
424 CHAPTER 7. SIGN UP

.

.

Force all access to the app over SSL, use Strict-Transport-Security,

and use secure cookies.

config.force_ssl = true

.

.

.

end

At this stage, we need to set up SSL on the remote server. Setting up a pro-
duction site to use SSL involves purchasing and configuring an SSL certificate
for your domain. That’s a lot of work, though, and luckily we won’t need it
here: for an application running on a Heroku domain (such as the sample appli-
cation), we can piggyback on Heroku’s SSL certificate. As a result, when we
deploy the application in Section 7.5.2, SSL will automatically be enabled. (If
you want to run SSL on a custom domain, such as www.example.com, refer to
Heroku’s documentation on SSL.)

7.5.2 Production webserver
Having added SSL, we now need to configure our application to use a web-
server suitable for production applications. By default, Heroku uses a pure-
Ruby webserver called WEBrick, which is easy to set up and run but isn’t good
at handling significant traffic. As a result, WEBrick isn’t suitable for produc-
tion use, so we’ll replace WEBrick with Puma, an HTTP server that is capable
of handling a large number of incoming requests.

To add the new webserver, we simply follow the Heroku Puma documen-
tation. The first step is to include the puma gem in our Gemfile, but as of
Rails 5 Puma is included by default (Listing 3.2). This means we can skip right
to the second step, which is to replace the default contents of the file con-

fig/puma.rb with the configuration shown in Listing 7.35. The code in List-
ing 7.35 comes straight from the Heroku documentation,14 and there is no need
to understand it (Box 1.2).

14Listing 7.35 changes the formatting slightly so that the code fits in the standard 80 columns.

http://devcenter.heroku.com/articles/ssl
https://devcenter.heroku.com/articles/ruby-default-web-server
https://devcenter.heroku.com/articles/ruby-default-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server

7.5. PROFESSIONAL-GRADE DEPLOYMENT 425

Listing 7.35: The configuration file for the production webserver.
config/puma.rb

Puma configuration file.

max_threads_count = ENV.fetch("RAILS_MAX_THREADS") { 5 }

min_threads_count = ENV.fetch("RAILS_MIN_THREADS") { max_threads_count }

threads min_threads_count, max_threads_count

port ENV.fetch("PORT") { 3000 }

environment ENV.fetch("RAILS_ENV") { ENV['RACK_ENV'] || "development" }

pidfile ENV.fetch("PIDFILE") { "tmp/pids/server.pid" }

workers ENV.fetch("WEB_CONCURRENCY") { 2 }

preload_app!

plugin :tmp_restart

We also need to make a so-called Procfile to tell Heroku to run a Puma
process in production, as shown in Listing 7.36. The Procfile should be
created in your application’s root directory (i.e., in the same directory as the
Gemfile).

Listing 7.36: Defining a Procfile for Puma.
./Procfile

web: bundle exec puma -C config/puma.rb

7.5.3 Production database configuration
The final step in our production deployment is properly configuring the pro-
duction database, which (as mentioned briefly in Section 2.3.5) is PostgreSQL.
My testing indicates that PostgreSQL actually works on Heroku without any
configuration, but the official Heroku documentation recommends explicit con-
figuration nonetheless, so we’ll err on the side of caution and include it.

The actual change is easy: all we have to do is update the production

section of the database configuration file, config/database.yml. The result,
which I adapted from the Heroku docs, is shown in Listing 7.37.

https://www.postgresql.org/
https://devcenter.heroku.com/articles/getting-started-with-rails5

