
422 CHAPTER 7. SIGN UP

Listing 7.33: The flash ERb in the site layout using content_tag.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

.

.

.

<% flash.each do |message_type, message| %>

<%= content_tag(:div, message, class: "alert alert-#{message_type}") %>

<% end %>

.

.

.

</html>

7.5 Professional-grade deployment
Now that we have a working signup page, it’s time to deploy our application and
get it working in production. Although we started deploying our application in
Chapter 3, this is the first time it will actually do something, so we’ll take this
opportunity to make the deployment professional-grade. In particular, we’ll add
an important feature to the production application to make signup secure, we’ll
replace the default webserver with one suitable for real-world use, and we’ll
add some configuration for our production database.

As preparation for the deployment, you should merge your changes into the
master branch at this point:

$ git add -A

$ git commit -m "Finish user signup"

$ git checkout master

$ git merge sign-up

7.5.1 SSL in production
When submitting the signup form developed in this chapter, the name, email
address, and password get sent over the network, and hence are vulnerable to

7.5. PROFESSIONAL-GRADE DEPLOYMENT 423

Figure 7.26: The result of using an insecure http URL in production.

being intercepted by malicious users. This is a potentially serious security flaw
in our application, and the way to fix it is to use Secure Sockets Layer (SSL)13 to
encrypt all relevant information before it leaves the local browser. Although we
could use SSL on just the signup page, it’s actually easier to implement it site-
wide, which has the additional benefits of securing user login (Chapter 8) and
making our application immune to the critical session hijacking vulnerability
discussed in Section 9.1.

Although Heroku uses SSL by default, it doesn’t force browsers to use it, so
any users hitting our application using regular http will be interacting insecurely
with the site. You can see how this works by editing the URL in the address bar
to change “https” to “http”; the result appears in Figure 7.26.

Luckily, forcing browsers to use SSL is as easy as uncommenting a single
line in production.rb, the configuration file for production applications. As
shown in Listing 7.34, all we need to do is set config.force_ssl to true.

Listing 7.34: Configuring the application to use SSL in production.
config/environments/production.rb

Rails.application.configure do

.

13Technically, SSL is now TLS, for Transport Layer Security, but everyone I know still says “SSL”.

https://en.wikipedia.org/wiki/Transport_Layer_Security

424 CHAPTER 7. SIGN UP

.

.

Force all access to the app over SSL, use Strict-Transport-Security,

and use secure cookies.

config.force_ssl = true

.

.

.

end

At this stage, we need to set up SSL on the remote server. Setting up a pro-
duction site to use SSL involves purchasing and configuring an SSL certificate
for your domain. That’s a lot of work, though, and luckily we won’t need it
here: for an application running on a Heroku domain (such as the sample appli-
cation), we can piggyback on Heroku’s SSL certificate. As a result, when we
deploy the application in Section 7.5.2, SSL will automatically be enabled. (If
you want to run SSL on a custom domain, such as www.example.com, refer to
Heroku’s documentation on SSL.)

7.5.2 Production webserver
Having added SSL, we now need to configure our application to use a web-
server suitable for production applications. By default, Heroku uses a pure-
Ruby webserver called WEBrick, which is easy to set up and run but isn’t good
at handling significant traffic. As a result, WEBrick isn’t suitable for produc-
tion use, so we’ll replace WEBrick with Puma, an HTTP server that is capable
of handling a large number of incoming requests.

To add the new webserver, we simply follow the Heroku Puma documen-
tation. The first step is to include the puma gem in our Gemfile, but as of
Rails 5 Puma is included by default (Listing 3.2). This means we can skip right
to the second step, which is to replace the default contents of the file con-

fig/puma.rb with the configuration shown in Listing 7.35. The code in List-
ing 7.35 comes straight from the Heroku documentation,14 and there is no need
to understand it (Box 1.2).

14Listing 7.35 changes the formatting slightly so that the code fits in the standard 80 columns.

http://devcenter.heroku.com/articles/ssl
https://devcenter.heroku.com/articles/ruby-default-web-server
https://devcenter.heroku.com/articles/ruby-default-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server

