
380 CHAPTER 7. SIGN UP

Figure 7.11: The current state of the signup page /signup.

7.2 Signup form

Now that we have a working (though not yet complete) user profile page, we’re
ready to make a signup form for our site. We saw in Figure 5.11 (shown again
in Figure 7.11) that the signup page is currently blank: useless for signing up
new users. The goal of this section is to start changing this sad state of affairs
by producing the signup form mocked up in Figure 7.12.

7.2. SIGNUP FORM 381

Figure 7.12: A mockup of the user signup page.

382 CHAPTER 7. SIGN UP

7.2.1 Using form_with
The heart of the signup page is a form for submitting the relevant signup in-
formation (name, email, password, confirmation). We can accomplish this in
Rails with the form_with helper method, which uses an Active Record object
to build a form using the object’s attributes.

Recalling that the signup page /signup is routed to the new action in the
Users controller (Listing 5.43), our first step is to create the User object required
as an argument to form_with. The resulting @user variable definition appears
in Listing 7.14.

Listing 7.14: Adding an @user variable to the new action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

end

The form itself appears as in Listing 7.15. We’ll discuss it in detail in Sec-
tion 7.2.2, but first let’s style it a little with the SCSS in Listing 7.16. (Note the
reuse of the box_sizing mixin from Listing 7.2.) Once these CSS rules have
been applied, the signup page appears as in Figure 7.13.

Listing 7.15: A form to sign up new users.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= f.label :name %>

7.2. SIGNUP FORM 383

<%= f.text_field :name %>

<%= f.label :email %>

<%= f.email_field :email %>

<%= f.label :password %>

<%= f.password_field :password %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation %>

<%= f.submit "Create my account", class: "btn btn-primary" %>

<% end %>

</div>

</div>

Listing 7.16: CSS for the signup form.
app/assets/stylesheets/custom.scss

.

.

.

/* forms */

input, textarea, select, .uneditable-input {

border: 1px solid #bbb;

width: 100%;

margin-bottom: 15px;

@include box_sizing;

}

input {

height: auto !important;

}

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm by replacing all occurrences of f with foobar that the name
of the block variable is irrelevant as far as the result is concerned. Why
might foobar nevertheless be a bad choice?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

384 CHAPTER 7. SIGN UP

Figure 7.13: The user signup form.

7.2. SIGNUP FORM 385

7.2.2 Signup form HTML
To understand the form defined in Listing 7.15, it’s helpful to break it into
smaller pieces. We’ll first look at the outer structure, which consists of em-
bedded Ruby opening with a call to form_with and closing with end:

<%= form_with(model: @user, local: true) do |f| %>

.

.

.

<% end %>

The presence of the do keyword indicates that form_with takes a block with
one variable, which we’ve called f (for “form”). Note the presence of the hash
argument local: true; by default, form_with sends a “remote” XHR re-
quest, whereas we want a regular “local” form request, mostly so that our error
messages will render properly (Section 7.3.3).

As is usually the case with Rails helpers, we don’t need to know any details
about the implementation, but what we do need to know is what the f object
does: when called with a method corresponding to an HTML form element—
such as a text field, radio button, or password field—f returns code for that
element specifically designed to set an attribute of the @user object. In other
words,

<%= f.label :name %>

<%= f.text_field :name %>

creates the HTML needed to make a labeled text field element appropriate for
setting the name attribute of a User model.

If you look at the HTML for the generated form by Ctrl-clicking and using
the “inspect element” function of your browser, the page’s source should look
something like Listing 7.17. Let’s take a moment to discuss its structure.

https://en.wikipedia.org/wiki/XMLHttpRequest
https://en.wikipedia.org/wiki/XMLHttpRequest
http://www.w3schools.com/html/html_forms.asp

386 CHAPTER 7. SIGN UP

Listing 7.17: The HTML for the form in Figure 7.13.
<form accept-charset="UTF-8" action="/users" class="new_user"

id="new_user" method="post">

<input name="authenticity_token" type="hidden"

value="NNb6+J/j46LcrgYUC60wQ2titMuJQ5lLqyAbnbAUkdo=" />

<label for="user_name">Name</label>

<input id="user_name" name="user[name]" type="text" />

<label for="user_email">Email</label>

<input id="user_email" name="user[email]" type="email" />

<label for="user_password">Password</label>

<input id="user_password" name="user[password]"

type="password" />

<label for="user_password_confirmation">Confirmation</label>

<input id="user_password_confirmation"

name="user[password_confirmation]" type="password" />

<input class="btn btn-primary" name="commit" type="submit"

value="Create my account" />

</form>

We’ll start with the internal structure of the document. Comparing List-
ing 7.15 with Listing 7.17, we see that the embedded Ruby

<%= f.label :name %>

<%= f.text_field :name %>

produces the HTML

<label for="user_name">Name</label>

<input id="user_name" name="user[name]" type="text" />

while

<%= f.label :email %>

<%= f.email_field :email %>

produces the HTML

7.2. SIGNUP FORM 387

<label for="user_email">Email</label>

<input id="user_email" name="user[email]" type="email" />

and

<%= f.label :password %>

<%= f.password_field :password %>

produces the HTML

<label for="user_password">Password</label>

<input id="user_password" name="user[password]" type="password" />

As seen in Figure 7.14, text and email fields (type="text" and
type="email") simply display their contents, whereas password fields
(type="password") obscure the input for security purposes, as seen in Fig-
ure 7.14. (The benefit of using an email field is that some systems treat it differ-
ently from a text field; for example, the code type="email" will cause some
mobile devices to display a special keyboard optimized for entering email ad-
dresses.)

As we’ll see in Section 7.4, the key to creating a user is the special name
attribute in each input:

<input id="user_name" name="user[name]" - - - />

.

.

.

<input id="user_password" name="user[password]" - - - />

These name values allow Rails to construct an initialization hash (via the pa-
rams variable) for creating users using the values entered by the user, as we’ll
see in Section 7.3.

The second important element is the form tag itself. Rails creates the form
tag using the @user object: because every Ruby object knows its own class

388 CHAPTER 7. SIGN UP

Figure 7.14: A filled-in form with text and password fields.

7.2. SIGNUP FORM 389

(Section 4.4.1), Rails figures out that @user is of class User; moreover, since
@user is a new user, Rails knows to construct a form with the post method,
which is the proper verb for creating a new object (Box 3.2):

<form action="/users" class="new_user" id="new_user" method="post">

Here the class and id attributes are largely irrelevant; what’s important is
action="/users" and method="post". Together, these constitute instruc-
tions to issue an HTTP POST request to the /users URL. We’ll see in the next
two sections what effects this has.

(You may also have noticed the code that appears just inside the form tag:

<input name="authenticity_token" type="hidden"

value="NNb6+J/j46LcrgYUC60wQ2titMuJQ5lLqyAbnbAUkdo=" />

This code, which isn’t displayed in the browser, is used internally by Rails, so
it’s not important for us to understand what it does. Briefly, it includes an au-
thenticity token, which Rails uses to thwart an attack called a cross-site request
forgery (CSRF). Knowing when it’s OK to ignore details like this is a good
mark of technical sophistication (Box 1.2).)11

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Learn Enough HTML to Be Dangerous, in which all HTML is written by
hand, doesn’t cover the form tag. Why not?

11See the Stack Overflow entry on the Rails authenticity token if you’re interested in the details of how this
works.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.learnenough.com/html
https://stackoverflow.com/questions/941594/understand-rails-authenticity-token

