
390 CHAPTER 7. SIGN UP

7.3 Unsuccessful signups
Although we’ve briefly examined the HTML for the form in Figure 7.13 (shown
in Listing 7.17), we haven’t yet covered any details, and the form is best un-
derstood in the context of signup failure. In this section, we’ll create a signup
form that accepts an invalid submission and re-renders the signup page with a
list of errors, as mocked up in Figure 7.15.

7.3.1 A working form
Recall from Section 7.1.2 that adding resources :users to the routes.rb
file (Listing 7.3) automatically ensures that our Rails application responds to the
RESTful URLs from Table 7.1. In particular, it ensures that a POST request to
/users is handled by the create action. Our strategy for the create action is
to use the form submission to make a new user object using User.new, try (and
fail) to save that user, and then render the signup page for possible resubmission.
Let’s get started by reviewing the code for the signup form:

<form action="/users" class="new_user" id="new_user" method="post">

As noted in Section 7.2.2, this HTML issues a POST request to the /users URL.
Our first step toward a working signup form is adding the code in List-

ing 7.18. This listing includes a second use of the render method, which we
first saw in the context of partials (Section 5.1.3); as you can see, renderworks
in controller actions as well. Note that we’ve taken this opportunity to intro-
duce an if-else branching structure, which allows us to handle the cases of
failure and success separately based on the value of @user.save, which (as
we saw in Section 6.1.3) is either true or false depending on whether or not
the save succeeds.

Listing 7.18: A create action that can handle signup failure.
app/controllers/users_controller.rb

7.3. UNSUCCESSFUL SIGNUPS 391

Figure 7.15: A mockup of the signup failure page.

392 CHAPTER 7. SIGN UP

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

def create

@user = User.new(params[:user]) # Not the final implementation!

if @user.save

Handle a successful save.

else

render 'new'

end

end

end

Note the comment: this is not the final implementation. But it’s enough to get
us started, and we’ll finish the implementation in Section 7.3.2.

The best way to understand how the code in Listing 7.18 works is to submit
the form with some invalid signup data. The result appears in Figure 7.16, and
the full debug information appears in Figure 7.17.

To get a better picture of how Rails handles the submission, let’s take a
closer look at the user part of the parameters hash from the debug information
(Figure 7.17):

"user" => { "name" => "Foo Bar",

"email" => "foo@invalid",

"password" => "[FILTERED]",

"password_confirmation" => "[FILTERED]"

}

This hash gets passed to the Users controller as part of params, and we saw
starting in Section 7.1.2 that the params hash contains information about each
request. In the case of a URL like /users/1, the value of params[:id] is the
id of the corresponding user (1 in this example). In the case of posting to the
signup form, params instead contains a hash of hashes, a construction we first

7.3. UNSUCCESSFUL SIGNUPS 393

Figure 7.16: Signup failure upon submitting invalid data.

Figure 7.17: Signup failure debug information.

394 CHAPTER 7. SIGN UP

saw in Section 4.3.3, which introduced the strategically named params vari-
able in a console session. The debug information above shows that submitting
the form results in a user hash with attributes corresponding to the submitted
values, where the keys come from the name attributes of the input tags seen
in Listing 7.17. For example, the value of

<input id="user_email" name="user[email]" type="email" />

with name "user[email]" is precisely the email attribute of the user hash.
Although the hash keys appear as strings in the debug output, we can ac-

cess them in the Users controller as symbols, so that params[:user] is the
hash of user attributes—in fact, exactly the attributes needed as an argument to
User.new, as first seen in Section 4.4.5 and appearing in Listing 7.18. This
means that the line

@user = User.new(params[:user])

is mostly equivalent to

@user = User.new(name: "Foo Bar", email: "foo@invalid",

password: "foo", password_confirmation: "bar")

In previous versions of Rails, using

@user = User.new(params[:user])

actually worked, but it was insecure by default and required a careful and error-
prone procedure to prevent malicious users from potentially modifying the ap-
plication database. In Rails version later than 4.0, this code raises an error (as
seen in Figure 7.16 and Figure 7.17 above), which means it is secure by default.

7.3. UNSUCCESSFUL SIGNUPS 395

7.3.2 Strong parameters
We mentioned briefly in Section 4.4.5 the idea of mass assignment, which in-
volves initializing a Ruby variable using a hash of values, as in

@user = User.new(params[:user]) # Not the final implementation!

The comment included in Listing 7.18 and reproduced above indicates that this
is not the final implementation. The reason is that initializing the entire params
hash is extremely dangerous—it arranges to pass to User.new all data submit-
ted by a user. In particular, suppose that, in addition to the current attributes, the
User model included an admin attribute used to identify administrative users
of the site. (We will implement just such an attribute in Section 10.4.1.) The
way to set such an attribute to true is to pass the value admin='1' as part
of params[:user], a task that is easy to accomplish using a command-line
HTTP client such as curl. The result would be that, by passing in the en-
tire params hash to User.new, we would allow any user of the site to gain
administrative access by including admin='1' in the web request.

Previous versions of Rails used a method called attr_accessible in the
model layer to solve this problem, and you may still see that method in legacy
Rails applications, but as of Rails 4.0 the preferred technique is to use so-called
strong parameters in the controller layer. This allows us to specify which pa-
rameters are required and which ones are permitted. In addition, passing in a
raw params hash as above will cause an error to be raised, so that Rails appli-
cations are now immune to mass assignment vulnerabilities by default.

In the present instance, we want to require the params hash to have a :user
attribute, and we want to permit the name, email, password, and password con-
firmation attributes (but no others). We can accomplish this as follows:

params.require(:user).permit(:name, :email, :password, :password_confirmation)

This code returns a version of the params hash with only the permitted at-
tributes (while raising an error if the :user attribute is missing).

396 CHAPTER 7. SIGN UP

To facilitate the use of these parameters, it’s conventional to introduce an
auxiliary method called user_params (which returns an appropriate initial-
ization hash) and use it in place of params[:user]:

@user = User.new(user_params)

Since user_params will only be used internally by the Users controller and
need not be exposed to external users via the web, we’ll make it private using
Ruby’s private keyword, as shown in Listing 7.19. (We’ll discuss private
in more detail in Section 9.1.)

Listing 7.19: Using strong parameters in the create action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

Handle a successful save.

else

render 'new'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

By the way, the extra level of indentation on the user_params method is de-
signed to make it visually apparent which methods are defined after private.
(Experience shows that this is a wise practice; in classes with a large number of
methods, it is easy to define a private method accidentally, which leads to con-
siderable confusion when it isn’t available to call on the corresponding object.)

7.3. UNSUCCESSFUL SIGNUPS 397

Figure 7.18: The signup form submitted with invalid information.

At this point, the signup form is working, at least in the sense that it no
longer produces an error upon submission. On the other hand, as seen in Fig-
ure 7.18, it doesn’t display any feedback on invalid submissions (apart from the
development-only debug area), which is potentially confusing. It also doesn’t
actually create a new user. We’ll fix the first issue in Section 7.3.3 and the
second in Section 7.4.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads

398 CHAPTER 7. SIGN UP

Tutorial course or to the Learn Enough All Access Bundle.

1. By hitting the URL /signup?admin=1, confirm that the admin attribute
appears in the params debug information.

7.3.3 Signup error messages
As a final step in handling failed user creation, we’ll add helpful error messages
to indicate the problems that prevented successful signup. Conveniently, Rails
automatically provides such messages based on the User model validations. For
example, consider trying to save a user with an invalid email address and with
a password that’s too short:

$ rails console

>> user = User.new(name: "Foo Bar", email: "foo@invalid",

?> password: "dude", password_confirmation: "dude")

>> user.save

=> false

>> user.errors.full_messages

=> ["Email is invalid", "Password is too short (minimum is 6 characters)"]

Here the errors.full_messages object (which we saw briefly before in
Section 6.2.2) contains an array of error messages.

As in the console session above, the failed save in Listing 7.18 generates a
list of error messages associated with the @user object. To display the mes-
sages in the browser, we’ll render an error-messages partial on the user new
page while adding the CSS class form-control (which has special meaning
to Bootstrap) to each entry field, as shown in Listing 7.20. It’s worth noting
that this error-messages partial is only a first attempt; the final version appears
in Section 13.3.2.

Listing 7.20: Code to display error messages on the signup form.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.3. UNSUCCESSFUL SIGNUPS 399

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages' %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Create my account", class: "btn btn-primary" %>

<% end %>

</div>

</div>

Notice here that we render a partial called 'shared/error_messages';
this reflects the common Rails convention of using a dedicated shared/ direc-
tory for partials expected to be used in views across multiple controllers. (We’ll
see this expectation fulfilled in Section 10.1.1.)

This means that we have to create a new app/views/shared directory
using mkdir and an error messages partial using (Table 1.1):

$ mkdir app/views/shared

We then need to create the _error_messages.html.erb partial file using
touch or the text editor as usual. The contents of the partial appear in List-
ing 7.21.

Listing 7.21: A partial for displaying form submission error messages.
app/views/shared/_error_messages.html.erb

<% if @user.errors.any? %>

<div id="error_explanation">

400 CHAPTER 7. SIGN UP

<div class="alert alert-danger">

The form contains <%= pluralize(@user.errors.count, "error") %>.

</div>

<% @user.errors.full_messages.each do |msg| %>

<%= msg %>

<% end %>

</div>

<% end %>

This partial introduces several new Rails and Ruby constructs, including two
methods for Rails error objects. The first method is count, which simply re-
turns the number of errors:

>> user.errors.count

=> 2

The other new method is any?, which (together with empty?) is one of a pair
of complementary methods:

>> user.errors.empty?

=> false

>> user.errors.any?

=> true

We see here that the empty? method, which we first saw in Section 4.2.2 in
the context of strings, also works on Rails error objects, returning true for an
empty object and false otherwise. The any? method is just the opposite of
empty?, returning true if there are any elements present and false otherwise.
(By the way, all of these methods—count, empty?, and any?—work on Ruby
arrays as well. We’ll put this fact to good use starting in Section 13.2.)

The other new idea is the pluralize text helper, which is available in the
console via the helper object:

7.3. UNSUCCESSFUL SIGNUPS 401

>> helper.pluralize(1, "error")

=> "1 error"

>> helper.pluralize(5, "error")

=> "5 errors"

We see here that pluralize takes an integer argument and then returns the
number with a properly pluralized version of its second argument. Underlying
this method is a powerful inflector that knows how to pluralize a large number
of words, including many with irregular plurals:

>> helper.pluralize(2, "woman")

=> "2 women"

>> helper.pluralize(3, "erratum")

=> "3 errata"

As a result of its use of pluralize, the code

<%= pluralize(@user.errors.count, "error") %>

returns "0 errors", "1 error", "2 errors", and so on, depending on
how many errors there are, thereby avoiding ungrammatical phrases such as
"1 errors" (a distressingly common mistake in both web and desktop appli-
cations).

Note that Listing 7.21 includes the CSS id error_explanation for use in
styling the error messages. (Recall from Section 5.1.2 that CSS uses the pound
sign # to style ids.) In addition, after an invalid submission Rails automatically
wraps the fields with errors in divs with the CSS class field_with_errors.
These labels then allow us to style the error messages with the SCSS shown
in Listing 7.22, which makes use of Sass’s @extend function to include the
functionality of the Bootstrap class has-error.

Listing 7.22: CSS for styling error messages.
app/assets/stylesheets/custom.scss

402 CHAPTER 7. SIGN UP

.

.

.

/* forms */

.

.

.

#error_explanation {

color: red;

ul {

color: red;

margin: 0 0 30px 0;

}

}

.field_with_errors {

@extend .has-error;

.form-control {

color: $state-danger-text;

}

}

With the code in Listing 7.20 and Listing 7.21 and the SCSS from List-
ing 7.22, helpful error messages now appear when submitting invalid signup
information, as seen in Figure 7.19. Because the messages are generated by the
model validations, they will automatically change if you ever change your mind
about, say, the format of email addresses, or the minimum length of passwords.
(Note: Because both the presence validation and the has_secure_password
validation catch the case of empty (nil) passwords, the signup form currently
produces duplicate error messages when the user submits empty passwords. We
could manipulate the error messages directly to eliminate duplicates, but luck-
ily this issue will be fixed automatically by the addition of allow_nil: true

in Section 10.1.4.)

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm by changing the minimum length of passwords to 5 that the error
message updates automatically as well.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.3. UNSUCCESSFUL SIGNUPS 403

Figure 7.19: Failed signup with error messages.

404 CHAPTER 7. SIGN UP

2. How does the URL on the unsubmitted signup form (Figure 7.13) com-
pare to the URL for a submitted signup form (Figure 7.19)? Why don’t
they match?

7.3.4 A test for invalid submission
In the days before powerful web frameworks with automated testing capabili-
ties, developers had to test forms by hand. For example, to test a signup page
manually, we would have to visit the page in a browser and then submit alter-
nately invalid and valid data, verifying in each case that the application’s behav-
ior was correct. Moreover, we would have to remember to repeat the process
any time the application changed. This process was painful and error-prone.

Happily, with Rails we can write tests to automate the testing of forms. In
this section, we’ll write one such test to verify the correct behavior upon invalid
form submission; in Section 7.4.4, we’ll write a corresponding test for valid
submission.

To get started, we first generate an integration test file for signing up users,
which we’ll call users_signup (adopting the controller convention of a plural
resource name):

$ rails generate integration_test users_signup

invoke test_unit

create test/integration/users_signup_test.rb

(We’ll use this same file in Section 7.4.4 to test a valid signup.)
The main purpose of our test is to verify that clicking the signup button

results in not creating a new user when the submitted information is invalid.
(Writing a test for the error messages is left as an exercise (Section 7.3.4).) The
way to do this is to check the count of users, and under the hood our tests will
use the count method available on every Active Record class, including User:

$ rails console

>> User.count

=> 1

7.3. UNSUCCESSFUL SIGNUPS 405

(Here User.count is 1 because of the user created in Section 6.3.4, though
it may differ if you’ve added or deleted any users in the interim.) As in Sec-
tion 5.3.4, we’ll use assert_select to test HTML elements of the relevant
pages, taking care to check only elements unlikely to change in the future.

We’ll start by visiting the signup path using get:

get signup_path

In order to test the form submission, we need to issue a POST request to the
users_path (Table 7.1), which we can do with the post function:

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

Here we’ve included the params[:user] hash expected by User.new in the
create action (Listing 7.27). (In versions of Rails before 5, params was im-
plicit, and only the user hash would be passed. This practice was deprecated
in Rails 5.0, and now the recommended method is to include the full params
hash explicitly.)

By wrapping the post in the assert_no_difference method with the
string argument 'User.count', we arrange for a comparison between Us-

er.count before and after the contents inside the assert_no_difference
block. This is equivalent to recording the user count, posting the data, and
verifying that the count is the same:

before_count = User.count

post users_path, ...

after_count = User.count

assert_equal before_count, after_count

Although the two are equivalent, using assert_no_difference is cleaner
and is more idiomatically correct Ruby.

406 CHAPTER 7. SIGN UP

It’s worth noting that the get and post steps above are technically unre-
lated, and it’s actually not necessary to get the signup path before posting to the
users path. I prefer to include both steps, though, both for conceptual clarity
and to double-check that the signup form renders without error.

Putting the above ideas together leads to the test in Listing 7.23. We’ve
also included a call to assert_template to check that a failed submission
re-renders the new action. Adding lines to check for the appearance of error
messages is left as an exercise (Section 7.3.4).

Listing 7.23: A test for an invalid signup. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

end

end

Because we wrote the application code before the integration test, the test suite
should be green:

Listing 7.24: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.4. SUCCESSFUL SIGNUPS 407

1. Write a test for the error messages implemented in Listing 7.20. How
detailed you want to make your tests is up to you; a suggested template
appears in Listing 7.25.

Listing 7.25: A template for tests of the error messages.
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

assert_select 'div#<CSS id for error explanation>'

assert_select 'div.<CSS class for field with error>'

end

.

.

.

end

7.4 Successful signups

Having handled invalid form submissions, now it’s time to complete the signup
form by actually saving a new user (if valid) to the database. First, we try to
save the user; if the save succeeds, the user’s information gets written to the
database automatically, and we then redirect the browser to show the user’s
profile (together with a friendly greeting), as mocked up in Figure 7.20. If it
fails, we simply fall back on the behavior developed in Section 7.3.

