
8.2. LOGGING IN 451

Log the user in and redirect to the user's show page.

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

end

end

We can then verify that both the login integration test and the full test suite
are green:

Listing 8.12: green
$ rails test test/integration/users_login_test.rb

$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify in your browser that the sequence from Section 8.1.4 works cor-
rectly, i.e., that the flash message disappears when you click on a second
page.

8.2 Logging in
Now that our login form can handle invalid submissions, the next step is to
handle valid submissions correctly by actually logging a user in. In this section,
we’ll log the user in with a temporary session cookie that expires automatically
upon browser close. In Section 9.1, we’ll add sessions that persist even after
closing the browser.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

452 CHAPTER 8. BASIC LOGIN

Implementing sessions will involve defining a large number of related func-
tions for use across multiple controllers and views. You may recall from Sec-
tion 4.2.4 that Ruby provides a module facility for packaging such functions
in one place. Conveniently, a Sessions helper module was generated automati-
cally when generating the Sessions controller (Section 8.1.1). Moreover, such
helpers are automatically included in Rails views; by including the module into
the base class of all controllers (the Application controller), we arrange to make
them available in our controllers as well (Listing 8.13).2

Listing 8.13: Including the Sessions helper module into the Application con-
troller.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

include SessionsHelper

end

With this configuration complete, we’re now ready to write the code to log users
in.

8.2.1 The log_in method
Logging a user in is simple with the help of the session method defined by
Rails. (This method is separate and distinct from the Sessions controller gen-
erated in Section 8.1.1.) We can treat session as if it were a hash, and assign
to it as follows:

session[:user_id] = user.id

This places a temporary cookie on the user’s browser containing an encrypted
version of the user’s id, which allows us to retrieve the id on subsequent pages

2I like this technique because it connects to the pure Ruby way of including modules, but Rails 4 introduced
a technique called concerns that can also be used for this purpose. To learn how to use concerns, run a search for
“how to use concerns in Rails”.

https://www.google.com/search?q=how+to+use+concerns+in+rails

8.2. LOGGING IN 453

using session[:user_id]. In contrast to the persistent cookie created by the
cookies method (Section 9.1), the temporary cookie created by the session
method expires immediately when the browser is closed.

Because we’ll want to use the same login technique in a couple of different
places, we’ll define a method called log_in in the Sessions helper, as shown
in Listing 8.14.

Listing 8.14: The log_in function.
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

end

Because temporary cookies created using the session method are auto-
matically encrypted, the code in Listing 8.14 is secure, and there is no way for
an attacker to use the session information to log in as the user. This applies only
to temporary sessions initiated with the session method, though, and is not
the case for persistent sessions created using the cookies method. Permanent
cookies are vulnerable to a session hijacking attack, so in Chapter 9 we’ll have
to be much more careful about the information we place on the user’s browser.

With the log_in method defined in Listing 8.14, we’re now ready to com-
plete the session create action by logging the user in and redirecting to the
user’s profile page. The result appears in Listing 8.15.3

Listing 8.15: Logging in a user.
app/controllers/sessions_controller.rb

1 class SessionsController < ApplicationController

2
3 def new

4 end

3The log_in method is available in the Sessions controller because of the module inclusion in Listing 8.13.

454 CHAPTER 8. BASIC LOGIN

5
6 def create

7 user = User.find_by(email: params[:session][:email].downcase)

8 if user && user.authenticate(params[:session][:password])

9 log_in user

10 redirect_to user

11 else

12 flash.now[:danger] = 'Invalid email/password combination'

13 render 'new'

14 end

15 end

16
17 def destroy

18 end

19 end

Note the compact redirect

redirect_to user

which we saw before in Section 7.4.1. Rails automatically converts this to the
route for the user’s profile page:

user_url(user)

With the create action defined in Listing 8.15, the login form defined in
Listing 8.4 should now be working. It doesn’t have any effects on the applica-
tion display, though, so short of inspecting the browser session directly there’s
no way to tell that you’re logged in. As a first step toward enabling more visible
changes, in Section 8.2.2 we’ll retrieve the current user from the database using
the id in the session. In Section 8.2.3, we’ll change the links on the application
layout, including a URL to the current user’s profile.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

8.2. LOGGING IN 455

1. Log in with a valid user and inspect your browser’s cookies. What is the
value of the session content? Hint: If you don’t know how to view your
browser’s cookies, Google for it (Box 1.2).

2. What is the value of the Expires attribute from the previous exercise?

8.2.2 Current user
Having placed the user’s id securely in the temporary session, we are now in a
position to retrieve it on subsequent pages, which we’ll do by defining a cur-
rent_usermethod to find the user in the database corresponding to the session
id. The purpose of current_user is to allow constructions such as

<%= current_user.name %>

and

redirect_to current_user

To find the current user, one possibility is to use the find method, as on the
user profile page (Listing 7.5):

User.find(session[:user_id])

But recall from Section 6.1.4 that find raises an exception if the user id doesn’t
exist. This behavior is appropriate on the user profile page because it will only
happen if the id is invalid, but in the present case session[:user_id] will
often be nil (i.e., for non-logged-in users). To handle this possibility, we’ll
use the same find_by method used to find by email address in the create

method, with id in place of email:

456 CHAPTER 8. BASIC LOGIN

User.find_by(id: session[:user_id])

Rather than raising an exception, this method returns nil (indicating no such
user) if the id is invalid.

We could now define the current_user method as follows:

def current_user

if session[:user_id]

User.find_by(id: session[:user_id])

end

end

(If the session user id doesn’t exist, the function just falls off the end and returns
nil automatically, which is exactly what we want.) This would work fine, but
it would hit the database multiple times if, e.g., current_user appeared mul-
tiple times on a page. Instead, we’ll follow a common Ruby convention by
storing the result of User.find_by in an instance variable, which hits the da-
tabase the first time but returns the instance variable immediately on subsequent
invocations:4

if @current_user.nil?

@current_user = User.find_by(id: session[:user_id])

else

@current_user

end

Recalling the or operator || seen in Section 4.2.2, we can rewrite this as fol-
lows:

@current_user = @current_user || User.find_by(id: session[:user_id])

4This practice of remembering variable assignments from one method invocation to the next is known as
memoization. (Note that this is a technical term; in particular, it’s not a misspelling of “memorization”—a subtlety
lost on the hapless copyeditor of a previous edition of this book.)

https://en.wikipedia.org/wiki/Memoization

8.2. LOGGING IN 457

Because a User object is true in a boolean context, the call to find_by only
gets executed if @current_user hasn’t yet been assigned.

Although the preceding code would work, it’s not idiomatically correct
Ruby; instead, the proper way to write the assignment to @current_user is
like this:

@current_user ||= User.find_by(id: session[:user_id])

This uses the potentially confusing but frequently used ||= (“or equals”) oper-
ator (Box 8.1).

Box 8.1. What the *$@! is ||= ?

The ||= (“or equals”) assignment operator is a common Ruby idiom and is
thus important for aspiring Rails developers to recognize. Although at first it may
seem mysterious, or equals is easy to understand by analogy.

We start by noting the common pattern of incrementing a variable:

x = x + 1

Many languages provide a syntactic shortcut for this operation; in Ruby (and in C,
C++, Perl, Python, Java, etc.), it can also appear as follows:

x += 1

Analogous constructs exist for other operators as well:

$ rails console

>> x = 1

=> 1

>> x += 1

=> 2

>> x *= 3

458 CHAPTER 8. BASIC LOGIN

=> 6

>> x -= 8

=> -2

>> x /= 2

=> -1

In each case, the pattern is that x = x O y and x O= y are equivalent for any
operator O.

Another common Ruby pattern is assigning to a variable if it’s nil but other-
wise leaving it alone. Recalling the or operator || seen in Section 4.2.2, we can
write this as follows:

>> @foo

=> nil

>> @foo = @foo || "bar"

=> "bar"

>> @foo = @foo || "baz"

=> "bar"

Since nil is false in a boolean context, the first assignment to @foo is nil ||
"bar", which evaluates to "bar". Similarly, the second assignment is @foo
|| "baz", i.e., "bar" || "baz", which also evaluates to "bar". This is
because anything other than nil or false is true in a boolean context, and
the series of || expressions terminates after the first true expression is evaluated.
(This practice of evaluating || expressions from left to right and stopping on the
first true value is known as short-circuit evaluation. The same principle applies to
&& statements, except in this case evaluation stops on the first false value.)

Comparing the console sessions for the various operators, we see that @foo =
@foo || "bar" follows the x = x O y pattern with || in the place of O:

x = x + 1 -> x += 1

x = x * 3 -> x *= 3

x = x - 8 -> x -= 8

8.2. LOGGING IN 459

x = x / 2 -> x /= 2

@foo = @foo || "bar" -> @foo ||= "bar"

Thus we see that @foo = @foo || "bar" and @foo ||= "bar" are
equivalent. In the context of the current user, this suggests the following con-
struction:

@current_user ||= User.find_by(id: session[:user_id])

Voilà !
(Technically, Ruby evaluates the expression @foo || @foo = "bar",

which avoids an unnecessary assignment when @foo is not nil or false. But
this expression doesn’t explain the ||= notation as well, so the above discussion
uses the nearly equivalent @foo = @foo || "bar".)

Applying the results of the above discussion yields the succinct
current_user method shown in Listing 8.16. (There’s a slight amount of
repetition in the use of session[:user_id], which we’ll eliminate in Sec-
tion 9.1.2.)

Listing 8.16: Finding the current user in the session.
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

Returns the current logged-in user (if any).

def current_user

if session[:user_id]

@current_user ||= User.find_by(id: session[:user_id])

end

end

end

https://m.xkcd.com/1475/

460 CHAPTER 8. BASIC LOGIN

With the working current_user method in Listing 8.16, we’re now in a po-
sition to make changes to our application based on user login status.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm at the console that User.find_by(id: ...) returns nil

when the corresponding user doesn’t exist.

2. In a Rails console, create a session hash with key :user_id. By fol-
lowing the steps in Listing 8.17, confirm that the ||= operator works as
required.

Listing 8.17: Simulating session in the console.
>> session = {}

>> session[:user_id] = nil

>> @current_user ||= User.find_by(id: session[:user_id])

<What happens here?>

>> session[:user_id]= User.first.id

>> @current_user ||= User.find_by(id: session[:user_id])

<What happens here?>

>> @current_user ||= User.find_by(id: session[:user_id])

<What happens here?>

8.2.3 Changing the layout links
The first practical application of logging in involves changing the layout links
based on login status. In particular, as seen in the Figure 8.8 mockup,5 we’ll add
links for logging out, for user settings, for listing all users, and for the current
user’s profile page. Note in Figure 8.8 that the logout and profile links appear
in a dropdown “Account” menu; we’ll see in Listing 8.19 how to make such a
menu with Bootstrap.

5Image retrieved from https://www.flickr.com/photos/elevy/14730820387 on 2016-06-03. Copyright © 2014
by Elias Levy and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic license.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://creativecommons.org/licenses/by/2.0/

8.2. LOGGING IN 461

Figure 8.8: A mockup of the user profile after a successful login.

462 CHAPTER 8. BASIC LOGIN

At this point, in real life I would consider writing an integration test to cap-
ture the behavior described above. As noted in Box 3.3, as you become more
familiar with the testing tools in Rails you may find yourself more inclined to
write tests first. In this case, though, such a test involves several new ideas, so
for now it’s best deferred to its own section (Section 8.2.4).

The way to change the links in the site layout involves using an if-else state-
ment inside embedded Ruby to show one set of links if the user is logged in and
another set of links otherwise:

<% if logged_in? %>

Links for logged-in users

<% else %>

Links for non-logged-in-users

<% end %>

This kind of code requires the existence of a logged_in? boolean method,
which we’ll now define.

A user is logged in if there is a current user in the session, i.e., if
current_user is not nil. Checking for this requires the use of the “not”
operator (Section 4.2.2), written using an exclamation point ! and usually read
as “bang”. The resulting logged_in? method appears in Listing 8.18.

Listing 8.18: The logged_in? helper method.
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

Returns the current logged-in user (if any).

def current_user

if session[:user_id]

@current_user ||= User.find_by(id: session[:user_id])

end

end

Returns true if the user is logged in, false otherwise.

8.2. LOGGING IN 463

def logged_in?

!current_user.nil?

end

end

With the addition in Listing 8.18, we’re now ready to change the layout
links if a user is logged in. There are four new links, two of which are stubbed
out (to be completed in Chapter 10):

<%= link_to "Users", '#' %>

<%= link_to "Settings", '#' %>

The logout link, meanwhile, uses the logout path defined in Listing 8.2:

<%= link_to "Log out", logout_path, method: :delete %>

Notice that the logout link passes a hash argument indicating that it should sub-
mit with an HTTP DELETE request.6 We’ll also add a profile link as follows:

<%= link_to "Profile", current_user %>

Here we could write

<%= link_to "Profile", user_path(current_user) %>

but as usual Rails allows us to link directly to the user by automatically convert-
ing current_user into user_path(current_user) in this context. Fi-
nally, when users aren’t logged in, we’ll use the login path defined in Listing 8.2
to make a link to the login form:

6Web browsers can’t actually issue DELETE requests; Rails fakes it with JavaScript.

464 CHAPTER 8. BASIC LOGIN

<%= link_to "Log in", login_path %>

Putting everything together gives the updated header partial shown in List-
ing 8.19.

Listing 8.19: Changing the layout links for logged-in users.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", root_path, id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", root_path %>

<%= link_to "Help", help_path %>

<% if logged_in? %>

<%= link_to "Users", '#' %>

<li class="dropdown">

Account <b class="caret">

<ul class="dropdown-menu">

<%= link_to "Profile", current_user %>

<%= link_to "Settings", '#' %>

<li class="divider">

<%= link_to "Log out", logout_path, method: :delete %>

<% else %>

<%= link_to "Log in", login_path %>

<% end %>

</nav>

</div>

</header>

As part of including the new links into the layout, Listing 8.19 takes advan-
tage of Bootstrap’s ability to make dropdown menus.7 Note in particular the
inclusion of the special Bootstrap CSS classes such as dropdown, dropdown-
menu, etc. To activate the dropdown menu, we need to include Bootstrap’s

7See the Bootstrap components page for more information.

https://getbootstrap.com/docs/3.4/components/

8.2. LOGGING IN 465

custom JavaScript library into our application (which is not included automat-
ically as part of the bootstrap-sass gem in Listing 5.5), as well as the
jQuery library.

Section 5.2 mentioned briefly that the Rails asset pipeline works in parallel
with Webpack and Yarn, and we need to put both to work in order to include the
above JavaScript. The first step is to install both jQuery and Bootstrap’s Java-
Script library in our application, which coincidentally needs the same version
number for each:

$ yarn add jquery@3.4.1 bootstrap@3.4.1

In order to make jQuery available in our application, we need to edit Web-
pack’s environment file and add the content shown in Listing 8.20.

Listing 8.20: Adding jQuery configuration to Webpack.
config/webpack/environment.js

const { environment } = require('@rails/webpacker')

const webpack = require('webpack')

environment.plugins.prepend('Provide',

new webpack.ProvidePlugin({

$: 'jquery/src/jquery',

jQuery: 'jquery/src/jquery'

})

)

module.exports = environment

Finally, we need to require jQuery and import Bootstrap in our applica-
tion.js file, as shown in Listing 8.21.8

Listing 8.21: Requiring and importing the necessary JavaScript libraries.
app/javascript/packs/application.js

8For what it’s worth, I don’t know offhand why one uses require and the other used import.

https://jquery.com/

466 CHAPTER 8. BASIC LOGIN

require("@rails/ujs").start()

require("turbolinks").start()

require("@rails/activestorage").start()

require("channels")

require("jquery")

import "bootstrap"

At this point, you should visit the login path and log in as a valid user (user-
name example@railstutorial.org, password foobar), which effectively
tests the code in the previous three sections.9 With the code in Listing 8.19 and
Listing 8.21, you should see the dropdown menu and links for logged-in users,
as shown in Figure 8.9.

If you quit your browser completely, you should also be able to verify that
the application forgets your login status, requiring you to log in again to see the
changes described above.10

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the cookie inspector in your browser (Section 8.2.1), remove the
session cookie and confirm that the layout links revert to the non-logged-
in state.

2. Log in again, confirming that the layout links change correctly. Then quit
your browser and start it again to confirm that the layout links revert to
the non-logged-in state. (If your browser has a “remember where I left
off” feature that automatically restores the session, be sure to disable it in
this step (Box 1.2).)

9You may have to restart the webserver to get this to work (Box 1.2).
10If you’re using the cloud IDE, I recommend using a different browser to test the login behavior so that you

don’t have to close down the browser running the IDE.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

8.2. LOGGING IN 467

Figure 8.9: A logged-in user with new links and a dropdown menu.

468 CHAPTER 8. BASIC LOGIN

8.2.4 Testing layout changes
Having verified by hand that the application is behaving properly upon suc-
cessful login, before moving on we’ll write an integration test to capture that
behavior and catch regressions. We’ll build on the test from Listing 8.9 and
write a series of steps to verify the following sequence of actions:

1. Visit the login path.

2. Post valid information to the sessions path.

3. Verify that the login link disappears.

4. Verify that a logout link appears

5. Verify that a profile link appears.

In order to see these changes, our test needs to log in as a previously reg-
istered user, which means that such a user must already exist in the database.
The default Rails way to do this is to use fixtures, which are a way of orga-
nizing data to be loaded into the test database. We discovered in Section 6.2.5
that we needed to delete the default fixtures so that our email uniqueness tests
would pass (Listing 6.31). Now we’re ready to start filling in that empty file
with custom fixtures of our own.

In the present case, we need only one user, whose information should con-
sist of a valid name and email address. Because we’ll need to log the user in,
we also have to include a valid password to compare with the password submit-
ted to the Sessions controller’s create action. Referring to the data model in
Figure 6.9, we see that this means creating a password_digest attribute for
the user fixture, which we’ll accomplish by defining a digest method of our
own.

As discussed in Section 6.3.1, the password digest is created using bcrypt
(via has_secure_password), so we’ll need to create the fixture password
using the same method. By inspecting the secure password source code, we
find that this method is

https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb

8.2. LOGGING IN 469

BCrypt::Password.create(string, cost: cost)

where string is the string to be hashed and cost is the cost parameter that de-
termines the computational cost to calculate the hash. Using a high cost makes
it computationally intractable to use the hash to determine the original pass-
word, which is an important security precaution in a production environment,
but in tests we want the digest method to be as fast as possible. The secure
password source code has a line for this as well:

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

This rather obscure code, which you don’t need to understand in detail, arranges
for precisely the behavior described above: it uses the minimum cost parameter
in tests and a normal (high) cost parameter in production. (We’ll learn more
about the strange ?-: notation in Section 9.2.)

There are several places we could put the resulting digest method, but
we’ll have an opportunity in Section 9.1.1 to reuse digest in the User model.
This suggests placing the method in user.rb. Because we won’t necessarily
have access to a user object when calculating the digest (as will be the case in
the fixtures file), we’ll attach the digest method to the User class itself, which
(as we saw briefly in Section 4.4.1) makes it a class method. The result appears
in Listing 8.22.

Listing 8.22: Adding a digest method for use in fixtures.
app/models/user.rb

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

470 CHAPTER 8. BASIC LOGIN

Returns the hash digest of the given string.

def User.digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

end

With the digest method from Listing 8.22, we are now ready to create a
user fixture for a valid user, as shown in Listing 8.23.11

Listing 8.23: A fixture for testing user login.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

Note in particular that fixtures support embedded Ruby, which allows us to use

<%= User.digest('password') %>

to create the valid password digest for the test user.
Although we’ve defined the password_digest attribute required by

has_secure_password, sometimes it’s convenient to refer to the plain (vir-
tual) password as well. Unfortunately, this is impossible to arrange with fix-
tures, and adding a password attribute to Listing 8.23 causes Rails to com-
plain that there is no such column in the database (which is true). We’ll make
do by adopting the convention that all fixture users have the same password
('password').

Having created a fixture with a valid user, we can retrieve it inside a test as
follows:

11It’s worth noting that indentation in fixture files must take the form of spaces, not tabs, so take care when
copying code like that shown in Listing 8.23.

8.2. LOGGING IN 471

user = users(:michael)

Here users corresponds to the fixture filename users.yml, while the symbol
:michael references user with the key shown in Listing 8.23.

With the fixture user as above, we can now write a test for the layout links by
converting the sequence enumerated at the beginning of this section into code,
as shown in Listing 8.24.

Listing 8.24: A test for user logging in with valid information. green
test/integration/users_login_test.rb

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "login with valid information" do

get login_path

post login_path, params: { session: { email: @user.email,

password: 'password' } }

assert_redirected_to @user

follow_redirect!

assert_template 'users/show'

assert_select "a[href=?]", login_path, count: 0

assert_select "a[href=?]", logout_path

assert_select "a[href=?]", user_path(@user)

end

end

Here we’ve used

assert_redirected_to @user

to check the right redirect target and

472 CHAPTER 8. BASIC LOGIN

follow_redirect!

to actually visit the target page. Listing 8.24 also verifies that the login link
disappears by verifying that there are zero login path links on the page:

assert_select "a[href=?]", login_path, count: 0

By including the extra count: 0 option, we tell assert_select that we ex-
pect there to be zero links matching the given pattern. (Compare this to count:
2 in Listing 5.32, which checks for exactly two matching links.)

Because the application code was already working, this test should be
green:

Listing 8.25: green
$ rails test test/integration/users_login_test.rb

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm by commenting out everything after if user in Line 8 of List-
ing 8.15 that the tests still pass even if we don’t authenticate the user by
email and password, as shown in Listing 8.26. This is because Listing 8.9
doesn’t test the case of a correct user email but incorrect password. Fix
this serious omission in our test suite by adding a valid email to the Users
login test by (Listing 8.27). Verify that the tests are red, then remove the
Line 8 comment to get back to green. (Because it’s so important, we’ll
add this test to the main code in Section 8.3.)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

8.2. LOGGING IN 473

2. Use the “safe navigation” operator &. to simplify the boolean test in
Line 8 of Listing 8.15, as shown in Line 8 of Listing 8.28.12 This Ruby
feature allows us to condense the common pattern of obj && obj.method
into obj&.method. Confirm that the tests in Listing 8.27 still pass after
the change.

Listing 8.26: Commenting out the authentication code, but tests still green.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user # && user.authenticate(params[:session][:password])

log_in user

redirect_to user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

end

end

Listing 8.27: Testing the case of valid user email, invalid password.
test/integration/users_login_test.rb

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "login with valid email/invalid password" do

get login_path

12Thanks to reader Aviv Levinsky for suggesting this addition.

http://mitrev.net/ruby/2015/11/13/the-operator-in-ruby/

474 CHAPTER 8. BASIC LOGIN

assert_template 'sessions/new'

post login_path, params: { session: { email: FILL_IN,

password: "invalid" } }

assert_template 'sessions/new'

assert_not flash.empty?

get root_path

assert flash.empty?

end

.

.

.

end

Listing 8.28: Using the “safe navigation” operator &. to simplify the login
code.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user&.authenticate(params[:session][:password])

log_in user

redirect_to user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

log_out

redirect_to root_url

end

end

8.2.5 Login upon signup
Although our authentication system is now working, newly registered users
might be confused, as they are not logged in by default. Because it would be
strange to force users to log in immediately after signing up, we’ll log in new

8.2. LOGGING IN 475

users automatically as part of the signup process. To arrange this behavior, all
we need to do is add a call to log_in in the Users controller create action,
as shown in Listing 8.29.13

Listing 8.29: Logging in the user upon signup.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

def create

@user = User.new(user_params)

if @user.save

log_in @user

flash[:success] = "Welcome to the Sample App!"

redirect_to @user

else

render 'new'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

To test the behavior from Listing 8.29, we can add a line to the test from List-
ing 7.31 to check that the user is logged in. It’s helpful in this context to define
an is_logged_in? helper method to parallel the logged_in? helper defined
in Listing 8.18, which returns true if there’s a user id in the (test) session and
false otherwise (Listing 8.30). (Because helper methods aren’t available in tests,
we can’t use the current_user as in Listing 8.18, but the session method

13As with the Sessions controller, the log_in method is available in the Users controller because of the module
inclusion in Listing 8.13.

476 CHAPTER 8. BASIC LOGIN

is available, so we use that instead.) Here we use is_logged_in? instead of
logged_in? so that the test helper and Sessions helper methods have differ-
ent names, which prevents them from being mistaken for each other.14 (In this
case we could actually just include the Sessions helper and use logged_in?
directly, but this technique would fail in Chapter 9 due to details of how cookies
are handled in tests, so instead we define a test-specific method that will work
in all cases.)

Listing 8.30: A boolean method for login status inside tests.
test/test_helper.rb

ENV['RAILS_ENV'] ||= 'test'

.

.

.

class ActiveSupport::TestCase

fixtures :all

Returns true if a test user is logged in.

def is_logged_in?

!session[:user_id].nil?

end

end

With the code in Listing 8.30, we can assert that the user is logged in after
signup using the line shown in Listing 8.31.

Listing 8.31: A test of login after signup. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

.

.

.

test "valid signup information" do

14For example, I once had a test suite that was green even after accidentally deleting the main log_in method
in the Sessions helper. The reason is that the tests were happily using a test helper with the same name, thereby
passing even though the application was completely broken. As with is_logged_in?, we’ll avoid this issue by
defining the test helper log_in_as in Listing 9.24.

8.3. LOGGING OUT 477

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

follow_redirect!

assert_template 'users/show'

assert is_logged_in?

end

end

At this point, the test suite should still be green:

Listing 8.32: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Is the test suite red or green if you comment out the log_in line in List-
ing 8.29?

2. By using your text editor’s ability to comment out code, toggle back and
forth between commenting out code in Listing 8.29 and confirm that the
test suite toggles between red and green. (You will need to save the file
between toggles.)

8.3 Logging out
As discussed in Section 8.1, our authentication model is to keep users logged
in until they log out explicitly. In this section, we’ll add this necessary logout

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.learnenough.com/text-editor
https://www.learnenough.com/r/learn_enough_text_editor/advanced_text_editing/writing_source_code#sec-commenting_out

