
368 CHAPTER 7. SIGN UP

bcrypt, you may have to do so at this time. This sort of thing is a good applica-
tion of technical sophistication (Box 1.2).) Note that the debug information in
Figure 7.6 confirms the value of params[:id]:

---

action: show

controller: users

id: '1'

This is why the code

User.find(params[:id])

in Listing 7.5 finds the user with id 1.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Using embedded Ruby, add the created_at and updated_at “magic
column” attributes to the user show page from Listing 7.4.

2. Using embedded Ruby, add Time.now to the user show page. What hap-
pens when you refresh the browser?

7.1.3 Debugger
We saw in Section 7.1.2 how the information in the debug could help us un-
derstand what’s going on in our application, but there’s also a more direct way
to get debugging information using the byebug gem (Listing 3.2). To see how
it works, we just need to add a line consisting of debugger to our application,
as shown in Listing 7.6.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


7.1. SHOWING USERS 369

Figure 7.6: The user show page after adding a Users resource.



370 CHAPTER 7. SIGN UP

Figure 7.7: The byebug prompt in the Rails server.

Listing 7.6: The Users controller with a debugger.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

debugger

end

def new

end

end

Now, when we visit /users/1, the Rails server shows a byebug prompt (Fig-
ure 7.7):

(byebug)

We can treat byebug like a Rails console, issuing commands to figure out
the state of the application:



7.1. SHOWING USERS 371

(byebug) @user.name

"Michael Hartl"

(byebug) @user.email

"michael@example.com"

(byebug) params[:id]

"1"

To release the prompt and continue execution of the application, press Ctrl-D,
then remove the debugger line from the show action (Listing 7.7).

Listing 7.7: The Users controller with the debugger line removed.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

end

end

Whenever you’re confused about something in a Rails application, it’s a
good practice to put debugger close to the code you think might be causing
the trouble. Inspecting the state of the system using byebug is a powerful
method for tracking down application errors and interactively debugging your
application.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. With the debugger in the show action as in Listing 7.6, hit /users/1. Use
puts to display the value of the YAML form of the params hash. Hint:
Refer to the relevant exercise in Section 7.1.1. How does it compare to
the debug information shown by the debug method in the site template?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

