 6. MODELING USERS

2. Confirm that u.errors.messages is a hash of errors. How would you
access just the email errors?

6.2.3 Length validation
We’ve constrained our User model to require a name for each user, but we
should go further: the user’s names will be displayed on the sample site, so we
should enforce some limit on their length. With all the work we did in Sec-
tion 6.2.2, this step is easy.

There’s no science to picking a maximum length; we’ll just pull 50 out of
thin air as a reasonable upper bound, which means verifying that names of 51
characters are too long. In addition, although it’s unlikely ever to be a problem,
there’s a chance that a user’s email address could overrun the maximum length
of strings, which for many databases is 255. Because the format validation in
Section 6.2.4 won’t enforce such a constraint, we’ll add one in this section for
completeness. Listing 6.14 shows the resulting tests.

Listing 6.14: Tests for name and email length validations. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "name should not be too long" do

@user.name = "a" * 51

assert_not @user.valid?

end

test "email should not be too long" do

@user.email = "a" * 244 + "@example.com"

assert_not @user.valid?

end

end

6.2. USER VALIDATIONS 321

For convenience, we’ve used “string multiplication” in Listing 6.14 to make a
string 51 characters long. We can see how this works using the console:

>> "a" * 51

=> "aaa"

>> ("a" * 51).length

=> 51

The email length validation arranges to make a valid email address that’s one
character too long:

>> "a" * 244 + "@example.com"

=> "aaa

aaa

aaa

aaaaaaaaaaa@example.com"

>> ("a" * 244 + "@example.com").length

=> 256

At this point, the tests in Listing 6.14 should be red:

Listing 6.15: red
$ rails test

To get them to pass, we need to use the validation argument to constrain
length, which is just length, along with the maximum parameter to enforce
the upper bound (Listing 6.16).

Listing 6.16: Adding a length validation for the name attribute. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

validates :email, presence: true, length: { maximum: 255 }

end

Now the tests should be green:

322 CHAPTER 6. MODELING USERS

Listing 6.17: green
$ rails test

With our test suite passing again, we can move on to a more challenging vali-
dation: email format.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Make a new user with too-long name and email and confirm that it’s not
valid.

2. What are the error messages generated by the length validation?

6.2.4 Format validation
Our validations for the name attribute enforce only minimal constraints—any
non-blank name under 51 characters will do—but of course the email attribute
must satisfy the more stringent requirement of being a valid email address. So
far we’ve only rejected blank email addresses; in this section, we’ll require
email addresses to conform to the familiar pattern user@example.com.

Neither the tests nor the validation will be exhaustive, just good enough
to accept most valid email addresses and reject most invalid ones. We’ll start
with a couple of tests involving collections of valid and invalid addresses. To
make these collections, it’s worth knowing about the useful %w[] technique for
making arrays of strings, as seen in this console session:

>> %w[foo bar baz]

=> ["foo", "bar", "baz"]

>> addresses = %w[USER@foo.COM THE_US-ER@foo.bar.org first.last@foo.jp]

=> ["USER@foo.COM", "THE_US-ER@foo.bar.org", "first.last@foo.jp"]

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.2. USER VALIDATIONS 323

>> addresses.each do |address|

?> puts address

>> end

USER@foo.COM

THE_US-ER@foo.bar.org

first.last@foo.jp

Here we’ve iterated over the elements of the addresses array using the each
method (Section 4.3.2). With this technique in hand, we’re ready to write some
basic email format validation tests.

Because email format validation is tricky and error-prone, we’ll start with
some passing tests for valid email addresses to catch any errors in the vali-
dation. In other words, we want to make sure not just that invalid email ad-
dresses like user@example,com are rejected, but also that valid addresses like
user@example.com are accepted, even after we impose the validation
constraint. (Right now they’ll be accepted because all non-blank email ad-
dresses are currently valid.) The result for a representative sample of valid
email addresses appears in Listing 6.18.

Listing 6.18: Tests for valid email formats. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email validation should accept valid addresses" do

valid_addresses = %w[user@example.com USER@foo.COM A_US-ER@foo.bar.org

first.last@foo.jp alice+bob@baz.cn]

valid_addresses.each do |valid_address|

@user.email = valid_address

assert @user.valid?, "#{valid_address.inspect} should be valid"

end

end

end

324 CHAPTER 6. MODELING USERS

Note that we’ve included an optional second argument to the assertion with a
custom error message, which in this case identifies the address causing the test
to fail:

assert @user.valid?, "#{valid_address.inspect} should be valid"

(This uses the interpolated inspect method mentioned in Section 4.3.3.) In-
cluding the specific address that causes any failure is especially useful in a test
with an each loop like Listing 6.18; otherwise, any failure would merely iden-
tify the line number, which is the same for all the email addresses, and which
wouldn’t be sufficient to identify the source of the problem.

Next we’ll add tests for the invalidity of a variety of invalid email addresses,
such as user@example,com (comma in place of dot) and user_at_foo.org (miss-
ing the ‘@’ sign). As in Listing 6.18, Listing 6.19 includes a custom error mes-
sage to identify the exact address causing any failure.

Listing 6.19: Tests for email format validation. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email validation should reject invalid addresses" do

invalid_addresses = %w[user@example,com user_at_foo.org user.name@example.

foo@bar_baz.com foo@bar+baz.com]

invalid_addresses.each do |invalid_address|

@user.email = invalid_address

assert_not @user.valid?, "#{invalid_address.inspect} should be invalid"

end

end

end

At this point, the tests should be red:

6.2. USER VALIDATIONS 325

Listing 6.20: red
$ rails test

The application code for email format validation uses the format valida-
tion, which works like this:

validates :email, format: { with: /<regular expression>/ }

This validates the attribute with the given regular expression (or regex), which
is a powerful (and often cryptic) language for matching patterns in strings. This
means we need to construct a regular expression to match valid email addresses
while not matching invalid ones.

There actually exists a full regex for matching email addresses according
to the official email standard, but it’s enormous, obscure, and quite possibly
counter-productive.11 In this tutorial, we’ll adopt a more pragmatic regex that
has proven to be robust in practice. Here’s what it looks like:

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

To help understand where this comes from, Table 6.1 breaks it into bite-sized
pieces.12

Although you can learn a lot by studying Table 6.1, to really understand
regular expressions I consider using an interactive regular expression matcher
like Rubular to be essential (Figure 6.8).13 The Rubular website has a beautiful
interactive interface for making regular expressions, along with a handy regex
quick reference. I encourage you to study Table 6.1 with a browser window

11For example, did you know that "Michael Hartl"@example.com, with quotation marks and a space in
the middle, is a valid email address according to the standard? Incredibly, it is—but it’s absurd.

12Note that, in Table 6.1, “letter” really means “lower-case letter”, but the i at the end of the regex enforces
case-insensitive matching.

13If you find it as useful as I do, I encourage you to donate to Rubular to reward developer Michael Lovitt for
his wonderful work.

https://www.rubular.com/
https://bit.ly/donate-to-rubular
https://lovitt.net/

326 CHAPTER 6. MODELING USERS

Expression Meaning
/\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i full regex
/ start of regex
\A match start of a string
[\w+\-.]+ at least one word character, plus, hyphen, or dot
@ literal “at sign”
[a-z\d\-.]+ at least one letter, digit, hyphen, or dot
\. literal dot
[a-z]+ at least one letter
\z match end of a string
/ end of regex
i case-insensitive

Table 6.1: Breaking down the valid email regex.

open to Rubular—no amount of reading about regular expressions can replace
playing with them interactively. (Note: If you use the regex from Table 6.1 in
Rubular, I recommend leaving off the \A and \z characters so that you can
match more than one email address at a time in the given test string. Also note
that the regex consists of the characters inside the slashes /.../, so you should
omit those when using Rubular.)

Applying the regular expression from Table 6.1 to the email format vali-
dation yields the code in Listing 6.21.

Listing 6.21: Validating the email format with a regular expression. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX }

end

Here the regex VALID_EMAIL_REGEX is a constant, indicated in Ruby by a
name starting with a capital letter. The code

6.2. USER VALIDATIONS 327

Figure 6.8: The awesome Rubular regular expression editor.

328 CHAPTER 6. MODELING USERS

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX }

ensures that only email addresses that match the pattern will be considered valid.
(The expression above has one minor weakness: it allows invalid addresses
that contain consecutive dots, such as foo@bar..com. Updating the regex in
Listing 6.21 to fix this blemish is left as an exercise (Section 6.2.4).)

At this point, the tests should be green:

Listing 6.22: green
$ rails test:models

This means that there’s only one constraint left: enforcing email uniqueness.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By pasting in the valid addresses from Listing 6.18 and invalid addresses
from Listing 6.19 into the test string area at Rubular, confirm that the
regex from Listing 6.21 matches all of the valid addresses and none of
the invalid ones.

2. As noted above, the email regex in Listing 6.21 allows invalid email ad-
dresses with consecutive dots in the domain name, i.e., addresses of the
form foo@bar..com. Add this address to the list of invalid addresses in
Listing 6.19 to get a failing test, and then use the more complicated regex
shown in Listing 6.23 to get the test to pass.

3. Add foo@bar..com to the list of addresses at Rubular, and confirm that
the regex shown in Listing 6.23 matches all the valid addresses and none
of the invalid ones.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.2. USER VALIDATIONS 329

Listing 6.23: Disallowing double dots in email domain names. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-]+(\.[a-z\d\-]+)*\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX }

end

6.2.5 Uniqueness validation
To enforce uniqueness of email addresses (so that we can use them as user-
names), we’ll be using the :uniqueness option to the validates method.
But be warned: there’s a major caveat, so don’t just skim this section—read it
carefully.

We’ll start with some short tests. In our previous model tests, we’ve mainly
used User.new, which just creates a Ruby object in memory, but for unique-
ness tests we actually need to put a record into the database.14 The initial du-
plicate email test appears in Listing 6.24.

Listing 6.24: A test for the rejection of duplicate email addresses. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email addresses should be unique" do

duplicate_user = @user.dup

@user.save

assert_not duplicate_user.valid?

14As noted briefly in the introduction to this section, there is a dedicated test database, db/test.sqlite3, for
this purpose.

330 CHAPTER 6. MODELING USERS

end

end

The method here is to make a user with the same email address as @user using
@user.dup, which creates a duplicate user with the same attributes. Since we
then save @user, the duplicate user has an email address that already exists in
the database, and hence should not be valid.

We can get the new test in Listing 6.24 to pass by adding uniqueness:

true to the email validation, as shown in Listing 6.25.

Listing 6.25: Validating the uniqueness of email addresses. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

end

We’re not quite done, though. Email addresses are typically processed
as if they were case-insensitive—i.e., foo@bar.com is treated the same as
FOO@BAR.COM or FoO@BAr.coM—so our validation should incorporate this
as well.15 It’s thus important to test for case-insensitivity, which we do with the
code in Listing 6.26.

Listing 6.26: Testing case-insensitive email uniqueness. red
test/models/user_test.rb

require 'test_helper'

15Technically, only the domain part of the email address is case-insensitive: foo@bar.com is actually different
from Foo@bar.com. In practice, though, it is a bad idea to rely on this fact; as noted at about.com, “Since the case
sensitivity of email addresses can create a lot of confusion, interoperability problems and widespread headaches,
it would be foolish to require email addresses to be typed with the correct case. Hardly any email service or ISP
does enforce case sensitive email addresses, returning messages whose recipient’s email address was not typed
correctly (in all upper case, for example).” Thanks to reader Riley Moses for pointing this out.

https://www.lifewire.com/are-email-addresses-case-sensitive-1171111

6.2. USER VALIDATIONS 331

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email addresses should be unique" do

duplicate_user = @user.dup

duplicate_user.email = @user.email.upcase

@user.save

assert_not duplicate_user.valid?

end

end

Here we are using the upcase method on strings (seen briefly in Section 4.3.2).
This test does the same thing as the initial duplicate email test, but with an upper-
case email address instead. If this test feels a little abstract, go ahead and fire
up the console:

$ rails console --sandbox

>> user = User.create(name: "Example User", email: "user@example.com")

>> user.email.upcase

=> "USER@EXAMPLE.COM"

>> duplicate_user = user.dup

>> duplicate_user.email = user.email.upcase

>> duplicate_user.valid?

=> true

Of course, duplicate_user.valid? is currently true because the u-
niqueness validation is case-sensitive, but we want it to be false. Fortunately,
:uniqueness accepts an option, :case_sensitive, for just this purpose
(Listing 6.27).

Listing 6.27: Validating the uniqueness of email addresses, ignoring case.
green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

332 CHAPTER 6. MODELING USERS

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: { case_sensitive: false }

end

Note that we have simply replaced true in Listing 6.25 with case_sensi-

tive: false in Listing 6.27. (Rails infers that uniqueness should be true
as well.)

At this point, our application—with an important caveat—enforces email
uniqueness, and our test suite should pass:

Listing 6.28: green
$ rails test

There’s just one small problem, which is that the Active Record uniqueness
validation does not guarantee uniqueness at the database level. Here’s a sce-
nario that explains why:

1. Alice signs up for the sample app, with address alice@wonderland.com.

2. Alice accidentally clicks on “Submit” twice, sending two requests in
quick succession.

3. The following sequence occurs: request 1 creates a user in memory that
passes validation, request 2 does the same, request 1’s user gets saved,
request 2’s user gets saved.

4. Result: two user records with the exact same email address, despite the
uniqueness validation

If the above sequence seems implausible, believe me, it isn’t: it can happen on
any Rails website with significant traffic (which I once learned the hard way).
Luckily, the solution is straightforward to implement: we just need to enforce
uniqueness at the database level as well as at the model level. Our method is

6.2. USER VALIDATIONS 333

to create a database index on the email column (Box 6.2), and then require that
the index be unique.

Box 6.2. Database indices

When creating a column in a database, it is important to consider whether we
will need to find records by that column. Consider, for example, the email at-
tribute created by the migration in Listing 6.2. When we allow users to log in to the
sample app starting in Chapter 7, we will need to find the user record correspond-
ing to the submitted email address. Unfortunately, based on the naïve data model,
the only way to find a user by email address is to look through each user row in
the database and compare its email attribute to the given email—which means we
might have to examine every row (since the user could be the last one in the da-
tabase). This is known in the database business as a full-table scan, and for a real
site with thousands of users it is a Bad Thing.

Putting an index on the email column fixes the problem. To understand a da-
tabase index, it’s helpful to consider the analogy of a book index. In a book, to
find all the occurrences of a given string, say “foobar”, you would have to scan
each page for “foobar”—the paper version of a full-table scan. With a book index,
on the other hand, you can just look up “foobar” in the index to see all the pages
containing “foobar”. A database index works essentially the same way.

The email index represents an update to our data modeling requirements,
which (as discussed in Section 6.1.1) is handled in Rails using migrations. We
saw in Section 6.1.1 that generating the User model automatically created a
new migration (Listing 6.2); in the present case, we are adding structure to an
existing model, so we need to create a migration directly using the migration
generator:

$ rails generate migration add_index_to_users_email

http://catb.org/jargon/html/B/Bad-Thing.html

334 CHAPTER 6. MODELING USERS

Unlike the migration for users, the email uniqueness migration is not pre-
defined, so we need to fill in its contents with Listing 6.29.16

Listing 6.29: The migration for enforcing email uniqueness.
db/migrate/[timestamp]_add_index_to_users_email.rb

class AddIndexToUsersEmail < ActiveRecord::Migration[6.0]

def change

add_index :users, :email, unique: true

end

end

This uses a Rails method called add_index to add an index on the email

column of the users table. The index by itself doesn’t enforce uniqueness, but
the option unique: true does.

The final step is to migrate the database:

$ rails db:migrate

(If the migration fails, make sure to exit any running sandbox console sessions,
which can lock the database and prevent migrations.)

At this point, the test suite should be red due to a violation of the unique-
ness constraint in the fixtures, which contain sample data for the test database.
User fixtures were generated automatically in Listing 6.1, and as shown in List-
ing 6.30 the email addresses are not unique. (They’re not valid either, but fixture
data doesn’t get run through the validations.)

Listing 6.30: The default user fixtures. red
test/fixtures/users.yml

Read about fixtures at https://api.rubyonrails.org/classes/ActiveRecord/

FixtureSet.html

16Of course, we could just edit the migration file for the users table in Listing 6.2, but that would require
rolling back and then migrating back up. The Rails Way™ is to use migrations every time we discover that our
data model needs to change.

6.2. USER VALIDATIONS 335

one:

name: MyString

email: MyString

two:

name: MyString

email: MyString

Because we won’t need fixtures until Chapter 8, for now we’ll just remove them,
leaving an empty fixtures file (Listing 6.31).

Listing 6.31: An empty fixtures file. green
test/fixtures/users.yml

empty

Having addressed the uniqueness caveat, there’s one more change we need
to make to be assured of email uniqueness. Some database adapters use case-
sensitive indices, considering the strings “Foo@ExAMPle.CoM” and “foo@-
example.com” to be distinct, but our application treats those addresses as the
same. To avoid this incompatibility, we’ll standardize on all lower-case ad-
dresses, converting “Foo@ExAMPle.CoM” to “foo@example.com” before
saving it to the database. The way to do this is with a callback, which is
a method that gets invoked at a particular point in the lifecycle of an Active
Record object.

In the present case, that point is before the object is saved, so we’ll use
a before_save callback to downcase the email attribute before saving the
user.17 The result appears in Listing 6.32. (This is just a first implementation;
we’ll discuss this subject again in Section 11.1, where we’ll use the preferred
method reference convention for defining callbacks.)

Listing 6.32: Ensuring email uniqueness by downcasing the email attribute.
red
app/models/user.rb

17See the Rails API entry on callbacks for more information on which callbacks Rails supports.

https://en.wikipedia.org/wiki/Callback_(computer_science)
https://api.rubyonrails.org/v6.0.1/classes/ActiveRecord/Callbacks.html

336 CHAPTER 6. MODELING USERS

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

end

The code in Listing 6.32 passes a block to the before_save callback and sets
the user’s email address to a lower-case version of its current value using the
downcase string method. Note also that Listing 6.32 reverts the uniqueness
constraint back to true, since case-sensitive matching works fine if all of the
emails are lower-case. Indeed, this practice prevents problems applying the
database index from Listing 6.29, since many databases have difficulty using
an index when combined with a case-insensitive match.18

Restoring the original constraint does break the test in Listing 6.26, but
that’s easy to fix by reverting the test to its previous form from Listing 6.24,
as shown again in Listing 6.33.

Listing 6.33: Restoring the original email uniqueness test. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email addresses should be unique" do

duplicate_user = @user.dup

@user.save

assert_not duplicate_user.valid?

end

end

18Thanks to reader Alex Friedman for pointing this out.

6.2. USER VALIDATIONS 337

By the way, in Listing 6.32 we could have written the assignment as

self.email = self.email.downcase

(where self refers to the current user), but inside the User model the self

keyword is optional on the right-hand side:

self.email = email.downcase

We encountered this idea briefly in the context of reverse in the palindrome
method (Section 4.4.2), which also noted that self is not optional in an assign-
ment, so

email = email.downcase

wouldn’t work. (We’ll discuss this subject in more depth in Section 9.1.)
At this point, the Alice scenario above will work fine: the database will save

a user record based on the first request, and it will reject the second save because
the duplicate email address violates the uniqueness constraint. (An error will
appear in the Rails log, but that doesn’t do any harm.) Moreover, adding this
index on the email attribute accomplishes a second goal, alluded to briefly in
Section 6.1.4: as noted in Box 6.2, the index on the email attribute fixes a
potential efficiency problem by preventing a full-table scan when finding users
by email address.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Add a test for the email downcasing from Listing 6.32, as shown in List-
ing 6.34. This test uses the reload method for reloading a value from

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

338 CHAPTER 6. MODELING USERS

the database and the assert_equal method for testing equality. To ver-
ify that Listing 6.34 tests the right thing, comment out the before_save
line to get to red, then uncomment it to get to green.

2. By running the test suite, verify that the before_save callback can
be written using the “bang” method email.downcase! to modify the
email attribute directly, as shown in Listing 6.35.

Listing 6.34: A test for the email downcasing from Listing 6.32.
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email addresses should be unique" do

duplicate_user = @user.dup

@user.save

assert_not duplicate_user.valid?

end

test "email addresses should be saved as lower-case" do

mixed_case_email = "Foo@ExAMPle.CoM"

@user.email = mixed_case_email

@user.save

assert_equal mixed_case_email.downcase, @user.reload.email

end

end

Listing 6.35: An alternate callback implementation. green
app/models/user.rb

class User < ApplicationRecord

before_save { email.downcase! }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

6.3. ADDING A SECURE PASSWORD 339

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

end

6.3 Adding a secure password
Now that we’ve defined validations for the name and email fields, we’re ready
to add the last of the basic User attributes: a secure password. The method is to
require each user to have a password (with a password confirmation), and then
store a hashed version of the password in the database. (There is some potential
for confusion here. In the present context, a hash refers not to the Ruby data
structure from Section 4.3.3 but rather to the result of applying an irreversible
hash function to input data.) We’ll also add a way to authenticate a user based
on a given password, a method we’ll use in Chapter 8 to allow users to log in
to the site.

The method for authenticating users will be to take a submitted password,
hash it, and compare the result to the hashed value stored in the database. If
the two match, then the submitted password is correct and the user is authenti-
cated. By comparing hashed values instead of raw passwords, we will be able to
authenticate users without storing the passwords themselves. This means that,
even if our database is compromised, our users’ passwords will still be secure.

6.3.1 A hashed password
Most of the secure password machinery will be implemented using a single
Rails method called has_secure_password, which we’ll include in the User
model as follows:

class User < ApplicationRecord

.

.

.

has_secure_password

end

https://en.wikipedia.org/wiki/Hash_function

