
432 CHAPTER 8. BASIC LOGIN

8.1 Sessions
HTTP is a stateless protocol, treating each request as an independent transaction
that is unable to use information from any previous requests. This means there
is no way within the Hypertext Transfer Protocol to remember a user’s identity
from page to page; instead, web applications requiring user login must use a
session, which is a semi-permanent connection between two computers (such
as a client computer running a web browser and a server running Rails).

The most common techniques for implementing sessions in Rails involve
using cookies, which are small pieces of text placed on the user’s browser. Be-
cause cookies persist from one page to the next, they can store information
(such as a user id) that can be used by the application to retrieve the logged-in
user from the database. In this section and in Section 8.2, we’ll use the Rails
method called session to make temporary sessions that expire automatically
on browser close.1 In Chapter 9, we’ll learn how to make longer-lived sessions
using the closely related cookies method.

It’s convenient to model sessions as a RESTful resource: visiting the lo-
gin page will render a form for new sessions, logging in will create a session,
and logging out will destroy it. Unlike the Users resource, which uses a data-
base back-end (via the User model) to persist data, the Sessions resource will
use cookies, and much of the work involved in login comes from building this
cookie-based authentication machinery. In this section and the next, we’ll pre-
pare for this work by constructing a Sessions controller, a login form, and the
relevant controller actions. We’ll then complete user login in Section 8.2 by
adding the necessary session-manipulation code.

As in previous chapters, we’ll do our work on a topic branch and merge in
the changes at the end:

$ git checkout -b basic-login

1Some browsers offer an option to restore such sessions via a “continue where you left off” feature, but Rails
has no control over this behavior. In such cases, the session cookie may persist even after logging out in the
application.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Stateless_protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#HTTP_session_state
https://en.wikipedia.org/wiki/Session_(computer_science)
https://en.wikipedia.org/wiki/HTTP_cookie

8.1. SESSIONS 433

8.1.1 Sessions controller
The elements of logging in and out correspond to particular REST actions of
the Sessions controller: the login form is handled by the new action (covered
in this section), actually logging in is handled by sending a POST request to the
create action (Section 8.2), and logging out is handled by sending a DELETE
request to the destroy action (Section 8.3). (Recall the association of HTTP
verbs with REST actions from Table 7.1.)

To get started, we’ll generate a Sessions controller with a new action (List-
ing 8.1).

Listing 8.1: Generating the Sessions controller.
$ rails generate controller Sessions new

(Including new actually generates views as well, which is why we don’t include
actions like create and destroy that don’t correspond to views.) Following
the model from Section 7.2 for the signup page, our plan is to create a login
form for creating new sessions, as mocked up in Figure 8.1.

Unlike the Users resource, which used the special resources method to
obtain a full suite of RESTful routes automatically (Listing 7.3), the Sessions
resource will use only named routes, handling GET and POST requests with the
login route and DELETE request with the logout route. The result appears in
Listing 8.2 (which also deletes the unneeded routes generated by rails gen-
erate controller).

Listing 8.2: Adding a resource to get the standard RESTful actions for ses-
sions. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

get '/login', to: 'sessions#new'

434 CHAPTER 8. BASIC LOGIN

Figure 8.1: A mockup of the login form.

8.1. SESSIONS 435

HTTP request URL Named route Action Purpose
GET /login login_path new page for a new session (login)
POST /login login_path create create a new session (login)
DELETE /logout logout_path destroy delete a session (log out)

Table 8.1: Routes provided by the sessions rules in Listing 8.2.

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users

end

With the routes in Listing 8.2, we also need to update the test generated in
Listing 8.1 with the new login route, as shown in Listing 8.3.

Listing 8.3: Updating the Sessions controller test to use the login route. green
test/controllers/sessions_controller_test.rb

require 'test_helper'

class SessionsControllerTest < ActionDispatch::IntegrationTest

test "should get new" do

get login_path

assert_response :success

end

end

The routes defined in Listing 8.2 correspond to URLs and actions similar to
those for users (Table 7.1), as shown in Table 8.1.

Since we’ve now added several custom named routes, it’s useful to look at
the complete list of the routes for our application, which we can generate using
rails routes:

$ rails routes

Prefix Verb URI Pattern Controller#Action

root GET / static_pages#home

help GET /help(.:format) static_pages#help

about GET /about(.:format) static_pages#about

436 CHAPTER 8. BASIC LOGIN

contact GET /contact(.:format) static_pages#contact

signup GET /signup(.:format) users#new

login GET /login(.:format) sessions#new

POST /login(.:format) sessions#create

logout DELETE /logout(.:format) sessions#destroy

users GET /users(.:format) users#index

POST /users(.:format) users#create

new_user GET /users/new(.:format) users#new

edit_user GET /users/:id/edit(.:format) users#edit

user GET /users/:id(.:format) users#show

PATCH /users/:id(.:format) users#update

PUT /users/:id(.:format) users#update

DELETE /users/:id(.:format) users#destroy

It’s not necessary to understand the results in detail, but viewing the routes
in this manner gives us a high-level overview of the actions supported by our
application.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. What is the difference between GET login_path and POST login_-

path?

2. By piping the results of rails routes to grep, list all the routes as-
sociated with the Users resource. Do the same for Sessions. How many
routes does each resource have? Hint: Refer to the section on grep in
Learn Enough Command Line to Be Dangerous.

8.1.2 Login form
Having defined the relevant controller and route, now we’ll fill in the view for
new sessions, i.e., the login form. Comparing Figure 8.1 with Figure 7.12, we
see that the login form is similar in appearance to the signup form, except with
two fields (email and password) in place of four.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.learnenough.com/r/learn_enough_command_line/inspecting_files/grepping#sec-grepping
https://www.learnenough.com/command-line

8.1. SESSIONS 437

As seen in Figure 8.2, when the login information is invalid we want to re-
render the login page and display an error message. In Section 7.3.3, we used an
error-messages partial to display error messages, but we saw in that section that
those messages are provided automatically by Active Record. This won’t work
for session creation errors because the session isn’t an Active Record object, so
we’ll render the error as a flash message instead.

Recall from Listing 7.15 that the signup form uses the form_with helper,
taking as an argument the user instance variable @user:

<%= form_with(model: @user, local: true) do |f| %>

.

.

.

<% end %>

The main difference between the session form and the signup form is that we
have no Session model, and hence no analogue for the @user variable. This
means that, in constructing the new session form, we have to give form_with
slightly different information; in particular, whereas

form_with(model: @user, local: true)

allows Rails to infer that the action of the form should be to POST to the URL
/users, in the case of sessions we need to indicate the corresponding URL, along
with the scope (in this case, the session):

form_with(url: login_path, scope: :session, local: true)

With the proper form_with in hand, it’s easy to make a login form to match
the mockup in Figure 8.1 using the signup form (Listing 7.15) as a model, as
shown in Listing 8.4.

438 CHAPTER 8. BASIC LOGIN

Figure 8.2: A mockup of login failure.

8.1. SESSIONS 439

Listing 8.4: Code for the login form.
app/views/sessions/new.html.erb

<% provide(:title, "Log in") %>

<h1>Log in</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: login_path, scope: :session, local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.submit "Log in", class: "btn btn-primary" %>

<% end %>

<p>New user? <%= link_to "Sign up now!", signup_path %></p>

</div>

</div>

Note that we’ve added a link to the signup page for convenience. With the code
in Listing 8.4, the login form appears as in Figure 8.3. (Because the “Log in”
navigation link hasn’t yet been filled in, you’ll have to type the /login URL
directly into your address bar. We’ll fix this blemish in Section 8.2.3.)

The generated form HTML appears in Listing 8.5.

Listing 8.5: HTML for the login form produced by Listing 8.4.
<form accept-charset="UTF-8" action="/login" method="post">

<input name="authenticity_token" type="hidden"

value="NNb6+J/j46LcrgYUC60wQ2titMuJQ5lLqyAbnbAUkdo=" />

<label for="session_email">Email</label>

<input class="form-control" id="session_email"

name="session[email]" type="email" />

<label for="session_password">Password</label>

<input id="session_password" name="session[password]"

type="password" />

<input class="btn btn-primary" name="commit" type="submit"

value="Log in" />

</form>

440 CHAPTER 8. BASIC LOGIN

Figure 8.3: The login form.

8.1. SESSIONS 441

Comparing Listing 8.5 with Listing 7.17, you might be able to guess that sub-
mitting this form will result in a params hash where params[:session]-

[:email] and params[:session][:password] correspond to the email
and password fields.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Submissions from the form defined in Listing 8.4 will be routed to the
Session controller’s create action. How does Rails know to do this?
Hint: Refer to Table 8.1 and the first line of Listing 8.5.

8.1.3 Finding and authenticating a user
As in the case of creating users (signup), the first step in creating sessions (login)
is to handle invalid input. We’ll start by reviewing what happens when a form
gets submitted, and then arrange for helpful error messages to appear in the case
of login failure (as mocked up in Figure 8.2.) Then we’ll lay the foundation for
successful login (Section 8.2) by evaluating each login submission based on the
validity of its email/password combination.

Let’s start by defining a minimalist create action for the Sessions con-
troller, along with empty new and destroy actions (Listing 8.6). The create
action in Listing 8.6 does nothing but render the new view, but it’s enough to
get us started. Submitting the /sessions/new form then yields the result shown
in Figure 8.4 and Figure 8.5.

Listing 8.6: A preliminary version of the Sessions create action.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

442 CHAPTER 8. BASIC LOGIN

Figure 8.4: The initial failed login, with create as in Listing 8.6.

end

def create

render 'new'

end

def destroy

end

end

Carefully inspecting the debug information in Figure 8.5 shows that, as
hinted at the end of Section 8.1.2, the submission results in a params hash
containing the email and password under the key session, which (omitting

8.1. SESSIONS 443

Figure 8.5: A closer look at the debug information from Figure 8.4.

some irrelevant details used internally by Rails) appears as follows:

session:

email: 'user@example.com'

password: 'foobar'

commit: Log in

action: create

controller: sessions

As with the case of user signup (Figure 7.16), these parameters form a nested
hash like the one we saw in Listing 4.13. In particular, params contains a
nested hash of the form

{ session: { password: "foobar", email: "user@example.com" } }

This means that

params[:session]

is itself a hash:

444 CHAPTER 8. BASIC LOGIN

{ password: "foobar", email: "user@example.com" }

As a result,

params[:session][:email]

is the submitted email address and

params[:session][:password]

is the submitted password.
In other words, inside the create action the params hash has all the in-

formation needed to authenticate users by email and password. Not coinci-
dentally, we already have exactly the methods we need: the User.find_by

method provided by Active Record (Section 6.1.4) and the authenticate

method provided by has_secure_password (Section 6.3.4). Recalling that
authenticate returns false for an invalid authentication (Section 6.3.4),
our strategy for user login can be summarized as shown in Listing 8.7.

Listing 8.7: Finding and authenticating a user.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

Log the user in and redirect to the user's show page.

else

Create an error message.

render 'new'

end

end

def destroy

end

end

8.1. SESSIONS 445

User Password a && b
nonexistent anything (nil && [anything]) == false

valid user wrong password (true && false) == false

valid user right password (true && true) == true

Table 8.2: Possible results of user && user.authenticate(…).

The first highlighted line in Listing 8.7 pulls the user out of the database using
the submitted email address. (Recall from Section 6.2.5 that email addresses
are saved as all lower-case, so here we use the downcase method to ensure a
match when the submitted address is valid.) The next line can be a bit confusing
but is fairly common in idiomatic Rails programming:

user && user.authenticate(params[:session][:password])

This uses && (logical and) to determine if the resulting user is valid. Taking into
account that any object other than nil and false itself is true in a boolean
context (Section 4.2.2), the possibilities appear as in Table 8.2. We see from
Table 8.2 that the if statement is true only if a user with the given email both
exists in the database and has the given password, exactly as required.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the Rails console, confirm each of the values in Table 8.2. Start
with user = nil, and then use user = User.first. Hint: To coerce
the result to a boolean value, use the bang-bang trick from Section 4.2.2,
as in !!(user && user.authenticate('foobar')).

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

446 CHAPTER 8. BASIC LOGIN

8.1.4 Rendering with a flash message
Recall from Section 7.3.3 that we displayed signup errors using the User model
error messages. These errors are associated with a particular Active Record
object, but this strategy won’t work here because the session isn’t an Active
Record model. Instead, we’ll put a message in the flash to be displayed upon
failed login. A first, slightly incorrect, attempt appears in Listing 8.8.

Listing 8.8: An (unsuccessful) attempt at handling failed login.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

Log the user in and redirect to the user's show page.

else

flash[:danger] = 'Invalid email/password combination' # Not quite right!

render 'new'

end

end

def destroy

end

end

Because of the flash message display in the site layout (Listing 7.29), the
flash[:danger] message automatically gets displayed; because of the Boot-
strap CSS, it automatically gets nice styling (Figure 8.6).

Unfortunately, as noted in the text and in the comment in Listing 8.8, this
code isn’t quite right. The page looks fine, though, so what’s the problem?
The issue is that the contents of the flash persist for one request, but—unlike
a redirect, which we used in Listing 7.27—re-rendering a template with ren-

der doesn’t count as a request. The result is that the flash message persists one
request longer than we want. For example, if we submit invalid login informa-
tion and then click on the Home page, the flash gets displayed a second time
(Figure 8.7). Fixing this blemish is the task of Section 8.1.5.

8.1. SESSIONS 447

Figure 8.6: The flash message for a failed login.

448 CHAPTER 8. BASIC LOGIN

Figure 8.7: An example of flash persistence.

8.1. SESSIONS 449

8.1.5 A flash test
The incorrect flash behavior is a minor bug in our application. According to
the testing guidelines from Box 3.3, this is exactly the sort of situation where
we should write a test to catch the error so that it doesn’t recur. We’ll thus
write a short integration test for the login form submission before proceeding.
In addition to documenting the bug and preventing a regression, this will also
give us a good foundation for further integration tests of login and logout.

We start by generating an integration test for our application’s login behav-
ior:

$ rails generate integration_test users_login

invoke test_unit

create test/integration/users_login_test.rb

Next, we need a test to capture the sequence shown in Figure 8.6 and Figure 8.7.
The basic steps appear as follows:

1. Visit the login path.

2. Verify that the new sessions form renders properly.

3. Post to the sessions path with an invalid params hash.

4. Verify that the new sessions form gets re-rendered and that a flash mes-
sage appears.

5. Visit another page (such as the Home page).

6. Verify that the flash message doesn’t appear on the new page.

A test implementing the above steps appears in Listing 8.9.

Listing 8.9: A test to catch unwanted flash persistence. red
test/integration/users_login_test.rb

450 CHAPTER 8. BASIC LOGIN

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

test "login with invalid information" do

get login_path

assert_template 'sessions/new'

post login_path, params: { session: { email: "", password: "" } }

assert_template 'sessions/new'

assert_not flash.empty?

get root_path

assert flash.empty?

end

end

After adding the test in Listing 8.9, the login test should be red:

Listing 8.10: red
$ rails test test/integration/users_login_test.rb

This shows how to run one (and only one) test file using rails test and the
full path to the file.

The way to get the failing test in Listing 8.9 to pass is to replace flash with
the special variant flash.now, which is specifically designed for displaying
flash messages on rendered pages. Unlike the contents of flash, the contents
of flash.now disappear as soon as there is an additional request, which is
exactly the behavior we’ve tested in Listing 8.9. With this substitution, the
corrected application code appears as in Listing 8.11.

Listing 8.11: Correct code for failed login. green
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

8.2. LOGGING IN 451

Log the user in and redirect to the user's show page.

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

end

end

We can then verify that both the login integration test and the full test suite
are green:

Listing 8.12: green
$ rails test test/integration/users_login_test.rb

$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify in your browser that the sequence from Section 8.1.4 works cor-
rectly, i.e., that the flash message disappears when you click on a second
page.

8.2 Logging in
Now that our login form can handle invalid submissions, the next step is to
handle valid submissions correctly by actually logging a user in. In this section,
we’ll log the user in with a temporary session cookie that expires automatically
upon browser close. In Section 9.1, we’ll add sessions that persist even after
closing the browser.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

