
362 CHAPTER 7. SIGN UP

---

controller: static_pages

action: home

This is a YAML5 representation of params, which is basically a hash, and in
this case identifies the controller and action for the page. We’ll see another
example in Section 7.1.2.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Visit /about in your browser and use the debug information to determine
the controller and action of the params hash.

2. In the Rails console, pull the first user out of the database and assign it to
the variable user. What is the output of puts user.attributes.-
to_yaml? Compare this to using the y method via y user.attri-

butes.

7.1.2 A Users resource
In order to make a user profile page, we need to have a user in the database,
which introduces a chicken-and-egg problem: how can the site have a user be-
fore there is a working signup page? Happily, this problem has already been
solved: in Section 6.3.4, we created a User record by hand using the Rails con-
sole, so there should be one user in the database:

5The Rails debug information is shown as YAML (a recursive acronym standing for “YAML Ain’t Markup
Language”), which is a friendly data format designed to be both machine- and human-readable.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
http://www.yaml.org/
http://catb.org/jargon/html/R/recursive-acronym.html


7.1. SHOWING USERS 363

$ rails console

>> User.count

=> 1

>> User.first

=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",

created_at: "2019-08-22 03:15:38", updated_at: "2019-08-22 03:15:38",

password_digest: [FILTERED]>

(If you don’t currently have a user in your database, you should visit Sec-
tion 6.3.4 now and complete it before proceeding.) We see from the console
output above that the user has id 1, and our goal now is to make a page to
display this user’s information. We’ll follow the conventions of the REST ar-
chitecture favored in Rails applications (Box 2.2), which means representing
data as resources that can be created, shown, updated, or destroyed—four ac-
tions corresponding to the four fundamental operations POST, GET, PATCH,
and DELETE defined by the HTTP standard (Box 3.2).

When following REST principles, resources are typically referenced using
the resource name and a unique identifier. What this means in the context of
users—which we’re now thinking of as a Users resource—is that we should
view the user with id 1 by issuing a GET request to the URL /users/1. Here the
show action is implicit in the type of request—when Rails’ REST features are
activated, GET requests are automatically handled by the show action.

We saw in Section 2.2.1 that the page for a user with id 1 has URL /users/1.
Unfortunately, visiting that URL right now just gives an error (Figure 7.4).

We can get the routing for /users/1 to work by adding a single line to our
routes file (config/routes.rb):

resources :users

The result appears in Listing 7.3.

Listing 7.3: Adding a Users resource to the routes file.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol


364 CHAPTER 7. SIGN UP

Figure 7.4: The current state of /users/1.



7.1. SHOWING USERS 365

HTTP request URL Action Named route Purpose
GET /users index users_path page to list all users
GET /users/1 show user_path(user) page to show user
GET /users/new new new_user_path page to make a new user (signup)
POST /users create users_path create a new user
GET /users/1/edit edit edit_user_path(user) page to edit user with id 1

PATCH /users/1 update user_path(user) update user
DELETE /users/1 destroy user_path(user) delete user

Table 7.1: RESTful routes provided by the Users resource in Listing 7.3.

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

resources :users

end

Although our immediate motivation is making a page to show users, the
single line resources :users doesn’t just add a working /users/1 URL; it
endows our sample application with all the actions needed for a RESTful Users
resource,6 along with a large number of named routes (Section 5.3.3) for gen-
erating user URLs. The resulting correspondence of URLs, actions, and named
routes is shown in Table 7.1. (Compare to Table 2.2.) Over the course of the
next three chapters, we’ll cover all of the other entries in Table 7.1 as we fill in
all the actions necessary to make Users a fully RESTful resource.

With the code in Listing 7.3, the routing works, but there’s still no page
there (Figure 7.5). To fix this, we’ll begin with a minimalist version of the
profile page, which we’ll flesh out in Section 7.1.4.

We’ll use the standard Rails location for showing a user, which is app/-
views/users/show.html.erb. Unlike the new.html.erb view, which we
created with the generator in Listing 5.38, the show.html.erb file doesn’t
currently exist, so you’ll have to create it by hand,7 and then fill it with the

6This means that the routing works, but the corresponding pages don’t necessarily work at this point. For
example, /users/1/edit gets routed properly to the edit action of the Users controller, but since the edit action
doesn’t exist yet actually hitting that URL will return an error.

7Using, e.g., touch app/views/users/show.html.erb.



366 CHAPTER 7. SIGN UP

Figure 7.5: The URL /users/1 with routing but no page.



7.1. SHOWING USERS 367

content shown in Listing 7.4.

Listing 7.4: A stub view for showing user information.
app/views/users/show.html.erb

<%= @user.name %>, <%= @user.email %>

This view uses embedded Ruby to display the user’s name and email address,
assuming the existence of an instance variable called @user. Of course, even-
tually the real user show page will look very different (and won’t display the
email address publicly).

In order to get the user show view to work, we need to define an @user

variable in the corresponding show action in the Users controller. As you might
expect, we use the find method on the User model (Section 6.1.4) to retrieve
the user from the database, as shown in Listing 7.5.

Listing 7.5: The Users controller with a show action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

end

end

Here we’ve used params to retrieve the user id. When we make the appropriate
request to the Users controller, params[:id] will be the user id 1, so the ef-
fect is the same as the find method User.find(1) we saw in Section 6.1.4.
(Technically, params[:id] is the string "1", but find is smart enough to
convert this to an integer.)

With the user view and action defined, the URL /users/1 works perfectly,
as seen in Figure 7.6. (If you haven’t restarted the Rails server since adding



368 CHAPTER 7. SIGN UP

bcrypt, you may have to do so at this time. This sort of thing is a good applica-
tion of technical sophistication (Box 1.2).) Note that the debug information in
Figure 7.6 confirms the value of params[:id]:

---

action: show

controller: users

id: '1'

This is why the code

User.find(params[:id])

in Listing 7.5 finds the user with id 1.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Using embedded Ruby, add the created_at and updated_at “magic
column” attributes to the user show page from Listing 7.4.

2. Using embedded Ruby, add Time.now to the user show page. What hap-
pens when you refresh the browser?

7.1.3 Debugger
We saw in Section 7.1.2 how the information in the debug could help us un-
derstand what’s going on in our application, but there’s also a more direct way
to get debugging information using the byebug gem (Listing 3.2). To see how
it works, we just need to add a line consisting of debugger to our application,
as shown in Listing 7.6.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

