
372 CHAPTER 7. SIGN UP

2. Put the debugger in the User new action and hit /users/new. What is the
value of @user?

7.1.4 A Gravatar image and a sidebar
Having defined a basic user page in the previous section, we’ll now flesh it
out a little with a profile image for each user and the first cut of the user side-
bar. We’ll start by adding a “globally recognized avatar”, or Gravatar, to the
user profile.8 Gravatar is a free service that allows users to upload images and
associate them with email addresses they control. As a result, Gravatars are a
convenient way to include user profile images without going through the trouble
of managing image upload, cropping, and storage; all we need to do is construct
the proper Gravatar image URL using the user’s email address and the corre-
sponding Gravatar image will automatically appear. (We’ll learn how to handle
custom image upload in Section 13.4.)

Our plan is to define a gravatar_for helper function to return a Gravatar
image for a given user, as shown in Listing 7.8.

Listing 7.8: The user show view with name and Gravatar.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<h1>

<%= gravatar_for @user %>

<%= @user.name %>

</h1>

By default, methods defined in any helper file are automatically available
in any view, but for convenience we’ll put the gravatar_for method in the
file for helpers associated with the Users controller. As noted in the Gravatar
documentation, Gravatar URLs are based on an MD5 hash of the user’s email

8In Hinduism, an avatar is the manifestation of a deity in human or animal form. By extension, the term avatar
is commonly used to mean some kind of personal representation, especially in a virtual environment. (In the
context of Twitter and other social media, the term avi has gained currency, which is likely a mutated form of
avatar.)

https://gravatar.com/
http://en.gravatar.com/site/implement/hash/
http://en.gravatar.com/site/implement/hash/
https://en.wikipedia.org/wiki/MD5

7.1. SHOWING USERS 373

address. In Ruby, the MD5 hashing algorithm is implemented using the hex-
digest method, which is part of the Digest library:

>> email = "MHARTL@example.COM"

>> Digest::MD5::hexdigest(email.downcase)

=> "1fda4469bcbec3badf5418269ffc5968"

Since email addresses are case-insensitive (Section 6.2.4) but MD5 hashes are
not, we’ve used the downcase method to ensure that the argument to hex-

digest is all lower-case. (Because of the email downcasing callback in List-
ing 6.32, this will never make a difference in this tutorial, but it’s a good prac-
tice in case the gravatar_for ever gets used on email addresses from other
sources.) The resulting gravatar_for helper appears in Listing 7.9.

Listing 7.9: Defining a gravatar_for helper method.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.

def gravatar_for(user)

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)

gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}"

image_tag(gravatar_url, alt: user.name, class: "gravatar")

end

end

The code in Listing 7.9 returns an image tag for the Gravatar with a gravatar
CSS class and alt text equal to the user’s name (which is especially convenient
for visually impaired users using a screen reader).

The profile page appears as in Figure 7.8, which shows the default Gravatar
image, which appears because michael@example.com isn’t a real email ad-
dress. (In fact, as you can see by visiting it, the example.com domain is reserved
for examples like this one.)

To get our application to display a custom Gravatar, we’ll use update_-

attributes (Section 6.1.5) to change the user’s email to something I control:9
9The password confirmation isn’t technically necessary here because has_secure_password (Section 6.3.1)

https://www.example.com/

374 CHAPTER 7. SIGN UP

Figure 7.8: The user profile page with the default Gravatar.

7.1. SHOWING USERS 375

$ rails console

>> user = User.first

>> user.update(name: "Example User",

?> email: "example@railstutorial.org",

?> password: "foobar",

?> password_confirmation: "foobar")

=> true

Here we’ve assigned the user the email address example@railstutorial-
.org, which I’ve associated with the Rails Tutorial logo, as seen in Figure 7.9.

The last element needed to complete the mockup from Figure 7.1 is the
initial version of the user sidebar. We’ll implement it using the aside tag,
which is used for content (such as sidebars) that complements the rest of the
page but can also stand alone. We include row and col-md-4 classes, which
are both part of Bootstrap. The code for the modified user show page appears
in Listing 7.10.

Listing 7.10: Adding a sidebar to the user show view.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<h1>

<%= gravatar_for @user %>

<%= @user.name %>

</h1>

</section>

</aside>

</div>

With the HTML elements and CSS classes in place, we can style the profile
page (including the sidebar and the Gravatar) with the SCSS shown in List-
ing 7.11.10 (Note the nesting of the table CSS rules, which works only because
of the Sass engine used by the asset pipeline.) The resulting page is shown in
Figure 7.10.
actually allows the confirmation to be nil. The reason is so that apps that don’t need password confirmation can
simply omit the confirmation field. We do want a confirmation, though, so we’ll include such a field in Listing 7.15.

10Listing 7.11 includes the .gravatar_edit class, which we’ll put to work in Chapter 10.

376 CHAPTER 7. SIGN UP

Figure 7.9: The user show page with a custom Gravatar.

7.1. SHOWING USERS 377

Listing 7.11: SCSS for styling the user show page, including the sidebar.
app/assets/stylesheets/custom.scss

.

.

.

/* sidebar */

aside {

section.user_info {

margin-top: 20px;

}

section {

padding: 10px 0;

margin-top: 20px;

&:first-child {

border: 0;

padding-top: 0;

}

span {

display: block;

margin-bottom: 3px;

line-height: 1;

}

h1 {

font-size: 1.4em;

text-align: left;

letter-spacing: -1px;

margin-bottom: 3px;

margin-top: 0px;

}

}

}

.gravatar {

float: left;

margin-right: 10px;

}

.gravatar_edit {

margin-top: 15px;

}

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

378 CHAPTER 7. SIGN UP

Figure 7.10: The user show page with a sidebar and CSS.

7.1. SHOWING USERS 379

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Associate a Gravatar with your primary email address if you haven’t al-
ready. What is the MD5 hash associated with the image?

2. Verify that the code in Listing 7.12 allows the gravatar_for helper
defined in Section 7.1.4 to take an optional size parameter, allowing
code like gravatar_for user, size: 50 in the view. (We’ll put
this improved helper to use in Section 10.3.1.)

3. The options hash used in the previous exercise is still commonly used,
but as of Ruby 2.0 we can use keyword arguments instead. Confirm that
the code in Listing 7.13 can be used in place of Listing 7.12. What are
the diffs between the two?

Listing 7.12: Adding an options hash in the gravatar_for helper.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.

def gravatar_for(user, options = { size: 80 })

size = options[:size]

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)

gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}?s=#{size}"

image_tag(gravatar_url, alt: user.name, class: "gravatar")

end

end

Listing 7.13: Using keyword arguments in the gravatar_for helper.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.

def gravatar_for(user, size: 80)

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)

gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}?s=#{size}"

image_tag(gravatar_url, alt: user.name, class: "gravatar")

end

end

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

380 CHAPTER 7. SIGN UP

Figure 7.11: The current state of the signup page /signup.

7.2 Signup form

Now that we have a working (though not yet complete) user profile page, we’re
ready to make a signup form for our site. We saw in Figure 5.11 (shown again
in Figure 7.11) that the signup page is currently blank: useless for signing up
new users. The goal of this section is to start changing this sad state of affairs
by producing the signup form mocked up in Figure 7.12.

