
Chapter 6

Modeling users
In Chapter 5, we ended with a stub page for creating new users (Section 5.4).
Over the course of the next six chapters, we’ll fulfill the promise implicit in
this incipient signup page. In this chapter, we’ll take the first critical step by
creating a data model for users of our site, together with a way to store that data.
In Chapter 7, we’ll give users the ability to sign up for our site and create a user
profile page. Once users can sign up, we’ll let them log in and log out as well
(Chapter 8 and Chapter 9), and in Chapter 10 (Section 10.2.1) we’ll learn how
to protect pages from improper access. Finally, in Chapter 11 and Chapter 12
we’ll add account activations (thereby confirming a valid email address) and
password resets. Taken together, the material in Chapter 6 through Chapter 12
develops a full Rails login and authentication system. As you may know, there
are various pre-built authentication solutions for Rails; Box 6.1 explains why,
at least at first, it’s probably a better idea to roll your own.

Box 6.1. Rolling your own authentication system

Virtually all web applications require a login and authentication system of some
sort. As a result, most web frameworks end up with one or more standardized
libraries for doing so, and Rails is no exception. In particular, the Devise gem has
emerged as a robust solution for a wide variety of uses, and represents a strong
choice for professional-grade applications.

293

https://github.com/plataformatec/devise

294 CHAPTER 6. MODELING USERS

Nevertheless, I believe it is a mistake to use a pre-built system like Devise in a
tutorial like this one. Off-the-shelf systems can be “black boxes” with potentially
mysterious innards, and the complicated data models used by such systems would
be utterly overwhelming for beginners (or even for experienced developers not
familiar with data modeling). For learning purposes, it’s essential to introduce the
subject more gradually.

Happily, Rails makes it possible to take such a gradual approach while still
developing an industrial-strength login and authentication system suitable for pro-
duction applications. This way, even if you do end up using a third-party system
later on, you’ll be in a much better position to understand and modify it to meet
your particular needs.

6.1 User model
Although the ultimate goal of the next three chapters is to make a signup page
for our site (as mocked up in Figure 6.1), it would do little good now to accept
information for new users: we don’t currently have any place to put it. Thus,
the first step in signing up users is to make a data structure to capture and store
their information.

In Rails, the default data structure for a data model is called, naturally
enough, a model (the M in MVC from Section 1.2.3). The default Rails solution
to the problem of persistence is to use a database for long-term data storage,
and the default library for interacting with the database is called Active Record.1
Active Record comes with a host of methods for creating, saving, and finding
data objects, all without having to use the structured query language (SQL)2

used by relational databases. Moreover, Rails has a feature called migrations
1The name comes from the “active record pattern”, identified and named in Patterns of Enterprise Application

Architecture by Martin Fowler.
2Officially pronounced “ess-cue-ell”, though the alternate pronunciation “sequel” is also common. You can

differentiate an individual author’s preference by the choice of indefinite article: those who write “a SQL database”
prefer “sequel”, whereas those who write “an SQL database” prefer “ess-cue-ell”. As you’ll soon see, I prefer the
latter.

https://en.wikipedia.org/wiki/Black_box
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Active_record_pattern

6.1. USER MODEL 295

Figure 6.1: A mockup of the user signup page.

296 CHAPTER 6. MODELING USERS

to allow data definitions to be written in pure Ruby, without having to learn
an SQL data definition language (DDL). The effect is that Rails insulates you
almost entirely from the details of the database. In this book, by using SQLite
for development and PostgreSQL (via Heroku) for deployment (Section 1.4),
we have developed this theme even further, to the point where we barely ever
have to think about how Rails stores data, even for production applications.

As usual, if you’re following along using Git for version control, now would
be a good time to make a topic branch for modeling users:

$ git checkout -b modeling-users

6.1.1 Database migrations
You may recall from Section 4.4.5 that we have already encountered, via a
custom-built User class, user objects with name and email attributes. That
class served as a useful example, but it lacked the critical property of persis-
tence: when we created a User object at the Rails console, it disappeared as
soon as we exited. Our goal in this section is to create a model for users that
won’t disappear quite so easily.

As with the User class in Section 4.4.5, we’ll start by modeling a user with
two attributes, a name and an email address, the latter of which we’ll use as
a unique username.3 (We’ll add an attribute for passwords in Section 6.3.) In
Listing 4.17, we did this with Ruby’s attr_accessor method:

class User

attr_accessor :name, :email

.

.

.

end

In contrast, when using Rails to model users we don’t need to identify the
attributes explicitly. As noted briefly above, to store data Rails uses a relational

3By using an email address as the username, we open the possibility of communicating with our users at a
future date (Chapter 11 and Chapter 12).

6.1. USER MODEL 297

users

Mallory Archer4
Lana Kane3
Sterling Archer2

id
1 Michael Hartl

name email
mhartl@example.com
archer@example.gov
lana@example.gov
boss@example.gov

Figure 6.2: A diagram of sample data in a users table.

email string

id
name string

integer
users

Figure 6.3: A sketch of the User data model.

database by default, which consists of tables composed of data rows, where each
row has columns of data attributes. For example, to store users with names and
email addresses, we’ll create a users table with name and email columns
(with each row corresponding to one user). An example of such a table appears
in Figure 6.2, corresponding to the data model shown in Figure 6.3. (Figure 6.3
is just a sketch; the full data model appears in Figure 6.4.) By naming the
columns name and email, we’ll let Active Record figure out the User object
attributes for us.

You may recall from Listing 5.38 that we created a Users controller (along
with a new action) using the command

298 CHAPTER 6. MODELING USERS

$ rails generate controller Users new

The analogous command for making a model is generate model, which we
can use to generate a User model with name and email attributes, as shown in
Listing 6.1.

Listing 6.1: Generating a User model.
$ rails generate model User name:string email:string

invoke active_record

create db/migrate/<timestamp>_create_users.rb

create app/models/user.rb

invoke test_unit

create test/models/user_test.rb

create test/fixtures/users.yml

(Note that, in contrast to the plural convention for controller names, model
names are singular: a Users controller, but a User model.) By passing the op-
tional parameters name:string and email:string, we tell Rails about the
two attributes we want, along with which types those attributes should be (in
this case, string). Compare this with including the action names in Listing 3.7
and Listing 5.38.

One of the results of the generate command in Listing 6.1 is a new file
called a migration. Migrations provide a way to alter the structure of the data-
base incrementally, so that our data model can adapt to changing requirements.
In the case of the User model, the migration is created automatically by the
model generation script; it creates a users table with two columns, name and
email, as shown in Listing 6.2. (We’ll see starting in Section 6.2.5 how to
make a migration from scratch.)

Listing 6.2: Migration for the User model (to create a users table).
db/migrate/[timestamp]_create_users.rb

class CreateUsers < ActiveRecord::Migration[6.0]

def change

create_table :users do |t|

6.1. USER MODEL 299

t.string :name

t.string :email

t.timestamps

end

end

end

Note that the name of the migration file is prefixed by a timestamp based on
when the migration was generated. In the early days of migrations, the file-
names were prefixed with incrementing integers, which caused conflicts for col-
laborating teams if multiple programmers had migrations with the same num-
ber. Barring the improbable scenario of migrations generated the same second,
using timestamps conveniently avoids such collisions.

The migration itself consists of a change method that determines the
change to be made to the database. In the case of Listing 6.2, change uses
a Rails method called create_table to create a table in the database for stor-
ing users. The create_table method accepts a block (Section 4.3.2) with
one block variable, in this case called t (for “table”). Inside the block, the
create_table method uses the t object to create name and email columns
in the database, both of type string.4 Here the table name is plural (users)
even though the model name is singular (User), which reflects a linguistic con-
vention followed by Rails: a model represents a single user, whereas a database
table consists of many users. The final line in the block, t.timestamps, is a
special command that creates two magic columns called created_at and up-
dated_at, which are timestamps that automatically record when a given user
is created and updated. (We’ll see concrete examples of the magic columns
starting in Section 6.1.3.) The full data model represented by the migration in
Listing 6.2 is shown in Figure 6.4. (Note the addition of the magic columns,
which weren’t present in the sketch shown in Figure 6.3.)

We can run the migration, known as “migrating up”, using the db:migrate
command as follows:

4Don’t worry about exactly how the t object manages to do this; the beauty of abstraction layers is that we
don’t have to know. We can just trust the t object to do its job.

300 CHAPTER 6. MODELING USERS

updated_at datetime
datetimecreated_at

email string

id
name string

integer
users

Figure 6.4: The User data model produced by Listing 6.2.

$ rails db:migrate

(You may recall that we ran this command in a similar context in Section 2.2.)
The first time db:migrate is run, it creates a file called db/development.-
sqlite3, which is an SQLite5 database. We can see the structure of the data-
base by opening development.sqlite3 with DB Browser for SQLite. (If
you’re using the cloud IDE, you should first download the database file to the
local disk, as shown in Figure 6.5.) The result appears in Figure 6.6; compare
with the diagram in Figure 6.4. You might note that there’s one column in
Figure 6.6 not accounted for in the migration: the id column. As noted briefly
in Section 2.2, this column is created automatically, and is used by Rails to
identify each row uniquely.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.
5Officially pronounced “ess-cue-ell-ite”, although the (mis)pronunciation “sequel-ite” is also common.

https://sqlite.org/
https://sqlitebrowser.org/
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.1. USER MODEL 301

Figure 6.5: Downloading a file from the cloud IDE.

302 CHAPTER 6. MODELING USERS

Figure 6.6: DB Browser with our new users table.

6.1. USER MODEL 303

1. Rails uses a file called schema.rb in the db/ directory to keep track
of the structure of the database (called the schema, hence the filename).
Examine your local copy of db/schema.rb and compare its contents to
the migration code in Listing 6.2.

2. Most migrations (including all the ones in this tutorial) are reversible,
which means we can “migrate down” and undo them with a single com-
mand, called db:rollback:

$ rails db:rollback

After running this command, examine db/schema.rb to confirm that
the rollback was successful. (See Box 3.1 for another technique useful
for reversing migrations.) Under the hood, this command executes the
drop_table command to remove the users table from the database. The
reason this works is that the change method knows that drop_table is
the inverse of create_table, which means that the rollback migration
can be easily inferred. In the case of an irreversible migration, such as
one to remove a database column, it is necessary to define separate up

and down methods in place of the single change method. Read about
migrations in the Rails Guides for more information.

3. Re-run the migration by executing rails db:migrate again. Confirm
that the contents of db/schema.rb have been restored.

6.1.2 The model file
We’ve seen how the User model generation in Listing 6.1 generated a migration
file (Listing 6.2), and we saw in Figure 6.6 the results of running this migration:
it updated a file called development.sqlite3 by creating a table userswith
columns id, name, email, created_at, and updated_at. Listing 6.1 also
created the model itself. The rest of this section is dedicated to understanding
it.

https://guides.rubyonrails.org/migrations.html

304 CHAPTER 6. MODELING USERS

We begin by looking at the code for the User model, which lives in the
file user.rb inside the app/models/ directory. It is, to put it mildly, very
compact (Listing 6.3).

Listing 6.3: The brand new User model.
app/models/user.rb

class User < ApplicationRecord

end

Recall from Section 4.4.2 that the syntax class User < Application-
Record means that the User class inherits from the ApplicationRecord

class, which in turn inherits from ActiveRecord::Base (Figure 2.19), so
that the User model automatically has all the functionality of the ActiveRe-
cord::Base class. Of course, this knowledge doesn’t do us any good unless
we know what ActiveRecord::Base contains, so let’s get started with some
concrete examples.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In a Rails console, use the technique from Section 4.4.4 to confirm that
User.new is of class User and inherits from ApplicationRecord.

2. Confirm that ApplicationRecord inherits from ActiveRecord::-

Base.

6.1.3 Creating user objects
As in Chapter 4, our tool of choice for exploring data models is the Rails con-
sole. Since we don’t (yet) want to make any changes to our database, we’ll start
the console in a sandbox:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.1. USER MODEL 305

$ rails console --sandbox

Loading development environment in sandbox

Any modifications you make will be rolled back on exit

>>

As indicated by the helpful message “Any modifications you make will be rolled
back on exit”, when started in a sandbox the console will “roll back” (i.e., undo)
any database changes introduced during the session.

In the console session in Section 4.4.5, we created a new user object with
User.new, which we had access to only after requiring the example user file in
Listing 4.17. With models, the situation is different; as you may recall from Sec-
tion 4.4.4, the Rails console automatically loads the Rails environment, which
includes the models. This means that we can make a new user object without
any further work:

>> User.new

=> #<User id: nil, name: nil, email: nil, created_at: nil, updated_at: nil>

We see here the default console representation of a user object.
When called with no arguments, User.new returns an object with all nil

attributes. In Section 4.4.5, we designed the example User class to take an
initialization hash to set the object attributes; that design choice was motivated
by Active Record, which allows objects to be initialized in the same way:

>> user = User.new(name: "Michael Hartl", email: "michael@example.com")

=> #<User id: nil, name: "Michael Hartl", email: "michael@example.com",

created_at: nil, updated_at: nil>

Here we see that the name and email attributes have been set as expected.
The notion of validity is important for understanding Active Record model

objects. We’ll explore this subject in more depth in Section 6.2, but for now
it’s worth noting that our initial user object is valid, which we can verify by
calling the boolean valid? method on it:

306 CHAPTER 6. MODELING USERS

>> user.valid?

true

So far, we haven’t touched the database: User.new only creates an object
in memory, while user.valid? merely checks to see if the object is valid. In
order to save the User object to the database, we need to call the save method
on the user variable:

>> user.save

(0.1ms) SAVEPOINT active_record_1

SQL (0.8ms) INSERT INTO "users" ("name", "email", "created_at",

"updated_at") VALUES (?, ?, ?, ?) [["name", "Michael Hartl"],

["email", "michael@example.com"], ["created_at", "2019-08-22 01:51:03.453035"],

["updated_at", "2019-08-22 01:51:03.453035"]]

(0.1ms) RELEASE SAVEPOINT active_record_1

=> true

The save method returns true if it succeeds and false otherwise. (Cur-
rently, all saves should succeed because there are as yet no validations; we’ll
see cases in Section 6.2 when some will fail.) For reference, the Rails console
also shows the SQL command corresponding to user.save (namely, INSERT
INTO "users"…). We’ll hardly ever need raw SQL in this book,6 and I’ll
omit discussion of the SQL commands from now on, but you can learn a lot by
reading the SQL corresponding to Active Record commands.

You may have noticed that the new user object had nil values for the id
and the magic columns created_at and updated_at attributes. Let’s see if
our save changed anything:

>> user

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

We see that the id has been assigned a value of 1, while the magic columns have
6The only exception is in Section 14.3.3.

6.1. USER MODEL 307

been assigned the current time and date.7 Currently, the created and updated
timestamps are identical; we’ll see them differ in Section 6.1.5.

As with the User class in Section 4.4.5, instances of the User model allow
access to their attributes using a dot notation:

>> user.name

=> "Michael Hartl"

>> user.email

=> "michael@example.com"

>> user.updated_at

=> Thu, 22 Aug 2019 01:51:03 UTC +00:00

As we’ll see in Chapter 7, it’s often convenient to make and save a model
in two steps as we have above, but Active Record also lets you combine them
into one step with User.create:

>> User.create(name: "A Nother", email: "another@example.org")

#<User id: 2, name: "A Nother", email: "another@example.org", created_at:

"2019-08-22 01:53:22", updated_at: "2019-08-22 01:53:22">

>> foo = User.create(name: "Foo", email: "foo@bar.com")

#<User id: 3, name: "Foo", email: "foo@bar.com", created_at: "2019-08-22

01:54:03", updated_at: "2019-08-22 01:54:03">

Note that User.create, rather than returning true or false, returns the User
object itself, which we can optionally assign to a variable (such as foo in the
second command above).

The inverse of create is destroy:

>> foo.destroy

(0.1ms) SAVEPOINT active_record_1

SQL (0.2ms) DELETE FROM "users" WHERE "users"."id" = ? [["id", 3]]

7The timestamps are recorded in Coordinated Universal Time (UTC), which for most practical purposes is the
same as Greenwich Mean Time. But why call it UTC? From the NIST Time and Frequency FAQ: Q: Why is UTC
used as the acronym for Coordinated Universal Time instead of CUT? A: In 1970 the Coordinated Universal Time
system was devised by an international advisory group of technical experts within the International Telecommu-
nication Union (ITU). The ITU felt it was best to designate a single abbreviation for use in all languages in order
to minimize confusion. Since unanimous agreement could not be achieved on using either the English word order,
CUT, or the French word order, TUC, the acronym UTC was chosen as a compromise.

https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Greenwich_Mean_Time
https://www.nist.gov/pml/time-and-frequency-division/nist-time-frequently-asked-questions-faq#cut

308 CHAPTER 6. MODELING USERS

(0.1ms) RELEASE SAVEPOINT active_record_1

=> #<User id: 3, name: "Foo", email: "foo@bar.com", created_at: "2019-08-22

01:54:03", updated_at: "2019-08-22 01:54:03">

Like create, destroy returns the object in question, though I can’t recall ever
having used the return value of destroy. In addition, the destroyed object still
exists in memory:

>> foo

=> #<User id: 3, name: "Foo", email: "foo@bar.com", created_at: "2019-08-22

01:54:03", updated_at: "2019-08-22 01:54:03">

So how do we know if we really destroyed an object? And for saved and non-
destroyed objects, how can we retrieve users from the database? To answer
these questions, we need to learn how to use Active Record to find user objects.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that user.name and user.email are of class String.

2. Of what class are the created_at and updated_at attributes?

6.1.4 Finding user objects
Active Record provides several options for finding objects. Let’s use them to
find the first user we created while verifying that the third user (foo) has been
destroyed. We’ll start with the existing user:

>> User.find(1)

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.1. USER MODEL 309

Here we’ve passed the id of the user to User.find; Active Record returns the
user with that id.

Let’s see if the user with an id of 3 still exists in the database:

>> User.find(3)

ActiveRecord::RecordNotFound: Couldn't find User with ID=3

Since we destroyed our third user in Section 6.1.3, Active Record can’t find it in
the database. Instead, find raises an exception, which is a way of indicating an
exceptional event in the execution of a program—in this case, a nonexistent Ac-
tive Record id, leading find to raise an ActiveRecord::RecordNotFound
exception.8

In addition to the generic find, Active Record also allows us to find users
by specific attributes:

>> User.find_by(email: "michael@example.com")

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

Since we will be using email addresses as usernames, this sort of find will be
useful when we learn how to let users log in to our site (Chapter 7). If you’re
worried that find_by will be inefficient if there are a large number of users,
you’re ahead of the game; we’ll cover this issue, and its solution via database
indices, in Section 6.2.5.

We’ll end with a couple of more general ways of finding users. First, there’s
first:

>> User.first

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

Naturally, first just returns the first user in the database. There’s also all:
8Exceptions and exception handling are somewhat advanced Ruby subjects, and we won’t need them much in

this book. They are important, though, and I suggest learning about them using one of the Ruby books recom-
mended in Section 14.4.1.

310 CHAPTER 6. MODELING USERS

>> User.all

=> #<ActiveRecord::Relation [#<User id: 1, name: "Michael Hartl", email:

"michael@example.com", created_at: "2019-08-22 01:51:03", updated_at:

"2019-08-22 01:51:03">, #<User id: 2, name: "A Nother", email:

"another@example.org", created_at: "2019-08-22 01:53:22", updated_at:

"2019-08-22 01:53:22">]>

As you can see from the console output, User.all returns all the users in the
database as an object of class ActiveRecord::Relation, which is effec-
tively an array (Section 4.3.1).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Find the user by name. Confirm that find_by_nameworks as well. (You
will often encounter this older style of find_by in legacy Rails applica-
tions.)

2. For most practical purposes, User.all acts like an array, but confirm
that in fact it’s of class User::ActiveRecord_Relation.

3. Confirm that you can find the length of User.all by passing it the
length method (Section 4.2.2). Ruby’s ability to manipulate objects
based on how they act rather than on their formal class type is called
duck typing, based on the aphorism that “If it looks like a duck, and it
quacks like a duck, it’s probably a duck.”

6.1.5 Updating user objects
Once we’ve created objects, we often want to update them. There are two ba-
sic ways to do this. First, we can assign attributes individually, as we did in
Section 4.4.5:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.1. USER MODEL 311

>> user # Just a reminder about our user's attributes

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

>> user.email = "mhartl@example.net"

=> "mhartl@example.net"

>> user.save

=> true

Note that the final step is necessary to write the changes to the database. We
can see what happens without a save by using reload, which reloads the object
based on the database information:

>> user.email

=> "mhartl@example.net"

>> user.email = "foo@bar.com"

=> "foo@bar.com"

>> user.reload.email

=> "mhartl@example.net"

Now that we’ve updated the user by running user.save, the magic col-
umns differ, as promised in Section 6.1.3:

>> user.created_at

=> Thu, 22 Aug 2019 01:51:03 UTC +00:00

>> user.updated_at

=> Thu, 22 Aug 2019 01:58:08 UTC +00:00

The second main way to update multiple attributes is to use update:9

>> user.update(name: "The Dude", email: "dude@abides.org")

=> true

>> user.name

=> "The Dude"

>> user.email

=> "dude@abides.org"

9Formerly update_attributes.

312 CHAPTER 6. MODELING USERS

The update method accepts a hash of attributes, and on success performs both
the update and the save in one step (returning true to indicate that the save
went through). Note that if any of the validations fail, such as when a password
is required to save a record (as implemented in Section 6.3), the call to up-

date will fail. If we need to update only a single attribute, using the singular
update_attribute bypasses this restriction by skipping the validations:

>> user.update_attribute(:name, "El Duderino")

=> true

>> user.name

=> "El Duderino"

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Update the user’s name using assignment and a call to save.

2. Update the user’s email address using a call to update.

3. Confirm that you can change the magic columns directly by updating
the created_at column using assignment and a save. Use the value
1.year.ago, which is a Rails way to create a timestamp one year be-
fore the present time.

6.2 User validations
The User model we created in Section 6.1 now has working name and email

attributes, but they are completely generic: any string (including an empty one)
is currently valid in either case. And yet, names and email addresses are more
specific than this. For example, name should be non-blank, and email should
match the specific format characteristic of email addresses. Moreover, since

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.2. USER VALIDATIONS 313

we’ll be using email addresses as unique usernames when users log in, we
shouldn’t allow email duplicates in the database.

In short, we shouldn’t allow name and email to be just any strings; we
should enforce certain constraints on their values. Active Record allows us to
impose such constraints using validations (seen briefly before in Section 2.3.2).
In this section, we’ll cover several of the most common cases, validating pres-
ence, length, format and uniqueness. In Section 6.3.2 we’ll add a final common
validation, confirmation. And we’ll see in Section 7.3 how validations give us
convenient error messages when users make submissions that violate them.

6.2.1 A validity test
As noted in Box 3.3, test-driven development isn’t always the right tool for the
job, but model validations are exactly the kind of features for which TDD is a
perfect fit. It’s difficult to be confident that a given validation is doing exactly
what we expect it to without writing a failing test and then getting it to pass.

Our method will be to start with a valid model object, set one of its attributes
to something we want to be invalid, and then test that it in fact is invalid. As a
safety net, we’ll first write a test to make sure the initial model object is valid.
This way, when the validation tests fail we’ll know it’s for the right reason (and
not because the initial object was invalid in the first place).

In what follows, and when doing TDD generally, it’s convenenient to work
with your editor split into two panes, with test code on the left and application
code on the right. My preferred setup with the cloud IDE is shown in Figure 6.7.

To get us started, the command in Listing 6.1 produced an initial test for
testing users, though in this case it’s practically blank (Listing 6.4).

Listing 6.4: The practically blank default User test.
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

test "the truth" do

assert true

end

end

314 CHAPTER 6. MODELING USERS

Figure 6.7: TDD with a split pane.

6.2. USER VALIDATIONS 315

To write a test for a valid object, we’ll create an initially valid User model
object @user using the special setup method (discussed briefly in the Chap-
ter 3 exercises), which automatically gets run before each test. Because @user
is an instance variable, it’s automatically available in all the tests, and we can
test its validity using the valid? method (Section 6.1.3). The result appears in
Listing 6.5.

Listing 6.5: A test for an initially valid user. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

test "should be valid" do

assert @user.valid?

end

end

Listing 6.5 uses the plain assert method, which in this case succeeds if
@user.valid? returns true and fails if it returns false.

Because our User model doesn’t currently have any validations, the initial
test should pass:

Listing 6.6: green
$ rails test:models

Here we’ve used rails test:models to run just the model tests (compare
to rails test:integration from Section 5.3.4).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

316 CHAPTER 6. MODELING USERS

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In the console, confirm that a new user is currently valid.

2. Confirm that the user created in Section 6.1.3 is also valid.

6.2.2 Validating presence
Perhaps the most elementary validation is presence, which simply verifies that
a given attribute is present. For example, in this section we’ll ensure that both
the name and email fields are present before a user gets saved to the database.
In Section 7.3.3, we’ll see how to propagate this requirement up to the signup
form for creating new users.

We’ll start with a test for the presence of a name attribute by building on
the test in Listing 6.5. As seen in Listing 6.7, all we need to do is set the @user
variable’s name attribute to a blank string (in this case, a string of spaces) and
then check (using the assert_not method) that the resulting User object is
not valid.

Listing 6.7: A test for validation of the name attribute. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

test "should be valid" do

assert @user.valid?

end

test "name should be present" do

@user.name = " "

assert_not @user.valid?

end

end

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.2. USER VALIDATIONS 317

At this point, the model tests should be red:

Listing 6.8: red
$ rails test:models

As we saw briefly before in the Chapter 2 exercises, the way to validate the
presence of the name attribute is to use the validates method with argument
presence: true, as shown in Listing 6.9. The presence: true argument
is a one-element options hash; recall from Section 4.3.4 that curly braces are
optional when passing hashes as the final argument in a method. (As noted in
Section 5.1.1, the use of options hashes is a recurring theme in Rails.)

Listing 6.9: Validating the presence of a name attribute. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true

end

Listing 6.9 may look like magic, but validates is just a method. An equiv-
alent formulation of Listing 6.9 using parentheses is as follows:

class User < ApplicationRecord

validates(:name, presence: true)

end

Let’s drop into the console to see the effects of adding a validation to our
User model:10

$ rails console --sandbox

>> user = User.new(name: "", email: "michael@example.com")

>> user.valid?

=> false

10I’ll omit the output of console commands when they are not particularly instructive—for example, the results
of User.new.

318 CHAPTER 6. MODELING USERS

Here we check the validity of the user variable using the valid? method,
which returns false when the object fails one or more validations, and true

when all validations pass. In this case, we only have one validation, so we know
which one failed, but it can still be helpful to check using the errors object
generated on failure:

>> user.errors.full_messages

=> ["Name can't be blank"]

(The error message is a hint that Rails validates the presence of an attribute
using the blank? method, which we saw at the end of Section 4.4.3.)

Because the user isn’t valid, an attempt to save the user to the database
automatically fails:

>> user.save

=> false

As a result, the test in Listing 6.7 should now be green:

Listing 6.10: green
$ rails test:models

Following the model in Listing 6.7, writing a test for email attribute pres-
ence is easy (Listing 6.11), as is the application code to get it to pass (List-
ing 6.12).

Listing 6.11: A test for validation of the email attribute. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

6.2. USER VALIDATIONS 319

end

test "should be valid" do

assert @user.valid?

end

test "name should be present" do

@user.name = ""

assert_not @user.valid?

end

test "email should be present" do

@user.email = " "

assert_not @user.valid?

end

end

Listing 6.12: Validating the presence of an email attribute. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true

validates :email, presence: true

end

At this point, the presence validations are complete, and the test suite should
be green:

Listing 6.13: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Make a new user called u and confirm that it’s initially invalid. What are
the full error messages?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

320 CHAPTER 6. MODELING USERS

2. Confirm that u.errors.messages is a hash of errors. How would you
access just the email errors?

6.2.3 Length validation
We’ve constrained our User model to require a name for each user, but we
should go further: the user’s names will be displayed on the sample site, so we
should enforce some limit on their length. With all the work we did in Sec-
tion 6.2.2, this step is easy.

There’s no science to picking a maximum length; we’ll just pull 50 out of
thin air as a reasonable upper bound, which means verifying that names of 51
characters are too long. In addition, although it’s unlikely ever to be a problem,
there’s a chance that a user’s email address could overrun the maximum length
of strings, which for many databases is 255. Because the format validation in
Section 6.2.4 won’t enforce such a constraint, we’ll add one in this section for
completeness. Listing 6.14 shows the resulting tests.

Listing 6.14: Tests for name and email length validations. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "name should not be too long" do

@user.name = "a" * 51

assert_not @user.valid?

end

test "email should not be too long" do

@user.email = "a" * 244 + "@example.com"

assert_not @user.valid?

end

end

6.2. USER VALIDATIONS 321

For convenience, we’ve used “string multiplication” in Listing 6.14 to make a
string 51 characters long. We can see how this works using the console:

>> "a" * 51

=> "aaa"

>> ("a" * 51).length

=> 51

The email length validation arranges to make a valid email address that’s one
character too long:

>> "a" * 244 + "@example.com"

=> "aaa

aaa

aaa

aaaaaaaaaaa@example.com"

>> ("a" * 244 + "@example.com").length

=> 256

At this point, the tests in Listing 6.14 should be red:

Listing 6.15: red
$ rails test

To get them to pass, we need to use the validation argument to constrain
length, which is just length, along with the maximum parameter to enforce
the upper bound (Listing 6.16).

Listing 6.16: Adding a length validation for the name attribute. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

validates :email, presence: true, length: { maximum: 255 }

end

Now the tests should be green:

322 CHAPTER 6. MODELING USERS

Listing 6.17: green
$ rails test

With our test suite passing again, we can move on to a more challenging vali-
dation: email format.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Make a new user with too-long name and email and confirm that it’s not
valid.

2. What are the error messages generated by the length validation?

6.2.4 Format validation
Our validations for the name attribute enforce only minimal constraints—any
non-blank name under 51 characters will do—but of course the email attribute
must satisfy the more stringent requirement of being a valid email address. So
far we’ve only rejected blank email addresses; in this section, we’ll require
email addresses to conform to the familiar pattern user@example.com.

Neither the tests nor the validation will be exhaustive, just good enough
to accept most valid email addresses and reject most invalid ones. We’ll start
with a couple of tests involving collections of valid and invalid addresses. To
make these collections, it’s worth knowing about the useful %w[] technique for
making arrays of strings, as seen in this console session:

>> %w[foo bar baz]

=> ["foo", "bar", "baz"]

>> addresses = %w[USER@foo.COM THE_US-ER@foo.bar.org first.last@foo.jp]

=> ["USER@foo.COM", "THE_US-ER@foo.bar.org", "first.last@foo.jp"]

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.2. USER VALIDATIONS 323

>> addresses.each do |address|

?> puts address

>> end

USER@foo.COM

THE_US-ER@foo.bar.org

first.last@foo.jp

Here we’ve iterated over the elements of the addresses array using the each
method (Section 4.3.2). With this technique in hand, we’re ready to write some
basic email format validation tests.

Because email format validation is tricky and error-prone, we’ll start with
some passing tests for valid email addresses to catch any errors in the vali-
dation. In other words, we want to make sure not just that invalid email ad-
dresses like user@example,com are rejected, but also that valid addresses like
user@example.com are accepted, even after we impose the validation
constraint. (Right now they’ll be accepted because all non-blank email ad-
dresses are currently valid.) The result for a representative sample of valid
email addresses appears in Listing 6.18.

Listing 6.18: Tests for valid email formats. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email validation should accept valid addresses" do

valid_addresses = %w[user@example.com USER@foo.COM A_US-ER@foo.bar.org

first.last@foo.jp alice+bob@baz.cn]

valid_addresses.each do |valid_address|

@user.email = valid_address

assert @user.valid?, "#{valid_address.inspect} should be valid"

end

end

end

324 CHAPTER 6. MODELING USERS

Note that we’ve included an optional second argument to the assertion with a
custom error message, which in this case identifies the address causing the test
to fail:

assert @user.valid?, "#{valid_address.inspect} should be valid"

(This uses the interpolated inspect method mentioned in Section 4.3.3.) In-
cluding the specific address that causes any failure is especially useful in a test
with an each loop like Listing 6.18; otherwise, any failure would merely iden-
tify the line number, which is the same for all the email addresses, and which
wouldn’t be sufficient to identify the source of the problem.

Next we’ll add tests for the invalidity of a variety of invalid email addresses,
such as user@example,com (comma in place of dot) and user_at_foo.org (miss-
ing the ‘@’ sign). As in Listing 6.18, Listing 6.19 includes a custom error mes-
sage to identify the exact address causing any failure.

Listing 6.19: Tests for email format validation. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email validation should reject invalid addresses" do

invalid_addresses = %w[user@example,com user_at_foo.org user.name@example.

foo@bar_baz.com foo@bar+baz.com]

invalid_addresses.each do |invalid_address|

@user.email = invalid_address

assert_not @user.valid?, "#{invalid_address.inspect} should be invalid"

end

end

end

At this point, the tests should be red:

6.2. USER VALIDATIONS 325

Listing 6.20: red
$ rails test

The application code for email format validation uses the format valida-
tion, which works like this:

validates :email, format: { with: /<regular expression>/ }

This validates the attribute with the given regular expression (or regex), which
is a powerful (and often cryptic) language for matching patterns in strings. This
means we need to construct a regular expression to match valid email addresses
while not matching invalid ones.

There actually exists a full regex for matching email addresses according
to the official email standard, but it’s enormous, obscure, and quite possibly
counter-productive.11 In this tutorial, we’ll adopt a more pragmatic regex that
has proven to be robust in practice. Here’s what it looks like:

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

To help understand where this comes from, Table 6.1 breaks it into bite-sized
pieces.12

Although you can learn a lot by studying Table 6.1, to really understand
regular expressions I consider using an interactive regular expression matcher
like Rubular to be essential (Figure 6.8).13 The Rubular website has a beautiful
interactive interface for making regular expressions, along with a handy regex
quick reference. I encourage you to study Table 6.1 with a browser window

11For example, did you know that "Michael Hartl"@example.com, with quotation marks and a space in
the middle, is a valid email address according to the standard? Incredibly, it is—but it’s absurd.

12Note that, in Table 6.1, “letter” really means “lower-case letter”, but the i at the end of the regex enforces
case-insensitive matching.

13If you find it as useful as I do, I encourage you to donate to Rubular to reward developer Michael Lovitt for
his wonderful work.

https://www.rubular.com/
https://bit.ly/donate-to-rubular
https://lovitt.net/

326 CHAPTER 6. MODELING USERS

Expression Meaning
/\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i full regex
/ start of regex
\A match start of a string
[\w+\-.]+ at least one word character, plus, hyphen, or dot
@ literal “at sign”
[a-z\d\-.]+ at least one letter, digit, hyphen, or dot
\. literal dot
[a-z]+ at least one letter
\z match end of a string
/ end of regex
i case-insensitive

Table 6.1: Breaking down the valid email regex.

open to Rubular—no amount of reading about regular expressions can replace
playing with them interactively. (Note: If you use the regex from Table 6.1 in
Rubular, I recommend leaving off the \A and \z characters so that you can
match more than one email address at a time in the given test string. Also note
that the regex consists of the characters inside the slashes /.../, so you should
omit those when using Rubular.)

Applying the regular expression from Table 6.1 to the email format vali-
dation yields the code in Listing 6.21.

Listing 6.21: Validating the email format with a regular expression. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX }

end

Here the regex VALID_EMAIL_REGEX is a constant, indicated in Ruby by a
name starting with a capital letter. The code

6.2. USER VALIDATIONS 327

Figure 6.8: The awesome Rubular regular expression editor.

328 CHAPTER 6. MODELING USERS

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX }

ensures that only email addresses that match the pattern will be considered valid.
(The expression above has one minor weakness: it allows invalid addresses
that contain consecutive dots, such as foo@bar..com. Updating the regex in
Listing 6.21 to fix this blemish is left as an exercise (Section 6.2.4).)

At this point, the tests should be green:

Listing 6.22: green
$ rails test:models

This means that there’s only one constraint left: enforcing email uniqueness.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By pasting in the valid addresses from Listing 6.18 and invalid addresses
from Listing 6.19 into the test string area at Rubular, confirm that the
regex from Listing 6.21 matches all of the valid addresses and none of
the invalid ones.

2. As noted above, the email regex in Listing 6.21 allows invalid email ad-
dresses with consecutive dots in the domain name, i.e., addresses of the
form foo@bar..com. Add this address to the list of invalid addresses in
Listing 6.19 to get a failing test, and then use the more complicated regex
shown in Listing 6.23 to get the test to pass.

3. Add foo@bar..com to the list of addresses at Rubular, and confirm that
the regex shown in Listing 6.23 matches all the valid addresses and none
of the invalid ones.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.2. USER VALIDATIONS 329

Listing 6.23: Disallowing double dots in email domain names. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-]+(\.[a-z\d\-]+)*\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX }

end

6.2.5 Uniqueness validation
To enforce uniqueness of email addresses (so that we can use them as user-
names), we’ll be using the :uniqueness option to the validates method.
But be warned: there’s a major caveat, so don’t just skim this section—read it
carefully.

We’ll start with some short tests. In our previous model tests, we’ve mainly
used User.new, which just creates a Ruby object in memory, but for unique-
ness tests we actually need to put a record into the database.14 The initial du-
plicate email test appears in Listing 6.24.

Listing 6.24: A test for the rejection of duplicate email addresses. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email addresses should be unique" do

duplicate_user = @user.dup

@user.save

assert_not duplicate_user.valid?

14As noted briefly in the introduction to this section, there is a dedicated test database, db/test.sqlite3, for
this purpose.

330 CHAPTER 6. MODELING USERS

end

end

The method here is to make a user with the same email address as @user using
@user.dup, which creates a duplicate user with the same attributes. Since we
then save @user, the duplicate user has an email address that already exists in
the database, and hence should not be valid.

We can get the new test in Listing 6.24 to pass by adding uniqueness:

true to the email validation, as shown in Listing 6.25.

Listing 6.25: Validating the uniqueness of email addresses. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

end

We’re not quite done, though. Email addresses are typically processed
as if they were case-insensitive—i.e., foo@bar.com is treated the same as
FOO@BAR.COM or FoO@BAr.coM—so our validation should incorporate this
as well.15 It’s thus important to test for case-insensitivity, which we do with the
code in Listing 6.26.

Listing 6.26: Testing case-insensitive email uniqueness. red
test/models/user_test.rb

require 'test_helper'

15Technically, only the domain part of the email address is case-insensitive: foo@bar.com is actually different
from Foo@bar.com. In practice, though, it is a bad idea to rely on this fact; as noted at about.com, “Since the case
sensitivity of email addresses can create a lot of confusion, interoperability problems and widespread headaches,
it would be foolish to require email addresses to be typed with the correct case. Hardly any email service or ISP
does enforce case sensitive email addresses, returning messages whose recipient’s email address was not typed
correctly (in all upper case, for example).” Thanks to reader Riley Moses for pointing this out.

https://www.lifewire.com/are-email-addresses-case-sensitive-1171111

6.2. USER VALIDATIONS 331

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email addresses should be unique" do

duplicate_user = @user.dup

duplicate_user.email = @user.email.upcase

@user.save

assert_not duplicate_user.valid?

end

end

Here we are using the upcase method on strings (seen briefly in Section 4.3.2).
This test does the same thing as the initial duplicate email test, but with an upper-
case email address instead. If this test feels a little abstract, go ahead and fire
up the console:

$ rails console --sandbox

>> user = User.create(name: "Example User", email: "user@example.com")

>> user.email.upcase

=> "USER@EXAMPLE.COM"

>> duplicate_user = user.dup

>> duplicate_user.email = user.email.upcase

>> duplicate_user.valid?

=> true

Of course, duplicate_user.valid? is currently true because the u-
niqueness validation is case-sensitive, but we want it to be false. Fortunately,
:uniqueness accepts an option, :case_sensitive, for just this purpose
(Listing 6.27).

Listing 6.27: Validating the uniqueness of email addresses, ignoring case.
green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

332 CHAPTER 6. MODELING USERS

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: { case_sensitive: false }

end

Note that we have simply replaced true in Listing 6.25 with case_sensi-

tive: false in Listing 6.27. (Rails infers that uniqueness should be true
as well.)

At this point, our application—with an important caveat—enforces email
uniqueness, and our test suite should pass:

Listing 6.28: green
$ rails test

There’s just one small problem, which is that the Active Record uniqueness
validation does not guarantee uniqueness at the database level. Here’s a sce-
nario that explains why:

1. Alice signs up for the sample app, with address alice@wonderland.com.

2. Alice accidentally clicks on “Submit” twice, sending two requests in
quick succession.

3. The following sequence occurs: request 1 creates a user in memory that
passes validation, request 2 does the same, request 1’s user gets saved,
request 2’s user gets saved.

4. Result: two user records with the exact same email address, despite the
uniqueness validation

If the above sequence seems implausible, believe me, it isn’t: it can happen on
any Rails website with significant traffic (which I once learned the hard way).
Luckily, the solution is straightforward to implement: we just need to enforce
uniqueness at the database level as well as at the model level. Our method is

6.2. USER VALIDATIONS 333

to create a database index on the email column (Box 6.2), and then require that
the index be unique.

Box 6.2. Database indices

When creating a column in a database, it is important to consider whether we
will need to find records by that column. Consider, for example, the email at-
tribute created by the migration in Listing 6.2. When we allow users to log in to the
sample app starting in Chapter 7, we will need to find the user record correspond-
ing to the submitted email address. Unfortunately, based on the naïve data model,
the only way to find a user by email address is to look through each user row in
the database and compare its email attribute to the given email—which means we
might have to examine every row (since the user could be the last one in the da-
tabase). This is known in the database business as a full-table scan, and for a real
site with thousands of users it is a Bad Thing.

Putting an index on the email column fixes the problem. To understand a da-
tabase index, it’s helpful to consider the analogy of a book index. In a book, to
find all the occurrences of a given string, say “foobar”, you would have to scan
each page for “foobar”—the paper version of a full-table scan. With a book index,
on the other hand, you can just look up “foobar” in the index to see all the pages
containing “foobar”. A database index works essentially the same way.

The email index represents an update to our data modeling requirements,
which (as discussed in Section 6.1.1) is handled in Rails using migrations. We
saw in Section 6.1.1 that generating the User model automatically created a
new migration (Listing 6.2); in the present case, we are adding structure to an
existing model, so we need to create a migration directly using the migration
generator:

$ rails generate migration add_index_to_users_email

http://catb.org/jargon/html/B/Bad-Thing.html

334 CHAPTER 6. MODELING USERS

Unlike the migration for users, the email uniqueness migration is not pre-
defined, so we need to fill in its contents with Listing 6.29.16

Listing 6.29: The migration for enforcing email uniqueness.
db/migrate/[timestamp]_add_index_to_users_email.rb

class AddIndexToUsersEmail < ActiveRecord::Migration[6.0]

def change

add_index :users, :email, unique: true

end

end

This uses a Rails method called add_index to add an index on the email

column of the users table. The index by itself doesn’t enforce uniqueness, but
the option unique: true does.

The final step is to migrate the database:

$ rails db:migrate

(If the migration fails, make sure to exit any running sandbox console sessions,
which can lock the database and prevent migrations.)

At this point, the test suite should be red due to a violation of the unique-
ness constraint in the fixtures, which contain sample data for the test database.
User fixtures were generated automatically in Listing 6.1, and as shown in List-
ing 6.30 the email addresses are not unique. (They’re not valid either, but fixture
data doesn’t get run through the validations.)

Listing 6.30: The default user fixtures. red
test/fixtures/users.yml

Read about fixtures at https://api.rubyonrails.org/classes/ActiveRecord/

FixtureSet.html

16Of course, we could just edit the migration file for the users table in Listing 6.2, but that would require
rolling back and then migrating back up. The Rails Way™ is to use migrations every time we discover that our
data model needs to change.

6.2. USER VALIDATIONS 335

one:

name: MyString

email: MyString

two:

name: MyString

email: MyString

Because we won’t need fixtures until Chapter 8, for now we’ll just remove them,
leaving an empty fixtures file (Listing 6.31).

Listing 6.31: An empty fixtures file. green
test/fixtures/users.yml

empty

Having addressed the uniqueness caveat, there’s one more change we need
to make to be assured of email uniqueness. Some database adapters use case-
sensitive indices, considering the strings “Foo@ExAMPle.CoM” and “foo@-
example.com” to be distinct, but our application treats those addresses as the
same. To avoid this incompatibility, we’ll standardize on all lower-case ad-
dresses, converting “Foo@ExAMPle.CoM” to “foo@example.com” before
saving it to the database. The way to do this is with a callback, which is
a method that gets invoked at a particular point in the lifecycle of an Active
Record object.

In the present case, that point is before the object is saved, so we’ll use
a before_save callback to downcase the email attribute before saving the
user.17 The result appears in Listing 6.32. (This is just a first implementation;
we’ll discuss this subject again in Section 11.1, where we’ll use the preferred
method reference convention for defining callbacks.)

Listing 6.32: Ensuring email uniqueness by downcasing the email attribute.
red
app/models/user.rb

17See the Rails API entry on callbacks for more information on which callbacks Rails supports.

https://en.wikipedia.org/wiki/Callback_(computer_science)
https://api.rubyonrails.org/v6.0.1/classes/ActiveRecord/Callbacks.html

336 CHAPTER 6. MODELING USERS

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

end

The code in Listing 6.32 passes a block to the before_save callback and sets
the user’s email address to a lower-case version of its current value using the
downcase string method. Note also that Listing 6.32 reverts the uniqueness
constraint back to true, since case-sensitive matching works fine if all of the
emails are lower-case. Indeed, this practice prevents problems applying the
database index from Listing 6.29, since many databases have difficulty using
an index when combined with a case-insensitive match.18

Restoring the original constraint does break the test in Listing 6.26, but
that’s easy to fix by reverting the test to its previous form from Listing 6.24,
as shown again in Listing 6.33.

Listing 6.33: Restoring the original email uniqueness test. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email addresses should be unique" do

duplicate_user = @user.dup

@user.save

assert_not duplicate_user.valid?

end

end

18Thanks to reader Alex Friedman for pointing this out.

6.2. USER VALIDATIONS 337

By the way, in Listing 6.32 we could have written the assignment as

self.email = self.email.downcase

(where self refers to the current user), but inside the User model the self

keyword is optional on the right-hand side:

self.email = email.downcase

We encountered this idea briefly in the context of reverse in the palindrome
method (Section 4.4.2), which also noted that self is not optional in an assign-
ment, so

email = email.downcase

wouldn’t work. (We’ll discuss this subject in more depth in Section 9.1.)
At this point, the Alice scenario above will work fine: the database will save

a user record based on the first request, and it will reject the second save because
the duplicate email address violates the uniqueness constraint. (An error will
appear in the Rails log, but that doesn’t do any harm.) Moreover, adding this
index on the email attribute accomplishes a second goal, alluded to briefly in
Section 6.1.4: as noted in Box 6.2, the index on the email attribute fixes a
potential efficiency problem by preventing a full-table scan when finding users
by email address.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Add a test for the email downcasing from Listing 6.32, as shown in List-
ing 6.34. This test uses the reload method for reloading a value from

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

338 CHAPTER 6. MODELING USERS

the database and the assert_equal method for testing equality. To ver-
ify that Listing 6.34 tests the right thing, comment out the before_save
line to get to red, then uncomment it to get to green.

2. By running the test suite, verify that the before_save callback can
be written using the “bang” method email.downcase! to modify the
email attribute directly, as shown in Listing 6.35.

Listing 6.34: A test for the email downcasing from Listing 6.32.
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email addresses should be unique" do

duplicate_user = @user.dup

@user.save

assert_not duplicate_user.valid?

end

test "email addresses should be saved as lower-case" do

mixed_case_email = "Foo@ExAMPle.CoM"

@user.email = mixed_case_email

@user.save

assert_equal mixed_case_email.downcase, @user.reload.email

end

end

Listing 6.35: An alternate callback implementation. green
app/models/user.rb

class User < ApplicationRecord

before_save { email.downcase! }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

6.3. ADDING A SECURE PASSWORD 339

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

end

6.3 Adding a secure password
Now that we’ve defined validations for the name and email fields, we’re ready
to add the last of the basic User attributes: a secure password. The method is to
require each user to have a password (with a password confirmation), and then
store a hashed version of the password in the database. (There is some potential
for confusion here. In the present context, a hash refers not to the Ruby data
structure from Section 4.3.3 but rather to the result of applying an irreversible
hash function to input data.) We’ll also add a way to authenticate a user based
on a given password, a method we’ll use in Chapter 8 to allow users to log in
to the site.

The method for authenticating users will be to take a submitted password,
hash it, and compare the result to the hashed value stored in the database. If
the two match, then the submitted password is correct and the user is authenti-
cated. By comparing hashed values instead of raw passwords, we will be able to
authenticate users without storing the passwords themselves. This means that,
even if our database is compromised, our users’ passwords will still be secure.

6.3.1 A hashed password
Most of the secure password machinery will be implemented using a single
Rails method called has_secure_password, which we’ll include in the User
model as follows:

class User < ApplicationRecord

.

.

.

has_secure_password

end

https://en.wikipedia.org/wiki/Hash_function

340 CHAPTER 6. MODELING USERS

When included in a model as above, this one method adds the following func-
tionality:

• The ability to save a securely hashed password_digest attribute to the
database

• A pair of virtual attributes19 (password and password_confirma-

tion), including presence validations upon object creation and a vali-
dation requiring that they match

• An authenticate method that returns the user when the password is
correct (and false otherwise)

The only requirement for has_secure_password to work its magic is for
the corresponding model to have an attribute called password_digest. (The
name digest comes from the terminology of cryptographic hash functions. In
this context, hashed password and password digest are synonyms.)20 In the
case of the User model, this leads to the data model shown in Figure 6.9.

To implement the data model in Figure 6.9 , we first generate an appropriate
migration for the password_digest column. We can choose any migration
name we want, but it’s convenient to end the name with to_users, since in this
case Rails automatically constructs a migration to add columns to the users

table. The result, with migration name add_password_digest_to_users,
appears as follows:

$ rails generate migration add_password_digest_to_users password_digest:string

19In this context, virtual means that the attributes exist on the model object but do not correspond to columns
in the database.

20Hashed password digests are often erroneously referred to as encrypted passwords. For example, the source
code of has_secure_passwordmakes this mistake, as did the first two editions of this tutorial. This terminology
is wrong because by design encryption is reversible—the ability to encrypt implies the ability to decrypt as well. In
contrast, the whole point of calculating a password’s hash digest is to be irreversible, so that it is computationally
intractable to infer the original password from the digest. (Thanks to reader Andy Philips for pointing out this
issue and for encouraging me to fix the broken terminology.)

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb
https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb

6.3. ADDING A SECURE PASSWORD 341

password_digest string
updated_at datetime
created_at datetime
email string

id
name string

integer
users

Figure 6.9: The User data model with an added password_digest attribute.

Here we’ve also supplied the argument password_digest:string with the
name and type of attribute we want to create. (Compare this to the original gen-
eration of the users table in Listing 6.1, which included the arguments name:-
string and email:string.) By including password_digest:string,
we’ve given Rails enough information to construct the entire migration for us,
as seen in Listing 6.36.

Listing 6.36: The migration to add a password_digest column.
db/migrate/[timestamp]_add_password_digest_to_users.rb

class AddPasswordDigestToUsers < ActiveRecord::Migration[6.0]

def change

add_column :users, :password_digest, :string

end

end

Listing 6.36 uses the add_column method to add a password_digest col-
umn to the users table. To apply it, we just migrate the database:

$ rails db:migrate

342 CHAPTER 6. MODELING USERS

To make the password digest, has_secure_password uses a state-of-the-
art hash function called bcrypt. By hashing the password with bcrypt, we ensure
that an attacker won’t be able to log in to the site even if they manage to obtain
a copy of the database. To use bcrypt in the sample application, we need to add
the bcrypt gem to our Gemfile (Listing 6.37).21

Listing 6.37: Adding bcrypt to the Gemfile.
source 'https://rubygems.org'

gem 'rails', '6.0.1'

gem 'bcrypt', '3.1.13'

gem 'bootstrap-sass', '3.4.1'

.

.

.

Then run bundle install as usual:

$ bundle install

6.3.2 User has secure password
Now that we’ve supplied the User model with the required password_digest
attribute and installed bcrypt, we’re ready to add has_secure_password to
the User model, as shown in Listing 6.38.

Listing 6.38: Adding has_secure_password to the User model. red
app/models/user.rb

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

21As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://en.wikipedia.org/wiki/Bcrypt
https://gemfiles-6th-ed.railstutorial.org/

6.3. ADDING A SECURE PASSWORD 343

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

end

As indicated by the red indicator in Listing 6.38, the tests are now failing,
as you can confirm at the command line:

Listing 6.39: red
$ rails test

The reason is that, as noted in Section 6.3.1, has_secure_password en-
forces validations on the virtual password and password_confirmation

attributes, but the tests in Listing 6.26 create an @user variable without these
attributes:

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

So, to get the test suite passing again, we just need to add a password and its
confirmation, as shown in Listing 6.40.

Listing 6.40: Adding a password and its confirmation. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

end

344 CHAPTER 6. MODELING USERS

Note that the first line inside the setupmethod includes an additional comma at
the end, as required by Ruby’s hash syntax (Section 4.3.3). Leaving this comma
off will produce a syntax error, and you should use your technical sophistication
(Box 1.2) to identify and resolve such errors if (or, more realistically, when) they
occur.

At this point the tests should be green:

Listing 6.41: green
$ rails test

We’ll see in just a moment the benefits of adding has_secure_password to
the User model (Section 6.3.4), but first we’ll add a minimal requirement on
password security.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that a user with valid name and email still isn’t valid overall.

2. What are the error messages for a user with no password?

6.3.3 Minimum password standards
It’s good practice in general to enforce some minimum standards on passwords
to make them harder to guess. There are many options for enforcing password
strength in Rails, but for simplicity we’ll just enforce a minimum length and
the requirement that the password not be blank. Picking a length of 6 as a
reasonable minimum leads to the validation test shown in Listing 6.42.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.google.com/search?q=rails+enforce+password+strength
https://www.google.com/search?q=rails+enforce+password+strength

6.3. ADDING A SECURE PASSWORD 345

Listing 6.42: Testing for a minimum password length. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

test "password should be present (nonblank)" do

@user.password = @user.password_confirmation = " " * 6

assert_not @user.valid?

end

test "password should have a minimum length" do

@user.password = @user.password_confirmation = "a" * 5

assert_not @user.valid?

end

end

Note the use of the compact multiple assignment

@user.password = @user.password_confirmation = "a" * 5

in Listing 6.42. This arranges to assign a particular value to the password and
its confirmation at the same time (in this case, a string of length 5, constructed
using string multiplication as in Listing 6.14).

You may be able to guess the code for enforcing a minimum length con-
straint by referring to the corresponding maximum validation for the user’s name
(Listing 6.16):

validates :password, length: { minimum: 6 }

Combining this with a presence validation (Section 6.2.2) to ensure nonblank
passwords, this leads to the User model shown in Listing 6.43. (It turns out the

346 CHAPTER 6. MODELING USERS

has_secure_password method includes a presence validation, but unfortu-
nately it applies only to records with empty passwords, which allows users to
create invalid passwords like ' ' (six spaces).)

Listing 6.43: The complete implementation for secure passwords. green
app/models/user.rb

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

end

At this point, the tests should be green:

Listing 6.44: green
$ rails test:models

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that a user with valid name and email but a too-short password
isn’t valid.

2. What are the associated error messages?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.3. ADDING A SECURE PASSWORD 347

6.3.4 Creating and authenticating a user
Now that the basic User model is complete, we’ll create a user in the database
as preparation for making a page to show the user’s information in Section 7.1.
We’ll also take a more concrete look at the effects of adding has_secure_-

password to the User model, including an examination of the important au-
thenticate method.

Since users can’t yet sign up for the sample application through the web—
that’s the goal of Chapter 7—we’ll use the Rails console to create a new user
by hand. For convenience, we’ll use the create method discussed in Sec-
tion 6.1.3, but in the present case we’ll take care not to start in a sandbox so that
the resulting user will be saved to the database. This means starting an ordinary
rails console session and then creating a user with a valid name and email
address together with a valid password and matching confirmation:

$ rails console

>> User.create(name: "Michael Hartl", email: "michael@example.com",

?> password: "foobar", password_confirmation: "foobar")

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 03:15:38", updated_at: "2019-08-22 03:15:38",

password_digest: [FILTERED]>

To check that this worked, let’s look at the resulting users table in the devel-
opment database using DB Browser for SQLite, as shown in Figure 6.10.22 (If
you’re using the cloud IDE, you should download the database file as in Fig-
ure 6.5.) Note that the columns correspond to the attributes of the data model
defined in Figure 6.9.

Returning to the console, we can see the effect of has_secure_password
from Listing 6.43 by looking at the password_digest attribute:

22If for any reason something went wrong, you can always reset the database as follows:
1. Quit the console.
2. Run $ rm -f development.sqlite3 at the command line to remove the database. (We’ll learn a

more elegant method for doing this in Chapter 7.)
3. Re-run the migrations using $ rails db:migrate.
4. Restart the console.

348 CHAPTER 6. MODELING USERS

Figure 6.10: A user row in the SQLite database db/development.sqlite3.

6.3. ADDING A SECURE PASSWORD 349

>> user = User.find_by(email: "michael@example.com")

>> user.password_digest

=> "$2a$12$WgjER5ovLFjC2hmCItmbTe6nAXzT3bO66GiAQ83Ev03eVp32zyNYG"

This is the hashed version of the password ("foobar") used to initialize the
user object. Because it’s constructed using bcrypt, it is computationally im-
practical to use the digest to discover the original password.23

As noted in Section 6.3.1, has_secure_password automatically adds an
authenticate method to the corresponding model objects. This method de-
termines if a given password is valid for a particular user by computing its digest
and comparing the result to password_digest in the database. In the case of
the user we just created, we can try a couple of invalid passwords as follows:

>> user.authenticate("not_the_right_password")

false

>> user.authenticate("foobaz")

false

Here user.authenticate returns false for invalid password. If we instead
authenticate with the correct password, authenticate returns the user itself:

>> user.authenticate("foobar")

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 03:15:38", updated_at: "2019-08-22 03:15:38",

password_digest: [FILTERED]>

In Chapter 8, we’ll use the authenticate method to sign registered users into
our site. In fact, it will turn out not to be important to us that authenticate
returns the user itself; all that will matter is that it returns a value that is true
in a boolean context. Recalling from Section 4.2.2 that !! converts an object to
its corresponding boolean value, we can see that user.authenticate does
the job nicely:

23By design, the bcrypt algorithm produces a salted hash, which protects against two important classes of attacks
(dictionary attacks and rainbow table attacks).

https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Dictionary_attack
https://en.wikipedia.org/wiki/Rainbow_table

350 CHAPTER 6. MODELING USERS

>> !!user.authenticate("foobar")

=> true

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Quit and restart the console, and then find the user created in this section.

2. Try changing the name by assigning a new name and calling save. Why
didn’t it work?

3. Update user’s name to use your name. Hint: The necessary technique
is covered in Section 6.1.5.

6.4 Conclusion
Starting from scratch, in this chapter we created a working User model with
name, email, and password attributes, together with validations enforcing sev-
eral important constraints on their values. In addition, we have the ability to se-
curely authenticate users using a given password. This is a remarkable amount
of functionality for only twelve lines of code.

In Chapter 7, we’ll make a working signup form to create new users, to-
gether with a page to display each user’s information. In Chapter 8, we’ll then
use the authentication machinery from Section 6.3 to let users log into the site.

If you’re using Git, now would be a good time to commit if you haven’t
done so in a while:

$ rails test

$ git add -A

$ git commit -m "Make a basic User model (including secure passwords)"

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.4. CONCLUSION 351

Then merge back into the master branch and push to the remote repository:

$ git checkout master

$ git merge modeling-users

$ git push

To get the User model working in production, we need to run the migrations
at Heroku, which we can do with heroku run:

$ rails test

$ git push heroku

$ heroku run rails db:migrate

We can verify that this worked by running a console in production:

$ heroku run rails console --sandbox

>> User.create(name: "Michael Hartl", email: "michael@example.com",

?> password: "foobar", password_confirmation: "foobar")

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 03:20:06", updated_at: "2019-08-22 03:20:06",

password_digest: [FILTERED]>

6.4.1 What we learned in this chapter
• Migrations allow us to modify our application’s data model.

• Active Record comes with a large number of methods for creating and
manipulating data models.

• Active Record validations allow us to place constraints on the data in our
models.

• Common validations include presence, length, and format.

• Regular expressions are cryptic but powerful.

352 CHAPTER 6. MODELING USERS

• Defining a database index improves lookup efficiency while allowing en-
forcement of uniqueness at the database level.

• We can add a secure password to a model using the built-in has_se-

cure_password method.

