
7.5. PROFESSIONAL-GRADE DEPLOYMENT 425

Listing 7.35: The configuration file for the production webserver.
config/puma.rb

Puma configuration file.

max_threads_count = ENV.fetch("RAILS_MAX_THREADS") { 5 }

min_threads_count = ENV.fetch("RAILS_MIN_THREADS") { max_threads_count }

threads min_threads_count, max_threads_count

port ENV.fetch("PORT") { 3000 }

environment ENV.fetch("RAILS_ENV") { ENV['RACK_ENV'] || "development" }

pidfile ENV.fetch("PIDFILE") { "tmp/pids/server.pid" }

workers ENV.fetch("WEB_CONCURRENCY") { 2 }

preload_app!

plugin :tmp_restart

We also need to make a so-called Procfile to tell Heroku to run a Puma
process in production, as shown in Listing 7.36. The Procfile should be
created in your application’s root directory (i.e., in the same directory as the
Gemfile).

Listing 7.36: Defining a Procfile for Puma.
./Procfile

web: bundle exec puma -C config/puma.rb

7.5.3 Production database configuration
The final step in our production deployment is properly configuring the pro-
duction database, which (as mentioned briefly in Section 2.3.5) is PostgreSQL.
My testing indicates that PostgreSQL actually works on Heroku without any
configuration, but the official Heroku documentation recommends explicit con-
figuration nonetheless, so we’ll err on the side of caution and include it.

The actual change is easy: all we have to do is update the production

section of the database configuration file, config/database.yml. The result,
which I adapted from the Heroku docs, is shown in Listing 7.37.

https://www.postgresql.org/
https://devcenter.heroku.com/articles/getting-started-with-rails5

426 CHAPTER 7. SIGN UP

Listing 7.37: Configuring the database for production.
config/database.yml

SQLite version 3.x

gem install sqlite3

#

Ensure the SQLite 3 gem is defined in your Gemfile

gem 'sqlite3'

#

default: &default

adapter: sqlite3

pool: 5

timeout: 5000

development:

<<: *default

database: db/development.sqlite3

Warning: The database defined as "test" will be erased and

re-generated from your development database when you run "rake".

Do not set this db to the same as development or production.

test:

<<: *default

database: db/test.sqlite3

production:

adapter: postgresql

encoding: unicode

For details on connection pooling, see Rails configuration guide

https://guides.rubyonrails.org/configuring.html#database-pooling

pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>

database: sample_app_production

username: sample_app

password: <%= ENV['SAMPLE_APP_DATABASE_PASSWORD'] %>

7.5.4 Production deployment

With the production webserver and database configuration completed, we’re
ready to commit and deploy:15

15We haven’t changed the data model in this chapter, so running the migration at Heroku shouldn’t be necessary,
but only if you followed the steps in Section 6.4. Because several readers reported having trouble, I’ve added
heroku run rails db:migrate as a final step just to be safe.

