
7.4. SUCCESSFUL SIGNUPS 407

1. Write a test for the error messages implemented in Listing 7.20. How
detailed you want to make your tests is up to you; a suggested template
appears in Listing 7.25.

Listing 7.25: A template for tests of the error messages.
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

assert_select 'div#<CSS id for error explanation>'

assert_select 'div.<CSS class for field with error>'

end

.

.

.

end

7.4 Successful signups

Having handled invalid form submissions, now it’s time to complete the signup
form by actually saving a new user (if valid) to the database. First, we try to
save the user; if the save succeeds, the user’s information gets written to the
database automatically, and we then redirect the browser to show the user’s
profile (together with a friendly greeting), as mocked up in Figure 7.20. If it
fails, we simply fall back on the behavior developed in Section 7.3.

408 CHAPTER 7. SIGN UP

Figure 7.20: A mockup of successful signup.

7.4. SUCCESSFUL SIGNUPS 409

Figure 7.21: The frozen page on valid signup submission.

7.4.1 The finished signup form
To complete a working signup form, we need to fill in the commented-out sec-
tion in Listing 7.19 with the appropriate behavior. Currently, the form simply
freezes on valid submission, as indicated by the subtle color change in the sub-
mission button (Figure 7.21), although this behavior may be system-dependent.
This is because the default behavior for a Rails action is to render the corre-
sponding view, and there isn’t a view template corresponding to the create

action (Figure 7.22).
Although it’s possible to render a template for the create action, the usual

practice is to redirect to a different page instead when the creation is successful.

410 CHAPTER 7. SIGN UP

Figure 7.22: The create template error in the server log.

In particular, we’ll follow the common convention of redirecting to the newly
created user’s profile, although the root path would also work. The application
code, which introduces the redirect_to method, appears in Listing 7.26.

Listing 7.26: The user create action with a save and a redirect.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

redirect_to @user

else

render 'new'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

Note that we’ve written

redirect_to @user

where we could have used the equivalent

7.4. SUCCESSFUL SIGNUPS 411

redirect_to user_url(@user)

This is because Rails automatically infers from redirect_to @user that we
want to redirect to user_url(@user).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the Rails console, verify that a user is in fact created when submit-
ting valid information.

2. Confirm by updating Listing 7.26 and submitting a valid user that re-
direct_to user_url(@user) has the same effect as redirect_to
@user.

7.4.2 The flash
With the code in Listing 7.26, our signup form is actually working, but before
submitting a valid registration in a browser we’re going to add a bit of polish
common in web applications: a message that appears on the subsequent page
(in this case, welcoming our new user to the application) and then disappears
upon visiting a second page or on page reload.

The Rails way to display a temporary message is to use a special method
called the flash, which we can treat like a hash. Rails adopts the convention of
a :success key for a message indicating a successful result (Listing 7.27).

Listing 7.27: Adding a flash message to user signup.
app/controllers/users_controller.rb

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

412 CHAPTER 7. SIGN UP

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

flash[:success] = "Welcome to the Sample App!"

redirect_to @user

else

render 'new'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

By assigning a message to the flash, we are now in a position to display
the message on the first page after the redirect. Our method is to iterate through
the flash and insert all relevant messages into the site layout. You may recall
the console example in Section 4.3.3, where we saw how to iterate through a
hash using the strategically named flash variable (Listing 7.28).

Listing 7.28: Iterating through a flash hash in the console.
$ rails console

>> flash = { success: "It worked!", danger: "It failed." }

=> {:success=>"It worked!", danger: "It failed."}

>> flash.each do |key, value|

?> puts "#{key}"

?> puts "#{value}"

>> end

success

It worked!

danger

It failed.

By following this pattern, we can arrange to display the contents of the flash
site-wide using code like this:

7.4. SUCCESSFUL SIGNUPS 413

<% flash.each do |message_type, message| %>

<div class="alert alert-<%= message_type %>"><%= message %></div>

<% end %>

(This code is a particularly ugly and difficult-to-read combination of HTML
and ERb; making it prettier is left as an exercise (Section 7.4.4).) Here the
embedded Ruby

alert-<%= message_type %>

makes a CSS class corresponding to the type of message, so that for a :suc-
cess message the class is

alert-success

(The key :success is a symbol, but embedded Ruby automatically converts it
to the string "success" before inserting it into the template.) Using a different
class for each key allows us to apply different styles to different kinds of mes-
sages. For example, in Section 8.1.4 we’ll use flash[:danger] to indicate
a failed login attempt.12 (In fact, we’ve already used alert-danger once, to
style the error message div in Listing 7.21.) Bootstrap CSS supports styling
for four such flash classes for increasingly urgent message types (success,
info, warning, and danger), and we’ll find occasion to use all of them in the
course of developing the sample application (info in Section 11.2, warning
in Section 11.3, and danger for the first time in Section 8.1.4).

Because the message is also inserted into the template, the full HTML result
for

flash[:success] = "Welcome to the Sample App!"

appears as follows:
12Actually, we’ll use the closely related flash.now, but we’ll defer that subtlety until we need it.

414 CHAPTER 7. SIGN UP

<div class="alert alert-success">Welcome to the Sample App!</div>

Putting the embedded Ruby discussed above into the site layout leads to the
code in Listing 7.29.

Listing 7.29: Adding the contents of the flash variable to the site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

.

.

.

<body>

<%= render 'layouts/header' %>

<div class="container">

<% flash.each do |message_type, message| %>

<div class="alert alert-<%= message_type %>"><%= message %></div>

<% end %>

<%= yield %>

<%= render 'layouts/footer' %>

<%= debug(params) if Rails.env.development? %>

</div>

.

.

.

</body>

</html>

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In the console, confirm that you can use interpolation (Section 4.2.1)
to interpolate a raw symbol. For example, what is the return value of
"#{:success}"?

2. How does the previous exercise relate to the flash iteration shown in List-
ing 7.28?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.4. SUCCESSFUL SIGNUPS 415

7.4.3 The first signup
We can see the result of all this work by signing up the first user for the sam-
ple app. Even though previous submissions didn’t work properly (as shown in
Figure 7.21), the user.save line in the Users controller still works, so users
might still have been created. To clear them out, we’ll reset the database as
follows:

$ rails db:migrate:reset

On some systems you might have to restart the webserver (using Ctrl-C) for the
changes to take effect (Box 1.2).

We’ll create the first user with the name “Rails Tutorial” and email address
“example@railstutorial.org”, as shown in Figure 7.23). The resulting page
(Figure 7.24) shows a friendly flash message upon successful signup, including
nice green styling for the success class, which comes included with the Boot-
strap CSS framework from Section 5.1.2. Then, upon reloading the user show
page, the flash message disappears as promised (Figure 7.25).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the Rails console, find by the email address to double-check that
the new user was actually created. The result should look something like
Listing 7.30.

2. Create a new user with your primary email address. Verify that the Gra-
vatar correctly appears.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

416 CHAPTER 7. SIGN UP

Figure 7.23: Filling in the information for the first signup.

7.4. SUCCESSFUL SIGNUPS 417

Figure 7.24: The results of a successful user signup, with flash message.

418 CHAPTER 7. SIGN UP

Figure 7.25: The flash-less profile page after a browser reload.

7.4. SUCCESSFUL SIGNUPS 419

Listing 7.30: Finding the newly created user in the database.
$ rails console

>> User.find_by(email: "example@railstutorial.org")

=> #<User id: 1, name: "Rails Tutorial", email: "example@railstutorial.

org", created_at: "2016-05-31 17:17:33", updated_at: "2016-05-31 17:17:33",

password_digest: "$2a$10$8MaeHdnOhZvMk3GmFdmpPOeG6a7u7/k2Z9TMjOanC9G...">

7.4.4 A test for valid submission
Before moving on, we’ll write a test for valid submission to verify our applica-
tion’s behavior and catch regressions. As with the test for invalid submission
in Section 7.3.4, our main purpose is to verify the contents of the database. In
this case, we want to submit valid information and then confirm that a user was
created. In analogy with Listing 7.23, which used

assert_no_difference 'User.count' do

post users_path, ...

end

here we’ll use the corresponding assert_difference method:

assert_difference 'User.count', 1 do

post users_path, ...

end

As with assert_no_difference, the first argument is the string 'User.-

count', which arranges for a comparison between User.count before and
after the contents of the assert_difference block. The second (optional)
argument specifies the size of the difference (in this case, 1).

Incorporating assert_difference into the file from Listing 7.23 yields
the test shown in Listing 7.31. Note that we’ve used the follow_redirect!
method after posting to the users path. This simply arranges to follow the redi-
rect after submission, resulting in a rendering of the 'users/show' template.
(It’s probably a good idea to write a test for the flash as well, which is left as an
exercise (Section 7.4.4).)

420 CHAPTER 7. SIGN UP

Listing 7.31: A test for a valid signup. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

.

.

.

test "valid signup information" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

follow_redirect!

assert_template 'users/show'

end

end

Note that Listing 7.31 also verifies that the user show template renders fol-
lowing successful signup. For this test to work, it’s necessary for the Users
routes (Listing 7.3), the Users show action (Listing 7.5), and the show.html.-
erb view (Listing 7.8) to work correctly. As a result, the one line

assert_template 'users/show'

is a sensitive test for almost everything related to a user’s profile page. This sort
of end-to-end coverage of important application features illustrates one reason
why integration tests are so useful.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.4. SUCCESSFUL SIGNUPS 421

1. Write a test for the flash implemented in Section 7.4.2. How detailed
you want to make your tests is up to you; a suggested ultra-minimalist
template appears in Listing 7.32, which you should complete by replacing
FILL_INwith the appropriate code. (Even testing for the right key, much
less the text, is likely to be brittle, so I prefer to test only that the flash
isn’t empty.)

2. As noted above, the flash HTML in Listing 7.29 is ugly. Verify by running
the test suite that the cleaner code in Listing 7.33, which uses the Rails
content_tag helper, also works.

3. Verify that the test fails if you comment out the redirect line in List-
ing 7.26.

4. Suppose we changed @user.save to false in Listing 7.26. How does
this change verify that the assert_difference block is testing the
right thing?

Listing 7.32: A template for a test of the flash.
test/integration/users_signup_test.rb

require 'test_helper'

.

.

.

test "valid signup information" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

follow_redirect!

assert_template 'users/show'

assert_not flash.FILL_IN

end

end

422 CHAPTER 7. SIGN UP

Listing 7.33: The flash ERb in the site layout using content_tag.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

.

.

.

<% flash.each do |message_type, message| %>

<%= content_tag(:div, message, class: "alert alert-#{message_type}") %>

<% end %>

.

.

.

</html>

7.5 Professional-grade deployment
Now that we have a working signup page, it’s time to deploy our application and
get it working in production. Although we started deploying our application in
Chapter 3, this is the first time it will actually do something, so we’ll take this
opportunity to make the deployment professional-grade. In particular, we’ll add
an important feature to the production application to make signup secure, we’ll
replace the default webserver with one suitable for real-world use, and we’ll
add some configuration for our production database.

As preparation for the deployment, you should merge your changes into the
master branch at this point:

$ git add -A

$ git commit -m "Finish user signup"

$ git checkout master

$ git merge sign-up

7.5.1 SSL in production
When submitting the signup form developed in this chapter, the name, email
address, and password get sent over the network, and hence are vulnerable to

