
Chapter 7

Sign up
Now that we have a working User model, it’s time to add an ability few websites
can live without: letting users sign up. We’ll use an HTML form to submit user
signup information to our application (Section 7.2), which will then be used to
create a new user and save its attributes to the database (Section 7.4). At the
end of the signup process, it’s important to render a profile page with the newly
created user’s information, so we’ll begin by making a page for showing users,
which will serve as the first step toward implementing the REST architecture for
users (Section 2.2.2). Along the way, we’ll build on our work in Section 5.3.4
to write succinct and expressive integration tests.

In this chapter, we’ll rely on the User model validations from Chapter 6 to
increase the odds of new users having valid email addresses. In Chapter 11,
we’ll make sure of email validity by adding a separate account activation step
to user signup.

Although this tutorial is designed to be as simple as possible while still being
professional-grade, web development is a complicated subject, and Chapter 7
necessarily marks a significant increase in the difficulty of the exposition. I
recommend taking your time with the material and reviewing it as necessary.
(Some readers have reported simply doing the chapter twice is a helpful exer-
cise.) You might also consider subscribing to the courses at Learn Enough to
gain additional assistance, both with this tutorial and with its relevant prerequi-
sites (especially Learn Enough Ruby to Be Dangerous).

353

https://www.learnenough.com/
https://www.learnenough.com/ruby

354 CHAPTER 7. SIGN UP

7.1 Showing users
In this section, we’ll take the first steps toward the final profile by making a page
to display a user’s name and profile photo, as indicated by the mockup in Fig-
ure 7.1.1 Our eventual goal for the user profile pages is to show the user’s profile
image, basic user data, and a list of microposts, as mocked up in Figure 7.2.2
(Figure 7.2 includes an example of lorem ipsum text, which has a fascinating
story that you should definitely read about some time.) We’ll complete this
task, and with it the sample application, in Chapter 14.

If you’re following along with version control, make a topic branch as usual:

$ git checkout -b sign-up

7.1.1 Debug and Rails environments
The profiles in this section will be the first truly dynamic pages in our applica-
tion. Although the view will exist as a single page of code, each profile will
be customized using information retrieved from the application’s database. As
preparation for adding dynamic pages to our sample application, now is a good
time to add some debug information to our site layout (Listing 7.1). This dis-
plays some useful information about each page using the built-in debugmethod
and params variable (which we’ll learn more about in Section 7.1.2).

Listing 7.1: Adding some debug information to the site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

.

1Mockingbird doesn’t support custom images like the profile photo in Figure 7.1; I put that in by hand using
GIMP.

2Image retrieved from https://www.flickr.com/photos/43803060@N00/24308857/ on 2014-06-16. Copyright
© 2002 by Shaun Wallin and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic
license.

http://www.straightdope.com/columns/read/2290/what-does-the-filler-text-lorem-ipsum-mean
http://www.straightdope.com/columns/read/2290/what-does-the-filler-text-lorem-ipsum-mean
https://gomockingbird.com/
https://www.gimp.org/
https://creativecommons.org/licenses/by/2.0/

7.1. SHOWING USERS 355

Figure 7.1: A mockup of the user profile made in this section.

356 CHAPTER 7. SIGN UP

Figure 7.2: A mockup of our best guess at the final profile page.

7.1. SHOWING USERS 357

.

.

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

<%= render 'layouts/footer' %>

<%= debug(params) if Rails.env.development? %>

</div>

</body>

</html>

Since we don’t want to display debug information to users of a deployed
application, Listing 7.1 uses

if Rails.env.development?

to restrict the debug information to the development environment, which is one
of three environments defined by default in Rails (Box 7.1).3 In particular,
Rails.env.development? is true only in a development environment, so
the embedded Ruby

<%= debug(params) if Rails.env.development? %>

won’t be inserted into production applications or tests. (Inserting the debug
information into tests probably wouldn’t do any harm, but it probably wouldn’t
do any good, either, so it’s best to restrict the debug display to development
only.)

Box 7.1. Rails environments

Rails comes equipped with three environments: test, development, and
production. The default environment for the Rails console is development:

3You can define your own custom environments as well; see the RailsCast on adding an environment for details.

http://railscasts.com/episodes/72-adding-an-environment

358 CHAPTER 7. SIGN UP

$ rails console

Loading development environment

>> Rails.env

=> "development"

>> Rails.env.development?

=> true

>> Rails.env.test?

=> false

As you can see, Rails provides aRails object with anenv attribute and associated
environment boolean methods, so that, for example, Rails.env.test? returns
true in a test environment and false otherwise.

If you ever need to run a console in a different environment (to debug a test, for
example), you can pass the environment as a parameter to the console script:

$ rails console test

Loading test environment

>> Rails.env

=> "test"

>> Rails.env.test?

=> true

As with the console, development is the default environment for the Rails
server, but you can also run it in a different environment:

$ rails server --environment production

If you view your app running in production, it won’t work without a production
database, which we can create by running rails db:migrate in production:

$ rails db:migrate RAILS_ENV=production

7.1. SHOWING USERS 359

(I find it confusing that the idiomatic commands to run the console, server, and mi-
grate commands in non-default environments use different syntax, which is why I
bothered showing all three. It’s worth noting, though, that preceding any of them
with RAILS_ENV=<env> will also work, as in RAILS_ENV=production

rails server).
By the way, if you have deployed your sample app to Heroku, you can see its

environment using heroku run rails console:

$ heroku run rails console

>> Rails.env

=> "production"

>> Rails.env.production?

=> true

Naturally, since Heroku is a platform for production sites, it runs each application
in a production environment.

To make the debug output look nice, we’ll add some rules to the custom
stylesheet created in Chapter 5, as shown in Listing 7.2.

Listing 7.2: Adding code for a pretty debug box, including a Sass mixin.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

/* mixins, variables, etc. */

$gray-medium-light: #eaeaea;

@mixin box_sizing {

-moz-box-sizing: border-box;

-webkit-box-sizing: border-box;

box-sizing: border-box;

}

.

.

360 CHAPTER 7. SIGN UP

.

/* miscellaneous */

.debug_dump {

clear: both;

float: left;

width: 100%;

margin-top: 45px;

@include box_sizing;

}

This introduces the Sass mixin facility, in this case called box_sizing. A
mixin allows a group of CSS rules to be packaged up and used for multiple
elements, converting

.debug_dump {

.

.

.

@include box_sizing;

}

to

.debug_dump {

.

.

.

-moz-box-sizing: border-box;

-webkit-box-sizing: border-box;

box-sizing: border-box;

}

We’ll put this mixin to use again in Section 7.2.1. The result in the case of the
debug box is shown in Figure 7.3.4

The debug output in Figure 7.3 gives potentially useful information about
the page being rendered:

4The exact appearance of the Rails debug information is slightly version-dependent. For example, as of Rails 5
the debug information shows the permitted status of the information, a subject we’ll cover in Section 7.3.2. Use
your technical sophistication (Box 1.2) to resolve such minor discrepancies.

7.1. SHOWING USERS 361

Figure 7.3: The sample application Home page with debug information.

362 CHAPTER 7. SIGN UP

controller: static_pages

action: home

This is a YAML5 representation of params, which is basically a hash, and in
this case identifies the controller and action for the page. We’ll see another
example in Section 7.1.2.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Visit /about in your browser and use the debug information to determine
the controller and action of the params hash.

2. In the Rails console, pull the first user out of the database and assign it to
the variable user. What is the output of puts user.attributes.-
to_yaml? Compare this to using the y method via y user.attri-

butes.

7.1.2 A Users resource
In order to make a user profile page, we need to have a user in the database,
which introduces a chicken-and-egg problem: how can the site have a user be-
fore there is a working signup page? Happily, this problem has already been
solved: in Section 6.3.4, we created a User record by hand using the Rails con-
sole, so there should be one user in the database:

5The Rails debug information is shown as YAML (a recursive acronym standing for “YAML Ain’t Markup
Language”), which is a friendly data format designed to be both machine- and human-readable.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
http://www.yaml.org/
http://catb.org/jargon/html/R/recursive-acronym.html

7.1. SHOWING USERS 363

$ rails console

>> User.count

=> 1

>> User.first

=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",

created_at: "2019-08-22 03:15:38", updated_at: "2019-08-22 03:15:38",

password_digest: [FILTERED]>

(If you don’t currently have a user in your database, you should visit Sec-
tion 6.3.4 now and complete it before proceeding.) We see from the console
output above that the user has id 1, and our goal now is to make a page to
display this user’s information. We’ll follow the conventions of the REST ar-
chitecture favored in Rails applications (Box 2.2), which means representing
data as resources that can be created, shown, updated, or destroyed—four ac-
tions corresponding to the four fundamental operations POST, GET, PATCH,
and DELETE defined by the HTTP standard (Box 3.2).

When following REST principles, resources are typically referenced using
the resource name and a unique identifier. What this means in the context of
users—which we’re now thinking of as a Users resource—is that we should
view the user with id 1 by issuing a GET request to the URL /users/1. Here the
show action is implicit in the type of request—when Rails’ REST features are
activated, GET requests are automatically handled by the show action.

We saw in Section 2.2.1 that the page for a user with id 1 has URL /users/1.
Unfortunately, visiting that URL right now just gives an error (Figure 7.4).

We can get the routing for /users/1 to work by adding a single line to our
routes file (config/routes.rb):

resources :users

The result appears in Listing 7.3.

Listing 7.3: Adding a Users resource to the routes file.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

364 CHAPTER 7. SIGN UP

Figure 7.4: The current state of /users/1.

7.1. SHOWING USERS 365

HTTP request URL Action Named route Purpose
GET /users index users_path page to list all users
GET /users/1 show user_path(user) page to show user
GET /users/new new new_user_path page to make a new user (signup)
POST /users create users_path create a new user
GET /users/1/edit edit edit_user_path(user) page to edit user with id 1

PATCH /users/1 update user_path(user) update user
DELETE /users/1 destroy user_path(user) delete user

Table 7.1: RESTful routes provided by the Users resource in Listing 7.3.

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

resources :users

end

Although our immediate motivation is making a page to show users, the
single line resources :users doesn’t just add a working /users/1 URL; it
endows our sample application with all the actions needed for a RESTful Users
resource,6 along with a large number of named routes (Section 5.3.3) for gen-
erating user URLs. The resulting correspondence of URLs, actions, and named
routes is shown in Table 7.1. (Compare to Table 2.2.) Over the course of the
next three chapters, we’ll cover all of the other entries in Table 7.1 as we fill in
all the actions necessary to make Users a fully RESTful resource.

With the code in Listing 7.3, the routing works, but there’s still no page
there (Figure 7.5). To fix this, we’ll begin with a minimalist version of the
profile page, which we’ll flesh out in Section 7.1.4.

We’ll use the standard Rails location for showing a user, which is app/-
views/users/show.html.erb. Unlike the new.html.erb view, which we
created with the generator in Listing 5.38, the show.html.erb file doesn’t
currently exist, so you’ll have to create it by hand,7 and then fill it with the

6This means that the routing works, but the corresponding pages don’t necessarily work at this point. For
example, /users/1/edit gets routed properly to the edit action of the Users controller, but since the edit action
doesn’t exist yet actually hitting that URL will return an error.

7Using, e.g., touch app/views/users/show.html.erb.

366 CHAPTER 7. SIGN UP

Figure 7.5: The URL /users/1 with routing but no page.

7.1. SHOWING USERS 367

content shown in Listing 7.4.

Listing 7.4: A stub view for showing user information.
app/views/users/show.html.erb

<%= @user.name %>, <%= @user.email %>

This view uses embedded Ruby to display the user’s name and email address,
assuming the existence of an instance variable called @user. Of course, even-
tually the real user show page will look very different (and won’t display the
email address publicly).

In order to get the user show view to work, we need to define an @user

variable in the corresponding show action in the Users controller. As you might
expect, we use the find method on the User model (Section 6.1.4) to retrieve
the user from the database, as shown in Listing 7.5.

Listing 7.5: The Users controller with a show action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

end

end

Here we’ve used params to retrieve the user id. When we make the appropriate
request to the Users controller, params[:id] will be the user id 1, so the ef-
fect is the same as the find method User.find(1) we saw in Section 6.1.4.
(Technically, params[:id] is the string "1", but find is smart enough to
convert this to an integer.)

With the user view and action defined, the URL /users/1 works perfectly,
as seen in Figure 7.6. (If you haven’t restarted the Rails server since adding

368 CHAPTER 7. SIGN UP

bcrypt, you may have to do so at this time. This sort of thing is a good applica-
tion of technical sophistication (Box 1.2).) Note that the debug information in
Figure 7.6 confirms the value of params[:id]:

action: show

controller: users

id: '1'

This is why the code

User.find(params[:id])

in Listing 7.5 finds the user with id 1.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Using embedded Ruby, add the created_at and updated_at “magic
column” attributes to the user show page from Listing 7.4.

2. Using embedded Ruby, add Time.now to the user show page. What hap-
pens when you refresh the browser?

7.1.3 Debugger
We saw in Section 7.1.2 how the information in the debug could help us un-
derstand what’s going on in our application, but there’s also a more direct way
to get debugging information using the byebug gem (Listing 3.2). To see how
it works, we just need to add a line consisting of debugger to our application,
as shown in Listing 7.6.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.1. SHOWING USERS 369

Figure 7.6: The user show page after adding a Users resource.

370 CHAPTER 7. SIGN UP

Figure 7.7: The byebug prompt in the Rails server.

Listing 7.6: The Users controller with a debugger.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

debugger

end

def new

end

end

Now, when we visit /users/1, the Rails server shows a byebug prompt (Fig-
ure 7.7):

(byebug)

We can treat byebug like a Rails console, issuing commands to figure out
the state of the application:

7.1. SHOWING USERS 371

(byebug) @user.name

"Michael Hartl"

(byebug) @user.email

"michael@example.com"

(byebug) params[:id]

"1"

To release the prompt and continue execution of the application, press Ctrl-D,
then remove the debugger line from the show action (Listing 7.7).

Listing 7.7: The Users controller with the debugger line removed.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

end

end

Whenever you’re confused about something in a Rails application, it’s a
good practice to put debugger close to the code you think might be causing
the trouble. Inspecting the state of the system using byebug is a powerful
method for tracking down application errors and interactively debugging your
application.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. With the debugger in the show action as in Listing 7.6, hit /users/1. Use
puts to display the value of the YAML form of the params hash. Hint:
Refer to the relevant exercise in Section 7.1.1. How does it compare to
the debug information shown by the debug method in the site template?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

372 CHAPTER 7. SIGN UP

2. Put the debugger in the User new action and hit /users/new. What is the
value of @user?

7.1.4 A Gravatar image and a sidebar
Having defined a basic user page in the previous section, we’ll now flesh it
out a little with a profile image for each user and the first cut of the user side-
bar. We’ll start by adding a “globally recognized avatar”, or Gravatar, to the
user profile.8 Gravatar is a free service that allows users to upload images and
associate them with email addresses they control. As a result, Gravatars are a
convenient way to include user profile images without going through the trouble
of managing image upload, cropping, and storage; all we need to do is construct
the proper Gravatar image URL using the user’s email address and the corre-
sponding Gravatar image will automatically appear. (We’ll learn how to handle
custom image upload in Section 13.4.)

Our plan is to define a gravatar_for helper function to return a Gravatar
image for a given user, as shown in Listing 7.8.

Listing 7.8: The user show view with name and Gravatar.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<h1>

<%= gravatar_for @user %>

<%= @user.name %>

</h1>

By default, methods defined in any helper file are automatically available
in any view, but for convenience we’ll put the gravatar_for method in the
file for helpers associated with the Users controller. As noted in the Gravatar
documentation, Gravatar URLs are based on an MD5 hash of the user’s email

8In Hinduism, an avatar is the manifestation of a deity in human or animal form. By extension, the term avatar
is commonly used to mean some kind of personal representation, especially in a virtual environment. (In the
context of Twitter and other social media, the term avi has gained currency, which is likely a mutated form of
avatar.)

https://gravatar.com/
http://en.gravatar.com/site/implement/hash/
http://en.gravatar.com/site/implement/hash/
https://en.wikipedia.org/wiki/MD5

7.1. SHOWING USERS 373

address. In Ruby, the MD5 hashing algorithm is implemented using the hex-
digest method, which is part of the Digest library:

>> email = "MHARTL@example.COM"

>> Digest::MD5::hexdigest(email.downcase)

=> "1fda4469bcbec3badf5418269ffc5968"

Since email addresses are case-insensitive (Section 6.2.4) but MD5 hashes are
not, we’ve used the downcase method to ensure that the argument to hex-

digest is all lower-case. (Because of the email downcasing callback in List-
ing 6.32, this will never make a difference in this tutorial, but it’s a good prac-
tice in case the gravatar_for ever gets used on email addresses from other
sources.) The resulting gravatar_for helper appears in Listing 7.9.

Listing 7.9: Defining a gravatar_for helper method.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.

def gravatar_for(user)

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)

gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}"

image_tag(gravatar_url, alt: user.name, class: "gravatar")

end

end

The code in Listing 7.9 returns an image tag for the Gravatar with a gravatar
CSS class and alt text equal to the user’s name (which is especially convenient
for visually impaired users using a screen reader).

The profile page appears as in Figure 7.8, which shows the default Gravatar
image, which appears because michael@example.com isn’t a real email ad-
dress. (In fact, as you can see by visiting it, the example.com domain is reserved
for examples like this one.)

To get our application to display a custom Gravatar, we’ll use update_-

attributes (Section 6.1.5) to change the user’s email to something I control:9
9The password confirmation isn’t technically necessary here because has_secure_password (Section 6.3.1)

https://www.example.com/

374 CHAPTER 7. SIGN UP

Figure 7.8: The user profile page with the default Gravatar.

7.1. SHOWING USERS 375

$ rails console

>> user = User.first

>> user.update(name: "Example User",

?> email: "example@railstutorial.org",

?> password: "foobar",

?> password_confirmation: "foobar")

=> true

Here we’ve assigned the user the email address example@railstutorial-
.org, which I’ve associated with the Rails Tutorial logo, as seen in Figure 7.9.

The last element needed to complete the mockup from Figure 7.1 is the
initial version of the user sidebar. We’ll implement it using the aside tag,
which is used for content (such as sidebars) that complements the rest of the
page but can also stand alone. We include row and col-md-4 classes, which
are both part of Bootstrap. The code for the modified user show page appears
in Listing 7.10.

Listing 7.10: Adding a sidebar to the user show view.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<h1>

<%= gravatar_for @user %>

<%= @user.name %>

</h1>

</section>

</aside>

</div>

With the HTML elements and CSS classes in place, we can style the profile
page (including the sidebar and the Gravatar) with the SCSS shown in List-
ing 7.11.10 (Note the nesting of the table CSS rules, which works only because
of the Sass engine used by the asset pipeline.) The resulting page is shown in
Figure 7.10.
actually allows the confirmation to be nil. The reason is so that apps that don’t need password confirmation can
simply omit the confirmation field. We do want a confirmation, though, so we’ll include such a field in Listing 7.15.

10Listing 7.11 includes the .gravatar_edit class, which we’ll put to work in Chapter 10.

376 CHAPTER 7. SIGN UP

Figure 7.9: The user show page with a custom Gravatar.

7.1. SHOWING USERS 377

Listing 7.11: SCSS for styling the user show page, including the sidebar.
app/assets/stylesheets/custom.scss

.

.

.

/* sidebar */

aside {

section.user_info {

margin-top: 20px;

}

section {

padding: 10px 0;

margin-top: 20px;

&:first-child {

border: 0;

padding-top: 0;

}

span {

display: block;

margin-bottom: 3px;

line-height: 1;

}

h1 {

font-size: 1.4em;

text-align: left;

letter-spacing: -1px;

margin-bottom: 3px;

margin-top: 0px;

}

}

}

.gravatar {

float: left;

margin-right: 10px;

}

.gravatar_edit {

margin-top: 15px;

}

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

378 CHAPTER 7. SIGN UP

Figure 7.10: The user show page with a sidebar and CSS.

7.1. SHOWING USERS 379

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Associate a Gravatar with your primary email address if you haven’t al-
ready. What is the MD5 hash associated with the image?

2. Verify that the code in Listing 7.12 allows the gravatar_for helper
defined in Section 7.1.4 to take an optional size parameter, allowing
code like gravatar_for user, size: 50 in the view. (We’ll put
this improved helper to use in Section 10.3.1.)

3. The options hash used in the previous exercise is still commonly used,
but as of Ruby 2.0 we can use keyword arguments instead. Confirm that
the code in Listing 7.13 can be used in place of Listing 7.12. What are
the diffs between the two?

Listing 7.12: Adding an options hash in the gravatar_for helper.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.

def gravatar_for(user, options = { size: 80 })

size = options[:size]

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)

gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}?s=#{size}"

image_tag(gravatar_url, alt: user.name, class: "gravatar")

end

end

Listing 7.13: Using keyword arguments in the gravatar_for helper.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.

def gravatar_for(user, size: 80)

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)

gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}?s=#{size}"

image_tag(gravatar_url, alt: user.name, class: "gravatar")

end

end

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

380 CHAPTER 7. SIGN UP

Figure 7.11: The current state of the signup page /signup.

7.2 Signup form

Now that we have a working (though not yet complete) user profile page, we’re
ready to make a signup form for our site. We saw in Figure 5.11 (shown again
in Figure 7.11) that the signup page is currently blank: useless for signing up
new users. The goal of this section is to start changing this sad state of affairs
by producing the signup form mocked up in Figure 7.12.

7.2. SIGNUP FORM 381

Figure 7.12: A mockup of the user signup page.

382 CHAPTER 7. SIGN UP

7.2.1 Using form_with
The heart of the signup page is a form for submitting the relevant signup in-
formation (name, email, password, confirmation). We can accomplish this in
Rails with the form_with helper method, which uses an Active Record object
to build a form using the object’s attributes.

Recalling that the signup page /signup is routed to the new action in the
Users controller (Listing 5.43), our first step is to create the User object required
as an argument to form_with. The resulting @user variable definition appears
in Listing 7.14.

Listing 7.14: Adding an @user variable to the new action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

end

The form itself appears as in Listing 7.15. We’ll discuss it in detail in Sec-
tion 7.2.2, but first let’s style it a little with the SCSS in Listing 7.16. (Note the
reuse of the box_sizing mixin from Listing 7.2.) Once these CSS rules have
been applied, the signup page appears as in Figure 7.13.

Listing 7.15: A form to sign up new users.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= f.label :name %>

7.2. SIGNUP FORM 383

<%= f.text_field :name %>

<%= f.label :email %>

<%= f.email_field :email %>

<%= f.label :password %>

<%= f.password_field :password %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation %>

<%= f.submit "Create my account", class: "btn btn-primary" %>

<% end %>

</div>

</div>

Listing 7.16: CSS for the signup form.
app/assets/stylesheets/custom.scss

.

.

.

/* forms */

input, textarea, select, .uneditable-input {

border: 1px solid #bbb;

width: 100%;

margin-bottom: 15px;

@include box_sizing;

}

input {

height: auto !important;

}

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm by replacing all occurrences of f with foobar that the name
of the block variable is irrelevant as far as the result is concerned. Why
might foobar nevertheless be a bad choice?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

384 CHAPTER 7. SIGN UP

Figure 7.13: The user signup form.

7.2. SIGNUP FORM 385

7.2.2 Signup form HTML
To understand the form defined in Listing 7.15, it’s helpful to break it into
smaller pieces. We’ll first look at the outer structure, which consists of em-
bedded Ruby opening with a call to form_with and closing with end:

<%= form_with(model: @user, local: true) do |f| %>

.

.

.

<% end %>

The presence of the do keyword indicates that form_with takes a block with
one variable, which we’ve called f (for “form”). Note the presence of the hash
argument local: true; by default, form_with sends a “remote” XHR re-
quest, whereas we want a regular “local” form request, mostly so that our error
messages will render properly (Section 7.3.3).

As is usually the case with Rails helpers, we don’t need to know any details
about the implementation, but what we do need to know is what the f object
does: when called with a method corresponding to an HTML form element—
such as a text field, radio button, or password field—f returns code for that
element specifically designed to set an attribute of the @user object. In other
words,

<%= f.label :name %>

<%= f.text_field :name %>

creates the HTML needed to make a labeled text field element appropriate for
setting the name attribute of a User model.

If you look at the HTML for the generated form by Ctrl-clicking and using
the “inspect element” function of your browser, the page’s source should look
something like Listing 7.17. Let’s take a moment to discuss its structure.

https://en.wikipedia.org/wiki/XMLHttpRequest
https://en.wikipedia.org/wiki/XMLHttpRequest
http://www.w3schools.com/html/html_forms.asp

386 CHAPTER 7. SIGN UP

Listing 7.17: The HTML for the form in Figure 7.13.
<form accept-charset="UTF-8" action="/users" class="new_user"

id="new_user" method="post">

<input name="authenticity_token" type="hidden"

value="NNb6+J/j46LcrgYUC60wQ2titMuJQ5lLqyAbnbAUkdo=" />

<label for="user_name">Name</label>

<input id="user_name" name="user[name]" type="text" />

<label for="user_email">Email</label>

<input id="user_email" name="user[email]" type="email" />

<label for="user_password">Password</label>

<input id="user_password" name="user[password]"

type="password" />

<label for="user_password_confirmation">Confirmation</label>

<input id="user_password_confirmation"

name="user[password_confirmation]" type="password" />

<input class="btn btn-primary" name="commit" type="submit"

value="Create my account" />

</form>

We’ll start with the internal structure of the document. Comparing List-
ing 7.15 with Listing 7.17, we see that the embedded Ruby

<%= f.label :name %>

<%= f.text_field :name %>

produces the HTML

<label for="user_name">Name</label>

<input id="user_name" name="user[name]" type="text" />

while

<%= f.label :email %>

<%= f.email_field :email %>

produces the HTML

7.2. SIGNUP FORM 387

<label for="user_email">Email</label>

<input id="user_email" name="user[email]" type="email" />

and

<%= f.label :password %>

<%= f.password_field :password %>

produces the HTML

<label for="user_password">Password</label>

<input id="user_password" name="user[password]" type="password" />

As seen in Figure 7.14, text and email fields (type="text" and
type="email") simply display their contents, whereas password fields
(type="password") obscure the input for security purposes, as seen in Fig-
ure 7.14. (The benefit of using an email field is that some systems treat it differ-
ently from a text field; for example, the code type="email" will cause some
mobile devices to display a special keyboard optimized for entering email ad-
dresses.)

As we’ll see in Section 7.4, the key to creating a user is the special name
attribute in each input:

<input id="user_name" name="user[name]" - - - />

.

.

.

<input id="user_password" name="user[password]" - - - />

These name values allow Rails to construct an initialization hash (via the pa-
rams variable) for creating users using the values entered by the user, as we’ll
see in Section 7.3.

The second important element is the form tag itself. Rails creates the form
tag using the @user object: because every Ruby object knows its own class

388 CHAPTER 7. SIGN UP

Figure 7.14: A filled-in form with text and password fields.

7.2. SIGNUP FORM 389

(Section 4.4.1), Rails figures out that @user is of class User; moreover, since
@user is a new user, Rails knows to construct a form with the post method,
which is the proper verb for creating a new object (Box 3.2):

<form action="/users" class="new_user" id="new_user" method="post">

Here the class and id attributes are largely irrelevant; what’s important is
action="/users" and method="post". Together, these constitute instruc-
tions to issue an HTTP POST request to the /users URL. We’ll see in the next
two sections what effects this has.

(You may also have noticed the code that appears just inside the form tag:

<input name="authenticity_token" type="hidden"

value="NNb6+J/j46LcrgYUC60wQ2titMuJQ5lLqyAbnbAUkdo=" />

This code, which isn’t displayed in the browser, is used internally by Rails, so
it’s not important for us to understand what it does. Briefly, it includes an au-
thenticity token, which Rails uses to thwart an attack called a cross-site request
forgery (CSRF). Knowing when it’s OK to ignore details like this is a good
mark of technical sophistication (Box 1.2).)11

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Learn Enough HTML to Be Dangerous, in which all HTML is written by
hand, doesn’t cover the form tag. Why not?

11See the Stack Overflow entry on the Rails authenticity token if you’re interested in the details of how this
works.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.learnenough.com/html
https://stackoverflow.com/questions/941594/understand-rails-authenticity-token

390 CHAPTER 7. SIGN UP

7.3 Unsuccessful signups
Although we’ve briefly examined the HTML for the form in Figure 7.13 (shown
in Listing 7.17), we haven’t yet covered any details, and the form is best un-
derstood in the context of signup failure. In this section, we’ll create a signup
form that accepts an invalid submission and re-renders the signup page with a
list of errors, as mocked up in Figure 7.15.

7.3.1 A working form
Recall from Section 7.1.2 that adding resources :users to the routes.rb
file (Listing 7.3) automatically ensures that our Rails application responds to the
RESTful URLs from Table 7.1. In particular, it ensures that a POST request to
/users is handled by the create action. Our strategy for the create action is
to use the form submission to make a new user object using User.new, try (and
fail) to save that user, and then render the signup page for possible resubmission.
Let’s get started by reviewing the code for the signup form:

<form action="/users" class="new_user" id="new_user" method="post">

As noted in Section 7.2.2, this HTML issues a POST request to the /users URL.
Our first step toward a working signup form is adding the code in List-

ing 7.18. This listing includes a second use of the render method, which we
first saw in the context of partials (Section 5.1.3); as you can see, renderworks
in controller actions as well. Note that we’ve taken this opportunity to intro-
duce an if-else branching structure, which allows us to handle the cases of
failure and success separately based on the value of @user.save, which (as
we saw in Section 6.1.3) is either true or false depending on whether or not
the save succeeds.

Listing 7.18: A create action that can handle signup failure.
app/controllers/users_controller.rb

7.3. UNSUCCESSFUL SIGNUPS 391

Figure 7.15: A mockup of the signup failure page.

392 CHAPTER 7. SIGN UP

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

def create

@user = User.new(params[:user]) # Not the final implementation!

if @user.save

Handle a successful save.

else

render 'new'

end

end

end

Note the comment: this is not the final implementation. But it’s enough to get
us started, and we’ll finish the implementation in Section 7.3.2.

The best way to understand how the code in Listing 7.18 works is to submit
the form with some invalid signup data. The result appears in Figure 7.16, and
the full debug information appears in Figure 7.17.

To get a better picture of how Rails handles the submission, let’s take a
closer look at the user part of the parameters hash from the debug information
(Figure 7.17):

"user" => { "name" => "Foo Bar",

"email" => "foo@invalid",

"password" => "[FILTERED]",

"password_confirmation" => "[FILTERED]"

}

This hash gets passed to the Users controller as part of params, and we saw
starting in Section 7.1.2 that the params hash contains information about each
request. In the case of a URL like /users/1, the value of params[:id] is the
id of the corresponding user (1 in this example). In the case of posting to the
signup form, params instead contains a hash of hashes, a construction we first

7.3. UNSUCCESSFUL SIGNUPS 393

Figure 7.16: Signup failure upon submitting invalid data.

Figure 7.17: Signup failure debug information.

394 CHAPTER 7. SIGN UP

saw in Section 4.3.3, which introduced the strategically named params vari-
able in a console session. The debug information above shows that submitting
the form results in a user hash with attributes corresponding to the submitted
values, where the keys come from the name attributes of the input tags seen
in Listing 7.17. For example, the value of

<input id="user_email" name="user[email]" type="email" />

with name "user[email]" is precisely the email attribute of the user hash.
Although the hash keys appear as strings in the debug output, we can ac-

cess them in the Users controller as symbols, so that params[:user] is the
hash of user attributes—in fact, exactly the attributes needed as an argument to
User.new, as first seen in Section 4.4.5 and appearing in Listing 7.18. This
means that the line

@user = User.new(params[:user])

is mostly equivalent to

@user = User.new(name: "Foo Bar", email: "foo@invalid",

password: "foo", password_confirmation: "bar")

In previous versions of Rails, using

@user = User.new(params[:user])

actually worked, but it was insecure by default and required a careful and error-
prone procedure to prevent malicious users from potentially modifying the ap-
plication database. In Rails version later than 4.0, this code raises an error (as
seen in Figure 7.16 and Figure 7.17 above), which means it is secure by default.

7.3. UNSUCCESSFUL SIGNUPS 395

7.3.2 Strong parameters
We mentioned briefly in Section 4.4.5 the idea of mass assignment, which in-
volves initializing a Ruby variable using a hash of values, as in

@user = User.new(params[:user]) # Not the final implementation!

The comment included in Listing 7.18 and reproduced above indicates that this
is not the final implementation. The reason is that initializing the entire params
hash is extremely dangerous—it arranges to pass to User.new all data submit-
ted by a user. In particular, suppose that, in addition to the current attributes, the
User model included an admin attribute used to identify administrative users
of the site. (We will implement just such an attribute in Section 10.4.1.) The
way to set such an attribute to true is to pass the value admin='1' as part
of params[:user], a task that is easy to accomplish using a command-line
HTTP client such as curl. The result would be that, by passing in the en-
tire params hash to User.new, we would allow any user of the site to gain
administrative access by including admin='1' in the web request.

Previous versions of Rails used a method called attr_accessible in the
model layer to solve this problem, and you may still see that method in legacy
Rails applications, but as of Rails 4.0 the preferred technique is to use so-called
strong parameters in the controller layer. This allows us to specify which pa-
rameters are required and which ones are permitted. In addition, passing in a
raw params hash as above will cause an error to be raised, so that Rails appli-
cations are now immune to mass assignment vulnerabilities by default.

In the present instance, we want to require the params hash to have a :user
attribute, and we want to permit the name, email, password, and password con-
firmation attributes (but no others). We can accomplish this as follows:

params.require(:user).permit(:name, :email, :password, :password_confirmation)

This code returns a version of the params hash with only the permitted at-
tributes (while raising an error if the :user attribute is missing).

396 CHAPTER 7. SIGN UP

To facilitate the use of these parameters, it’s conventional to introduce an
auxiliary method called user_params (which returns an appropriate initial-
ization hash) and use it in place of params[:user]:

@user = User.new(user_params)

Since user_params will only be used internally by the Users controller and
need not be exposed to external users via the web, we’ll make it private using
Ruby’s private keyword, as shown in Listing 7.19. (We’ll discuss private
in more detail in Section 9.1.)

Listing 7.19: Using strong parameters in the create action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

Handle a successful save.

else

render 'new'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

By the way, the extra level of indentation on the user_params method is de-
signed to make it visually apparent which methods are defined after private.
(Experience shows that this is a wise practice; in classes with a large number of
methods, it is easy to define a private method accidentally, which leads to con-
siderable confusion when it isn’t available to call on the corresponding object.)

7.3. UNSUCCESSFUL SIGNUPS 397

Figure 7.18: The signup form submitted with invalid information.

At this point, the signup form is working, at least in the sense that it no
longer produces an error upon submission. On the other hand, as seen in Fig-
ure 7.18, it doesn’t display any feedback on invalid submissions (apart from the
development-only debug area), which is potentially confusing. It also doesn’t
actually create a new user. We’ll fix the first issue in Section 7.3.3 and the
second in Section 7.4.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads

398 CHAPTER 7. SIGN UP

Tutorial course or to the Learn Enough All Access Bundle.

1. By hitting the URL /signup?admin=1, confirm that the admin attribute
appears in the params debug information.

7.3.3 Signup error messages
As a final step in handling failed user creation, we’ll add helpful error messages
to indicate the problems that prevented successful signup. Conveniently, Rails
automatically provides such messages based on the User model validations. For
example, consider trying to save a user with an invalid email address and with
a password that’s too short:

$ rails console

>> user = User.new(name: "Foo Bar", email: "foo@invalid",

?> password: "dude", password_confirmation: "dude")

>> user.save

=> false

>> user.errors.full_messages

=> ["Email is invalid", "Password is too short (minimum is 6 characters)"]

Here the errors.full_messages object (which we saw briefly before in
Section 6.2.2) contains an array of error messages.

As in the console session above, the failed save in Listing 7.18 generates a
list of error messages associated with the @user object. To display the mes-
sages in the browser, we’ll render an error-messages partial on the user new
page while adding the CSS class form-control (which has special meaning
to Bootstrap) to each entry field, as shown in Listing 7.20. It’s worth noting
that this error-messages partial is only a first attempt; the final version appears
in Section 13.3.2.

Listing 7.20: Code to display error messages on the signup form.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.3. UNSUCCESSFUL SIGNUPS 399

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages' %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Create my account", class: "btn btn-primary" %>

<% end %>

</div>

</div>

Notice here that we render a partial called 'shared/error_messages';
this reflects the common Rails convention of using a dedicated shared/ direc-
tory for partials expected to be used in views across multiple controllers. (We’ll
see this expectation fulfilled in Section 10.1.1.)

This means that we have to create a new app/views/shared directory
using mkdir and an error messages partial using (Table 1.1):

$ mkdir app/views/shared

We then need to create the _error_messages.html.erb partial file using
touch or the text editor as usual. The contents of the partial appear in List-
ing 7.21.

Listing 7.21: A partial for displaying form submission error messages.
app/views/shared/_error_messages.html.erb

<% if @user.errors.any? %>

<div id="error_explanation">

400 CHAPTER 7. SIGN UP

<div class="alert alert-danger">

The form contains <%= pluralize(@user.errors.count, "error") %>.

</div>

<% @user.errors.full_messages.each do |msg| %>

<%= msg %>

<% end %>

</div>

<% end %>

This partial introduces several new Rails and Ruby constructs, including two
methods for Rails error objects. The first method is count, which simply re-
turns the number of errors:

>> user.errors.count

=> 2

The other new method is any?, which (together with empty?) is one of a pair
of complementary methods:

>> user.errors.empty?

=> false

>> user.errors.any?

=> true

We see here that the empty? method, which we first saw in Section 4.2.2 in
the context of strings, also works on Rails error objects, returning true for an
empty object and false otherwise. The any? method is just the opposite of
empty?, returning true if there are any elements present and false otherwise.
(By the way, all of these methods—count, empty?, and any?—work on Ruby
arrays as well. We’ll put this fact to good use starting in Section 13.2.)

The other new idea is the pluralize text helper, which is available in the
console via the helper object:

7.3. UNSUCCESSFUL SIGNUPS 401

>> helper.pluralize(1, "error")

=> "1 error"

>> helper.pluralize(5, "error")

=> "5 errors"

We see here that pluralize takes an integer argument and then returns the
number with a properly pluralized version of its second argument. Underlying
this method is a powerful inflector that knows how to pluralize a large number
of words, including many with irregular plurals:

>> helper.pluralize(2, "woman")

=> "2 women"

>> helper.pluralize(3, "erratum")

=> "3 errata"

As a result of its use of pluralize, the code

<%= pluralize(@user.errors.count, "error") %>

returns "0 errors", "1 error", "2 errors", and so on, depending on
how many errors there are, thereby avoiding ungrammatical phrases such as
"1 errors" (a distressingly common mistake in both web and desktop appli-
cations).

Note that Listing 7.21 includes the CSS id error_explanation for use in
styling the error messages. (Recall from Section 5.1.2 that CSS uses the pound
sign # to style ids.) In addition, after an invalid submission Rails automatically
wraps the fields with errors in divs with the CSS class field_with_errors.
These labels then allow us to style the error messages with the SCSS shown
in Listing 7.22, which makes use of Sass’s @extend function to include the
functionality of the Bootstrap class has-error.

Listing 7.22: CSS for styling error messages.
app/assets/stylesheets/custom.scss

402 CHAPTER 7. SIGN UP

.

.

.

/* forms */

.

.

.

#error_explanation {

color: red;

ul {

color: red;

margin: 0 0 30px 0;

}

}

.field_with_errors {

@extend .has-error;

.form-control {

color: $state-danger-text;

}

}

With the code in Listing 7.20 and Listing 7.21 and the SCSS from List-
ing 7.22, helpful error messages now appear when submitting invalid signup
information, as seen in Figure 7.19. Because the messages are generated by the
model validations, they will automatically change if you ever change your mind
about, say, the format of email addresses, or the minimum length of passwords.
(Note: Because both the presence validation and the has_secure_password
validation catch the case of empty (nil) passwords, the signup form currently
produces duplicate error messages when the user submits empty passwords. We
could manipulate the error messages directly to eliminate duplicates, but luck-
ily this issue will be fixed automatically by the addition of allow_nil: true

in Section 10.1.4.)

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm by changing the minimum length of passwords to 5 that the error
message updates automatically as well.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.3. UNSUCCESSFUL SIGNUPS 403

Figure 7.19: Failed signup with error messages.

404 CHAPTER 7. SIGN UP

2. How does the URL on the unsubmitted signup form (Figure 7.13) com-
pare to the URL for a submitted signup form (Figure 7.19)? Why don’t
they match?

7.3.4 A test for invalid submission
In the days before powerful web frameworks with automated testing capabili-
ties, developers had to test forms by hand. For example, to test a signup page
manually, we would have to visit the page in a browser and then submit alter-
nately invalid and valid data, verifying in each case that the application’s behav-
ior was correct. Moreover, we would have to remember to repeat the process
any time the application changed. This process was painful and error-prone.

Happily, with Rails we can write tests to automate the testing of forms. In
this section, we’ll write one such test to verify the correct behavior upon invalid
form submission; in Section 7.4.4, we’ll write a corresponding test for valid
submission.

To get started, we first generate an integration test file for signing up users,
which we’ll call users_signup (adopting the controller convention of a plural
resource name):

$ rails generate integration_test users_signup

invoke test_unit

create test/integration/users_signup_test.rb

(We’ll use this same file in Section 7.4.4 to test a valid signup.)
The main purpose of our test is to verify that clicking the signup button

results in not creating a new user when the submitted information is invalid.
(Writing a test for the error messages is left as an exercise (Section 7.3.4).) The
way to do this is to check the count of users, and under the hood our tests will
use the count method available on every Active Record class, including User:

$ rails console

>> User.count

=> 1

7.3. UNSUCCESSFUL SIGNUPS 405

(Here User.count is 1 because of the user created in Section 6.3.4, though
it may differ if you’ve added or deleted any users in the interim.) As in Sec-
tion 5.3.4, we’ll use assert_select to test HTML elements of the relevant
pages, taking care to check only elements unlikely to change in the future.

We’ll start by visiting the signup path using get:

get signup_path

In order to test the form submission, we need to issue a POST request to the
users_path (Table 7.1), which we can do with the post function:

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

Here we’ve included the params[:user] hash expected by User.new in the
create action (Listing 7.27). (In versions of Rails before 5, params was im-
plicit, and only the user hash would be passed. This practice was deprecated
in Rails 5.0, and now the recommended method is to include the full params
hash explicitly.)

By wrapping the post in the assert_no_difference method with the
string argument 'User.count', we arrange for a comparison between Us-

er.count before and after the contents inside the assert_no_difference
block. This is equivalent to recording the user count, posting the data, and
verifying that the count is the same:

before_count = User.count

post users_path, ...

after_count = User.count

assert_equal before_count, after_count

Although the two are equivalent, using assert_no_difference is cleaner
and is more idiomatically correct Ruby.

406 CHAPTER 7. SIGN UP

It’s worth noting that the get and post steps above are technically unre-
lated, and it’s actually not necessary to get the signup path before posting to the
users path. I prefer to include both steps, though, both for conceptual clarity
and to double-check that the signup form renders without error.

Putting the above ideas together leads to the test in Listing 7.23. We’ve
also included a call to assert_template to check that a failed submission
re-renders the new action. Adding lines to check for the appearance of error
messages is left as an exercise (Section 7.3.4).

Listing 7.23: A test for an invalid signup. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

end

end

Because we wrote the application code before the integration test, the test suite
should be green:

Listing 7.24: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.4. SUCCESSFUL SIGNUPS 407

1. Write a test for the error messages implemented in Listing 7.20. How
detailed you want to make your tests is up to you; a suggested template
appears in Listing 7.25.

Listing 7.25: A template for tests of the error messages.
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

assert_select 'div#<CSS id for error explanation>'

assert_select 'div.<CSS class for field with error>'

end

.

.

.

end

7.4 Successful signups

Having handled invalid form submissions, now it’s time to complete the signup
form by actually saving a new user (if valid) to the database. First, we try to
save the user; if the save succeeds, the user’s information gets written to the
database automatically, and we then redirect the browser to show the user’s
profile (together with a friendly greeting), as mocked up in Figure 7.20. If it
fails, we simply fall back on the behavior developed in Section 7.3.

408 CHAPTER 7. SIGN UP

Figure 7.20: A mockup of successful signup.

7.4. SUCCESSFUL SIGNUPS 409

Figure 7.21: The frozen page on valid signup submission.

7.4.1 The finished signup form
To complete a working signup form, we need to fill in the commented-out sec-
tion in Listing 7.19 with the appropriate behavior. Currently, the form simply
freezes on valid submission, as indicated by the subtle color change in the sub-
mission button (Figure 7.21), although this behavior may be system-dependent.
This is because the default behavior for a Rails action is to render the corre-
sponding view, and there isn’t a view template corresponding to the create

action (Figure 7.22).
Although it’s possible to render a template for the create action, the usual

practice is to redirect to a different page instead when the creation is successful.

410 CHAPTER 7. SIGN UP

Figure 7.22: The create template error in the server log.

In particular, we’ll follow the common convention of redirecting to the newly
created user’s profile, although the root path would also work. The application
code, which introduces the redirect_to method, appears in Listing 7.26.

Listing 7.26: The user create action with a save and a redirect.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

redirect_to @user

else

render 'new'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

Note that we’ve written

redirect_to @user

where we could have used the equivalent

7.4. SUCCESSFUL SIGNUPS 411

redirect_to user_url(@user)

This is because Rails automatically infers from redirect_to @user that we
want to redirect to user_url(@user).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the Rails console, verify that a user is in fact created when submit-
ting valid information.

2. Confirm by updating Listing 7.26 and submitting a valid user that re-
direct_to user_url(@user) has the same effect as redirect_to
@user.

7.4.2 The flash
With the code in Listing 7.26, our signup form is actually working, but before
submitting a valid registration in a browser we’re going to add a bit of polish
common in web applications: a message that appears on the subsequent page
(in this case, welcoming our new user to the application) and then disappears
upon visiting a second page or on page reload.

The Rails way to display a temporary message is to use a special method
called the flash, which we can treat like a hash. Rails adopts the convention of
a :success key for a message indicating a successful result (Listing 7.27).

Listing 7.27: Adding a flash message to user signup.
app/controllers/users_controller.rb

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

412 CHAPTER 7. SIGN UP

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

flash[:success] = "Welcome to the Sample App!"

redirect_to @user

else

render 'new'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

By assigning a message to the flash, we are now in a position to display
the message on the first page after the redirect. Our method is to iterate through
the flash and insert all relevant messages into the site layout. You may recall
the console example in Section 4.3.3, where we saw how to iterate through a
hash using the strategically named flash variable (Listing 7.28).

Listing 7.28: Iterating through a flash hash in the console.
$ rails console

>> flash = { success: "It worked!", danger: "It failed." }

=> {:success=>"It worked!", danger: "It failed."}

>> flash.each do |key, value|

?> puts "#{key}"

?> puts "#{value}"

>> end

success

It worked!

danger

It failed.

By following this pattern, we can arrange to display the contents of the flash
site-wide using code like this:

7.4. SUCCESSFUL SIGNUPS 413

<% flash.each do |message_type, message| %>

<div class="alert alert-<%= message_type %>"><%= message %></div>

<% end %>

(This code is a particularly ugly and difficult-to-read combination of HTML
and ERb; making it prettier is left as an exercise (Section 7.4.4).) Here the
embedded Ruby

alert-<%= message_type %>

makes a CSS class corresponding to the type of message, so that for a :suc-
cess message the class is

alert-success

(The key :success is a symbol, but embedded Ruby automatically converts it
to the string "success" before inserting it into the template.) Using a different
class for each key allows us to apply different styles to different kinds of mes-
sages. For example, in Section 8.1.4 we’ll use flash[:danger] to indicate
a failed login attempt.12 (In fact, we’ve already used alert-danger once, to
style the error message div in Listing 7.21.) Bootstrap CSS supports styling
for four such flash classes for increasingly urgent message types (success,
info, warning, and danger), and we’ll find occasion to use all of them in the
course of developing the sample application (info in Section 11.2, warning
in Section 11.3, and danger for the first time in Section 8.1.4).

Because the message is also inserted into the template, the full HTML result
for

flash[:success] = "Welcome to the Sample App!"

appears as follows:
12Actually, we’ll use the closely related flash.now, but we’ll defer that subtlety until we need it.

414 CHAPTER 7. SIGN UP

<div class="alert alert-success">Welcome to the Sample App!</div>

Putting the embedded Ruby discussed above into the site layout leads to the
code in Listing 7.29.

Listing 7.29: Adding the contents of the flash variable to the site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

.

.

.

<body>

<%= render 'layouts/header' %>

<div class="container">

<% flash.each do |message_type, message| %>

<div class="alert alert-<%= message_type %>"><%= message %></div>

<% end %>

<%= yield %>

<%= render 'layouts/footer' %>

<%= debug(params) if Rails.env.development? %>

</div>

.

.

.

</body>

</html>

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In the console, confirm that you can use interpolation (Section 4.2.1)
to interpolate a raw symbol. For example, what is the return value of
"#{:success}"?

2. How does the previous exercise relate to the flash iteration shown in List-
ing 7.28?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.4. SUCCESSFUL SIGNUPS 415

7.4.3 The first signup
We can see the result of all this work by signing up the first user for the sam-
ple app. Even though previous submissions didn’t work properly (as shown in
Figure 7.21), the user.save line in the Users controller still works, so users
might still have been created. To clear them out, we’ll reset the database as
follows:

$ rails db:migrate:reset

On some systems you might have to restart the webserver (using Ctrl-C) for the
changes to take effect (Box 1.2).

We’ll create the first user with the name “Rails Tutorial” and email address
“example@railstutorial.org”, as shown in Figure 7.23). The resulting page
(Figure 7.24) shows a friendly flash message upon successful signup, including
nice green styling for the success class, which comes included with the Boot-
strap CSS framework from Section 5.1.2. Then, upon reloading the user show
page, the flash message disappears as promised (Figure 7.25).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the Rails console, find by the email address to double-check that
the new user was actually created. The result should look something like
Listing 7.30.

2. Create a new user with your primary email address. Verify that the Gra-
vatar correctly appears.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

416 CHAPTER 7. SIGN UP

Figure 7.23: Filling in the information for the first signup.

7.4. SUCCESSFUL SIGNUPS 417

Figure 7.24: The results of a successful user signup, with flash message.

418 CHAPTER 7. SIGN UP

Figure 7.25: The flash-less profile page after a browser reload.

7.4. SUCCESSFUL SIGNUPS 419

Listing 7.30: Finding the newly created user in the database.
$ rails console

>> User.find_by(email: "example@railstutorial.org")

=> #<User id: 1, name: "Rails Tutorial", email: "example@railstutorial.

org", created_at: "2016-05-31 17:17:33", updated_at: "2016-05-31 17:17:33",

password_digest: "$2a$10$8MaeHdnOhZvMk3GmFdmpPOeG6a7u7/k2Z9TMjOanC9G...">

7.4.4 A test for valid submission
Before moving on, we’ll write a test for valid submission to verify our applica-
tion’s behavior and catch regressions. As with the test for invalid submission
in Section 7.3.4, our main purpose is to verify the contents of the database. In
this case, we want to submit valid information and then confirm that a user was
created. In analogy with Listing 7.23, which used

assert_no_difference 'User.count' do

post users_path, ...

end

here we’ll use the corresponding assert_difference method:

assert_difference 'User.count', 1 do

post users_path, ...

end

As with assert_no_difference, the first argument is the string 'User.-

count', which arranges for a comparison between User.count before and
after the contents of the assert_difference block. The second (optional)
argument specifies the size of the difference (in this case, 1).

Incorporating assert_difference into the file from Listing 7.23 yields
the test shown in Listing 7.31. Note that we’ve used the follow_redirect!
method after posting to the users path. This simply arranges to follow the redi-
rect after submission, resulting in a rendering of the 'users/show' template.
(It’s probably a good idea to write a test for the flash as well, which is left as an
exercise (Section 7.4.4).)

420 CHAPTER 7. SIGN UP

Listing 7.31: A test for a valid signup. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

.

.

.

test "valid signup information" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

follow_redirect!

assert_template 'users/show'

end

end

Note that Listing 7.31 also verifies that the user show template renders fol-
lowing successful signup. For this test to work, it’s necessary for the Users
routes (Listing 7.3), the Users show action (Listing 7.5), and the show.html.-
erb view (Listing 7.8) to work correctly. As a result, the one line

assert_template 'users/show'

is a sensitive test for almost everything related to a user’s profile page. This sort
of end-to-end coverage of important application features illustrates one reason
why integration tests are so useful.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.4. SUCCESSFUL SIGNUPS 421

1. Write a test for the flash implemented in Section 7.4.2. How detailed
you want to make your tests is up to you; a suggested ultra-minimalist
template appears in Listing 7.32, which you should complete by replacing
FILL_INwith the appropriate code. (Even testing for the right key, much
less the text, is likely to be brittle, so I prefer to test only that the flash
isn’t empty.)

2. As noted above, the flash HTML in Listing 7.29 is ugly. Verify by running
the test suite that the cleaner code in Listing 7.33, which uses the Rails
content_tag helper, also works.

3. Verify that the test fails if you comment out the redirect line in List-
ing 7.26.

4. Suppose we changed @user.save to false in Listing 7.26. How does
this change verify that the assert_difference block is testing the
right thing?

Listing 7.32: A template for a test of the flash.
test/integration/users_signup_test.rb

require 'test_helper'

.

.

.

test "valid signup information" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

follow_redirect!

assert_template 'users/show'

assert_not flash.FILL_IN

end

end

422 CHAPTER 7. SIGN UP

Listing 7.33: The flash ERb in the site layout using content_tag.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

.

.

.

<% flash.each do |message_type, message| %>

<%= content_tag(:div, message, class: "alert alert-#{message_type}") %>

<% end %>

.

.

.

</html>

7.5 Professional-grade deployment
Now that we have a working signup page, it’s time to deploy our application and
get it working in production. Although we started deploying our application in
Chapter 3, this is the first time it will actually do something, so we’ll take this
opportunity to make the deployment professional-grade. In particular, we’ll add
an important feature to the production application to make signup secure, we’ll
replace the default webserver with one suitable for real-world use, and we’ll
add some configuration for our production database.

As preparation for the deployment, you should merge your changes into the
master branch at this point:

$ git add -A

$ git commit -m "Finish user signup"

$ git checkout master

$ git merge sign-up

7.5.1 SSL in production
When submitting the signup form developed in this chapter, the name, email
address, and password get sent over the network, and hence are vulnerable to

7.5. PROFESSIONAL-GRADE DEPLOYMENT 423

Figure 7.26: The result of using an insecure http URL in production.

being intercepted by malicious users. This is a potentially serious security flaw
in our application, and the way to fix it is to use Secure Sockets Layer (SSL)13 to
encrypt all relevant information before it leaves the local browser. Although we
could use SSL on just the signup page, it’s actually easier to implement it site-
wide, which has the additional benefits of securing user login (Chapter 8) and
making our application immune to the critical session hijacking vulnerability
discussed in Section 9.1.

Although Heroku uses SSL by default, it doesn’t force browsers to use it, so
any users hitting our application using regular http will be interacting insecurely
with the site. You can see how this works by editing the URL in the address bar
to change “https” to “http”; the result appears in Figure 7.26.

Luckily, forcing browsers to use SSL is as easy as uncommenting a single
line in production.rb, the configuration file for production applications. As
shown in Listing 7.34, all we need to do is set config.force_ssl to true.

Listing 7.34: Configuring the application to use SSL in production.
config/environments/production.rb

Rails.application.configure do

.

13Technically, SSL is now TLS, for Transport Layer Security, but everyone I know still says “SSL”.

https://en.wikipedia.org/wiki/Transport_Layer_Security

424 CHAPTER 7. SIGN UP

.

.

Force all access to the app over SSL, use Strict-Transport-Security,

and use secure cookies.

config.force_ssl = true

.

.

.

end

At this stage, we need to set up SSL on the remote server. Setting up a pro-
duction site to use SSL involves purchasing and configuring an SSL certificate
for your domain. That’s a lot of work, though, and luckily we won’t need it
here: for an application running on a Heroku domain (such as the sample appli-
cation), we can piggyback on Heroku’s SSL certificate. As a result, when we
deploy the application in Section 7.5.2, SSL will automatically be enabled. (If
you want to run SSL on a custom domain, such as www.example.com, refer to
Heroku’s documentation on SSL.)

7.5.2 Production webserver
Having added SSL, we now need to configure our application to use a web-
server suitable for production applications. By default, Heroku uses a pure-
Ruby webserver called WEBrick, which is easy to set up and run but isn’t good
at handling significant traffic. As a result, WEBrick isn’t suitable for produc-
tion use, so we’ll replace WEBrick with Puma, an HTTP server that is capable
of handling a large number of incoming requests.

To add the new webserver, we simply follow the Heroku Puma documen-
tation. The first step is to include the puma gem in our Gemfile, but as of
Rails 5 Puma is included by default (Listing 3.2). This means we can skip right
to the second step, which is to replace the default contents of the file con-

fig/puma.rb with the configuration shown in Listing 7.35. The code in List-
ing 7.35 comes straight from the Heroku documentation,14 and there is no need
to understand it (Box 1.2).

14Listing 7.35 changes the formatting slightly so that the code fits in the standard 80 columns.

http://devcenter.heroku.com/articles/ssl
https://devcenter.heroku.com/articles/ruby-default-web-server
https://devcenter.heroku.com/articles/ruby-default-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server

7.5. PROFESSIONAL-GRADE DEPLOYMENT 425

Listing 7.35: The configuration file for the production webserver.
config/puma.rb

Puma configuration file.

max_threads_count = ENV.fetch("RAILS_MAX_THREADS") { 5 }

min_threads_count = ENV.fetch("RAILS_MIN_THREADS") { max_threads_count }

threads min_threads_count, max_threads_count

port ENV.fetch("PORT") { 3000 }

environment ENV.fetch("RAILS_ENV") { ENV['RACK_ENV'] || "development" }

pidfile ENV.fetch("PIDFILE") { "tmp/pids/server.pid" }

workers ENV.fetch("WEB_CONCURRENCY") { 2 }

preload_app!

plugin :tmp_restart

We also need to make a so-called Procfile to tell Heroku to run a Puma
process in production, as shown in Listing 7.36. The Procfile should be
created in your application’s root directory (i.e., in the same directory as the
Gemfile).

Listing 7.36: Defining a Procfile for Puma.
./Procfile

web: bundle exec puma -C config/puma.rb

7.5.3 Production database configuration
The final step in our production deployment is properly configuring the pro-
duction database, which (as mentioned briefly in Section 2.3.5) is PostgreSQL.
My testing indicates that PostgreSQL actually works on Heroku without any
configuration, but the official Heroku documentation recommends explicit con-
figuration nonetheless, so we’ll err on the side of caution and include it.

The actual change is easy: all we have to do is update the production

section of the database configuration file, config/database.yml. The result,
which I adapted from the Heroku docs, is shown in Listing 7.37.

https://www.postgresql.org/
https://devcenter.heroku.com/articles/getting-started-with-rails5

426 CHAPTER 7. SIGN UP

Listing 7.37: Configuring the database for production.
config/database.yml

SQLite version 3.x

gem install sqlite3

#

Ensure the SQLite 3 gem is defined in your Gemfile

gem 'sqlite3'

#

default: &default

adapter: sqlite3

pool: 5

timeout: 5000

development:

<<: *default

database: db/development.sqlite3

Warning: The database defined as "test" will be erased and

re-generated from your development database when you run "rake".

Do not set this db to the same as development or production.

test:

<<: *default

database: db/test.sqlite3

production:

adapter: postgresql

encoding: unicode

For details on connection pooling, see Rails configuration guide

https://guides.rubyonrails.org/configuring.html#database-pooling

pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>

database: sample_app_production

username: sample_app

password: <%= ENV['SAMPLE_APP_DATABASE_PASSWORD'] %>

7.5.4 Production deployment

With the production webserver and database configuration completed, we’re
ready to commit and deploy:15

15We haven’t changed the data model in this chapter, so running the migration at Heroku shouldn’t be necessary,
but only if you followed the steps in Section 6.4. Because several readers reported having trouble, I’ve added
heroku run rails db:migrate as a final step just to be safe.

7.5. PROFESSIONAL-GRADE DEPLOYMENT 427

Figure 7.27: Signing up on the live Web.

$ rails test

$ git add -A

$ git commit -m "Use SSL and the Puma webserver in production"

$ git push && git push heroku

The signup form is now live, and the result of a successful signup is shown in
Figure 7.27. Note the presence of a lock icon in the address bar of Figure 7.27,
which indicate that SSL is working.

428 CHAPTER 7. SIGN UP

Ruby version number

When deploying to Heroku, you may get a warning message like this one:

WARNING:

You have not declared a Ruby version in your Gemfile.

To set your Ruby version add this line to your Gemfile:

ruby '2.6.3'

Experience shows that, at the level of this tutorial, the costs associated with
including such an explicit Ruby version number outweigh the (negligible) ben-
efits, so you should ignore this warning for now. The main issue is that keeping
your sample app and system in sync with the latest Ruby version can be a huge
inconvenience,16 and yet it almost never makes a difference which exact Ruby
version number you use. Nevertheless, you should bear in mind that, should
you ever end up running a mission-critical app on Heroku, specifying an exact
Ruby version in the Gemfile is recommended to ensure maximum compati-
bility between development and production environments.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm on your browser that the SSL lock and https appear.

2. Create a user on the production site using your primary email address.
Does your Gravatar appear correctly?

16For example, at one point Heroku required Ruby 2.1.4, so I spent several hours trying unsuccessfully to install
Ruby 2.1.4 on my local machine—only to discover that Ruby 2.1.5 had been released the previous day. (Attempts
to install Ruby 2.1.5 then also failed.)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.6. CONCLUSION 429

7.6 Conclusion
Being able to sign up users is a major milestone for our application. Although
the sample app has yet to accomplish anything useful, we have laid an essential
foundation for all future development. In Chapter 8 and Chapter 9, we will
complete our authentication machinery by allowing users to log in and out of
the application (with optional “remember me” functionality). In Chapter 10,
we will allow all users to update their account information, and we will allow
site administrators to delete users, thereby completing the full suite of Users
resource REST actions from Table 7.1.

7.6.1 What we learned in this chapter
• Rails displays useful debug information via the debug method.

• Sass mixins allow a group of CSS rules to be bundled and reused in mul-
tiple places.

• Rails comes with three standard environments: development, test,
and production.

• We can interact with users as a resource through a standard set of REST
URLs.

• Gravatars provide a convenient way of displaying images to represent
users.

• The form_with helper is used to generate forms for interacting with
Active Record objects.

• Signup failure renders the new user page and displays error messages
automatically determined by Active Record.

• Rails provides the flash as a standard way to display temporary mes-
sages.

430 CHAPTER 7. SIGN UP

• Signup success creates a user in the database and redirects to the user
show page, and displays a welcome message.

• We can use integration tests to verify form submission behavior and catch
regressions.

• We can configure our production application to use SSL for secure com-
munications and Puma for high performance.

