Chapter 8
Basic login

Now that new users can sign up for our site (Chapter 7), it’s time to give them
the ability to log in and log out. In this chapter, we’ll implement a basic but
still fully functional login system: the application will maintain the logged-in
state until the browser is closed by the user. The resulting authentication system
will allow us to customize the site and implement an authorization model based
on login status and identity of the current user. For example, we’ll be able to
update the site header with login/logout links and a profile link.

In Chapter 10, we’ll impose a security model in which only logged-in users
can visit the user index page, only the correct user can access the page for editing
their information, and only administrative users can delete other users from the
database. Finally, in Chapter 13, we’ll use the identity of a logged-in user to
create microposts associated with that user, and in Chapter 14 we’ll allow the
current user to follow other users of the application (thereby receiving a feed of
their microposts).

The authentication system from this chapter will also serve a foundation
for the more advanced login system developed in Chapter 9. Instead of “forget-
ting” users on browser close, Chapter 9 will start by automatically remembering
users, and will then optionally remember users based on the value of a “remem-
ber me” checkbox. As a result, taken together Chapter 8 and Chapter 9 develop
all three of the most common types of login systems on the Web.

431



432 CHAPTER 8. BASIC LOGIN

8.1 Sessions

HTTP is a stateless protocol , treating each request as an independent transaction
that is unable to use information from any previous requests. This means there
1s no way within the Hypertext Transfer Protocol to remember a user’s identity
from page to page; instead, web applications requiring user login must use a
session, which is a semi-permanent connection between two computers (such
as a client computer running a web browser and a server running Rails).

The most common techniques for implementing sessions in Rails involve
using cookies, which are small pieces of text placed on the user’s browser. Be-
cause cookies persist from one page to the next, they can store information
(such as a user id) that can be used by the application to retrieve the logged-in
user from the database. In this section and in Section 8.2, we’ll use the Rails
method called session to make temporary sessions that expire automatically
on browser close.! In Chapter 9, we’ll learn how to make longer-lived sessions
using the closely related cookies method.

It’s convenient to model sessions as a RESTful resource: visiting the lo-
gin page will render a form for new sessions, logging in will create a session,
and logging out will destroy it. Unlike the Users resource, which uses a data-
base back-end (via the User model) to persist data, the Sessions resource will
use cookies, and much of the work involved in login comes from building this
cookie-based authentication machinery. In this section and the next, we’ll pre-
pare for this work by constructing a Sessions controller, a login form, and the
relevant controller actions. We’ll then complete user login in Section 8.2 by
adding the necessary session-manipulation code.

As in previous chapters, we’ll do our work on a topic branch and merge in
the changes at the end:

$ git checkout -b basic-login

'Some browsers offer an option to restore such sessions via a “continue where you left off” feature, but Rails
has no control over this behavior. In such cases, the session cookie may persist even after logging out in the
application.


https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Stateless_protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#HTTP_session_state
https://en.wikipedia.org/wiki/Session_(computer_science)
https://en.wikipedia.org/wiki/HTTP_cookie

8.1. SESSIONS 433

8.1.1 Sessions controller

The elements of logging in and out correspond to particular REST actions of
the Sessions controller: the login form is handled by the new action (covered
in this section), actually logging in is handled by sending a POST request to the
create action (Section 8.2), and logging out is handled by sending a DELETE
request to the destroy action (Section 8.3). (Recall the association of HTTP
verbs with REST actions from Table 7.1.)

To get started, we’ll generate a Sessions controller with a new action (List-
ing 8.1).

Listing 8.1: Generating the Sessions controller.

$ rails generate controller Sessions new

(Including new actually generates views as well, which is why we don’t include
actions like create and destroy that don’t correspond to views.) Following
the model from Section 7.2 for the signup page, our plan is to create a login
form for creating new sessions, as mocked up in Figure 8.1.

Unlike the Users resource, which used the special resources method to
obtain a full suite of RESTful routes automatically (Listing 7.3), the Sessions
resource will use only named routes, handling GET and POST requests with the
login route and DELETE request with the logout route. The result appears in
Listing 8.2 (which also deletes the unneeded routes generated by rails gen-
erate controller).

Listing 8.2: Adding a resource to get the standard RESTful actions for ses-
sions. RED
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static pages#help'
get '/about', to: 'static_ pages#about'
get '/contact', to: 'static_ pages#contact'
get '/signup', to: 'users#new'

get '/login', to: 'sessions#new'




434 CHAPTER 8. BASIC LOGIN

Email

Password

Log in

MNew user? Sign up now!

Figure 8.1: A mockup of the login form.



8.1. SESSIONS 435

HTTP request URL Named route  Action Purpose

GET /login  login_path  new page for a new session (login)
POST /login login_path create create a new session (login)
DELETE /logout logout_path destroy delete a session (log out)

Table 8.1: Routes provided by the sessions rules in Listing 8.2.

post '/login', to: 'sessions#create'
delete '/logout', to: 'sessions#destroy'
resources :users

end

With the routes in Listing 8.2, we also need to update the test generated in
Listing 8.1 with the new login route, as shown in Listing 8.3.

Listing 8.3: Updating the Sessions controller test to use the login route. GREEN
test/controllers/sessions_controller test.rb

require 'test helper'
class SessionsControllerTest < ActionDispatch::IntegrationTest

test "should get new" do
get login path
assert_response :success
end
end

The routes defined in Listing 8.2 correspond to URLs and actions similar to
those for users (Table 7.1), as shown in Table 8.1.

Since we’ve now added several custom named routes, it’s useful to look at
the complete list of the routes for our application, which we can generate using
rails routes:

$ rails routes

Prefix Verb URI Pattern Controller#Action
root GET / static_pages#home
help GET /help(.:format) static_pages#help

about GET /about (.:format) static_pages#about




436 CHAPTER 8. BASIC LOGIN

contact GET /contact(.:format) static_pages#contact
signup GET /signup(.:format) users#new
login GET /login(.:format) sessions#new
POST /login(.:format) sessions#create
logout DELETE /logout(.:format) sessions#destroy
users GET /users(.:format) users#index
POST /users(.:format) users#create
new_user GET /users/new(.:format) users#new
edit user GET /users/:id/edit(.:format) users#edit
user GET /users/:id(.:format) users#show
PATCH /users/:id(.:format) users#update
PUT /users/:id(.:format) users#update
DELETE /users/:id(.:format) users#destroy

It’s not necessary to understand the results in detail, but viewing the routes
in this manner gives us a high-level overview of the actions supported by our
application.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. What is the difference between GET login_path and POST login_-
path?

2. By piping the results of rails routes to grep, list all the routes as-
sociated with the Users resource. Do the same for Sessions. How many
routes does each resource have? Hint: Refer to the section on grep in
Learn Enough Command Line to Be Dangerous.

8.1.2 Login form

Having defined the relevant controller and route, now we’ll fill in the view for
new sessions, 1.e., the login form. Comparing Figure 8.1 with Figure 7.12, we
see that the login form is similar in appearance to the signup form, except with
two fields (email and password) in place of four.


https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.learnenough.com/r/learn_enough_command_line/inspecting_files/grepping#sec-grepping
https://www.learnenough.com/command-line

8.1. SESSIONS 437

As seen in Figure 8.2, when the login information is invalid we want to re-
render the login page and display an error message. In Section 7.3.3, we used an
error-messages partial to display error messages, but we saw in that section that
those messages are provided automatically by Active Record. This won’t work
for session creation errors because the session isn’t an Active Record object, so
we’ll render the error as a flash message instead.

Recall from Listing 7.15 that the signup form uses the form_with helper,
taking as an argument the user instance variable @Quser:

<%= form with(model: Quser, local: true) do |f| 2>

<% end %>

The main difference between the session form and the signup form is that we
have no Session model, and hence no analogue for the @user variable. This
means that, in constructing the new session form, we have to give form_with
slightly different information; in particular, whereas

form with(model: @user, local: true)

allows Rails to infer that the act ion of the form should be to POST to the URL
/users, in the case of sessions we need to indicate the corresponding URL, along
with the scope (in this case, the session):

form with(url: login path, scope: :session, local: true)

With the proper form_with in hand, it’s easy to make a login form to match
the mockup in Figure 8.1 using the signup form (Listing 7.15) as a model, as
shown in Listing 8 4.



438 CHAPTER 8. BASIC LOGIN

( Home Help Log in )

Invalid email/password combination.

Log In

Email

Password

Log in

MNew user? Sign up now!

Figure 8.2: A mockup of login failure.



8.1. SESSIONS 439

Listing 8.4: Code for the login form.

app/views/sessions/new.html.erb

<% provide(:title, "Log in") %>
<hl>Log in</hl>

<div class="row">
<div class="col-md-6 col-md-offset-3">
<%= form with(url: login path, scope: :session, local: true) do |f| %>

<%= f.label :email %>
<%= f.email field :email, class: 'form-control' &>

<%= f.label :password %>
<%= f.password field :password, class: 'form-control' %>

<%= f.submit "Log in", class: "btn btn-primary" %>

<p>New user? <%= link to "Sign up now!", signup path %></p>
</div>
</div>

Note that we’ve added a link to the signup page for convenience. With the code
in Listing 8.4, the login form appears as in Figure 8.3. (Because the “Log in”
navigation link hasn’t yet been filled in, you’ll have to type the /login URL
directly into your address bar. We’ll fix this blemish in Section 8.2.3.)

The generated form HTML appears in Listing 8.5.

Listing 8.5: HTML for the login form produced by Listing 8.4.

<form accept-charset="UTF-8" action="/login" method="post">
<input name="authenticity token" type="hidden"
value="NNb6+J/j46LcrgYUC60wQ2titMuJQ51LgyAbnbAUkdo=" />
<label for="session email">Email</label>
<input class="form-control" id="session email"
name="session[email]" type="email" />
<label for="session password">Password</label>
<input id="session password" name="session[password]"
type="password" />
<input class="btn btn-primary" name="commit" type="submit"
value="Log in" />
</form>




440 CHAPTER 8. BASIC LOGIN

e0e® <« [ Oebeldc6d40e4a4bb06e0ca7fe138127vfs.cloud9.us-eas

Email

Password

Log in

New user? Sign up now!

The Ruby on Rails Tutorial by Michael Hartl About Contact News

—-— lruby/object:ActionCentroller::Parameters

parameters: !ruby/hash:ActiveSupport::HashWithIndifferentAccess
controller: sessions
action: new

permitted: false

Figure 8.3: The login form.



8.1. SESSIONS 441

Comparing Listing 8.5 with Listing 7.17, you might be able to guess that sub-
mitting this form will result in a params hash where params[:session]-
[:email] and params|[:session] [ :password] correspond to the email
and password fields.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Submissions from the form defined in Listing 8.4 will be routed to the
Session controller’s create action. How does Rails know to do this?
Hint: Refer to Table 8.1 and the first line of Listing 8.5.

8.1.3 Finding and authenticating a user

As in the case of creating users (signup), the first step in creating sessions (login)
is to handle invalid input. We’ll start by reviewing what happens when a form
gets submitted, and then arrange for helpful error messages to appear in the case
of login failure (as mocked up in Figure 8.2.) Then we’ll lay the foundation for
successful login (Section 8.2) by evaluating each login submission based on the
validity of its email/password combination.

Let’s start by defining a minimalist create action for the Sessions con-
troller, along with empty new and destroy actions (Listing 8.6). The create
action in Listing 8.6 does nothing but render the new view, but it’s enough to
get us started. Submitting the /sessions/new form then yields the result shown
in Figure 8.4 and Figure 8.5.

Listing 8.6: A preliminary version of the Sessions create action.
app/controllers/sessions controller.rb

class SessionsController < ApplicationController

def new



https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

442 CHAPTER 8. BASIC LOGIN

00 e < o}

Oebeldc6d40ed4adbb06e0carfe138127 v s.clo & th al ES

Email

Password

New user? Sign up now!

The Ruby on Rails Tutorial by Michael Hartl su bm itted emai I:umacl News
and password

—-— !ruby/object:ActionController::Parameters
parameters: !ruby/hash:ActiveSupport::HashWi

authenticity_token: kdTG+eKptznOxsv@F]
session: !ruby/hash:ActiveSupp
email: user@example.com

ferentAccess
0Z]78Qj 1IRUFZLpIwtZUhHWU4EGagYoud+q6]/XHdxpXKv fullacAcecA58QanA==
WithIndifferentAccess

password: foobar
commit: Log in
controller: sessions
action: create

permitted: false

Figure 8.4: The initial failed login, with create as in Listing 8.6.

end

def create
render '
end

new

def destroy
end
end

Carefully inspecting the debug information in Figure 8.5 shows that, as
hinted at the end of Section 8.1.2, the submission results in a params hash
containing the email and password under the key session, which (omitting



8.1. SESSIONS 443

——— lruby/object:ActionController::Parameters

parameters: !ruby/hash:ActiveSupport::HashWithIndifferentAccess
authenticity_token: QBa8IYb8XKO0lpl64MhLzDzxjSnPX6aZwwidlLYeEFyUeFIJHz16YWWIpzIA+

CgjpEtmq2GP0Ocr5un/nfuHa8I3YwQ==
session: !ruby/hash:ActiveSupport::HashWithIndifferentAccess

email: user@example.com

password: foobar
commit: Log in
controller: sessions
action: create

permitted: false

Figure 8.5: A closer look at the debug information from Figure 8 4.

some irrelevant details used internally by Rails) appears as follows:

session:
email: 'user@example.com'
password: 'foobar'
commit: Log in
action: create
controller: sessions

As with the case of user signup (Figure 7.16), these parameters form a nested
hash like the one we saw in Listing 4.13. In particular, params contains a
nested hash of the form

{ session: { password: "foobar", email: "user@example.com" } }

This means that

params|[ :session]

1s itself a hash:



444 CHAPTER 8. BASIC LOGIN

{ password: "foobar", email: "user@example.com" }

As a result,

params|[:session][:email]

is the submitted email address and

params| :session][ :password]

1s the submitted password.

In other words, inside the create action the params hash has all the in-
formation needed to authenticate users by email and password. Not coinci-
dentally, we already have exactly the methods we need: the User.find by
method provided by Active Record (Section 6.1.4) and the authenticate
method provided by has_secure_password (Section 6.3.4). Recalling that
authenticate returns false for an invalid authentication (Section 6.3.4),
our strategy for user login can be summarized as shown in Listing 8.7.

Listing 8.7: Finding and authenticating a user.
app/controllers/sessions controller.rb

class SessionsController < ApplicationController

def new
end

def create
user = User.find by(email: params[:session][:email].downcase)
if user && user.authenticate(params[:session][:password])
# Log the user in and redirect to the user's show page.
else
# Create an error message.
render 'new'
end

end

def destroy
end
end




8.1. SESSIONS 445

User Password a&&b

nonexistent  anything (nil && [anything]) == false
valid user wrong password (true && false) == false
valid user right password (true && true) == true

Table 8.2: Possible results of user && user.authenticate(..).

The first highlighted line in Listing 8.7 pulls the user out of the database using
the submitted email address. (Recall from Section 6.2.5 that email addresses
are saved as all lower-case, so here we use the downcase method to ensure a
match when the submitted address is valid.) The next line can be a bit confusing
but is fairly common in idiomatic Rails programming:

user && user.authenticate(params|:session][:password])

This uses && (logical and) to determine if the resulting user is valid. Taking into
account that any object other than nil and false itself is true in a boolean
context (Section 4.2.2), the possibilities appear as in Table 8.2. We see from
Table 8.2 that the if statement is true only if a user with the given email both
exists in the database and has the given password, exactly as required.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Using the Rails console, confirm each of the values in Table 8.2. Start
withuser = nil,andthenuseuser = User.first. Hint: To coerce
the result to a boolean value, use the bang-bang trick from Section 4.2.2,
asin ! ! (user && user.authenticate('foobar')).


https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

446 CHAPTER 8. BASIC LOGIN

8.14 Rendering with a flash message

Recall from Section 7.3.3 that we displayed signup errors using the User model
error messages. These errors are associated with a particular Active Record
object, but this strategy won’t work here because the session isn’t an Active
Record model. Instead, we’ll put a message in the flash to be displayed upon
failed login. A first, slightly incorrect, attempt appears in Listing 8.8.

Listing 8.8: An (unsuccessful) attempt at handling failed login.
app/controllers/sessions controller.rb

class SessionsController < ApplicationController

def new
end

def create
user = User.find by(email: params[:session][:email].downcase)
if user && user.authenticate(params[:session][:password])
# Log the user in and redirect to the user's show page.

else
flash[:danger] = 'Invalid email/password combination' # Not quite right!
render 'new'
end
end

def destroy
end
end

Because of the flash message display in the site layout (Listing 7.29), the
flash[ :danger] message automatically gets displayed; because of the Boot-
strap CSS, it automatically gets nice styling (Figure 8.6).

Unfortunately, as noted in the text and in the comment in Listing 8.8, this
code isn’t quite right. The page looks fine, though, so what’s the problem?
The issue is that the contents of the flash persist for one request, but—unlike
a redirect, which we used in Listing 7.27 —re-rendering a template with ren-
der doesn’t count as a request. The result is that the flash message persists one
request longer than we want. For example, if we submit invalid login informa-
tion and then click on the Home page, the flash gets displayed a second time
(Figure 8.7). Fixing this blemish is the task of Section 8.1.5.



8.1. SESSIONS 447

o0 e < £

Oebeldc6d40e4adbb06e0ca7fe138127.vis.clo

Invalid email/password combination

Email

Password

New user? Sign up now!

The Ruby on Rails Tutorial by Michael Hartl About Contact News

—-— !ruby/object:ActionController::Parameters
parameters: !ruby/hash:ActiveSupport::HashWithIndifferentAccess
authenticity_token: XtI2PXKuqvlwhW03909K1dYogqOmR31vZRjeuBkXtxs3uG5t8g6GIpjX3Uulpx4Ulpw3CLIGEhosApXDCMF LpxA==
session: !ruby/object:ActionController::Parameters
parameters: !ruby/hash:ActiveSupport::HashWithIndifferentAccess
email: user@example.com
password: foobar
permitted: false

commit: Log in
+ 11 .

Figure 8.6: The flash message for a failed login.



448 CHAPTER 8. BASIC LOGIN

e0e® <« [ Oebeldc6d40e4a4bb06e0ca7fe138127vfs.cloudd.us-eas

Invalid email/password combination

Welcome to the Sample App

This is the home page for the Ruby on Rails Tutorial sample application.

= -
=
.
RAILS
L}

The Ruby on Rails Tutorial by Michael Hartl About Contact News

——— !ruby/object:ActionController::Parameters

parameters: !ruby/hash:ActiveSupport::HashWithIndifferentAccess
controller: static_pages
action: home

Figure 8.7: An example of flash persistence.



8.1. SESSIONS 449

8.1.5 A flash test

The incorrect flash behavior is a minor bug in our application. According to
the testing guidelines from Box 3.3, this is exactly the sort of situation where
we should write a test to catch the error so that it doesn’t recur. We’ll thus
write a short integration test for the login form submission before proceeding.
In addition to documenting the bug and preventing a regression, this will also
give us a good foundation for further integration tests of login and logout.

We start by generating an integration test for our application’s login behav-
1or1:

$ rails generate integration_ test users_login
invoke test unit
create test/integration/users_login_test.rb

Next, we need a test to capture the sequence shown in Figure 8.6 and Figure 8.7.
The basic steps appear as follows:

1. Visit the login path.
2. Verify that the new sessions form renders properly.
3. Post to the sessions path with an invalid params hash.

4. Verify that the new sessions form gets re-rendered and that a flash mes-
sage appears.

5. Visit another page (such as the Home page).

6. Verify that the flash message doesn’t appear on the new page.

A test implementing the above steps appears in Listing 8.9.

Listing 8.9: A test to catch unwanted flash persistence. rRED
test/integration/users login test.rb




450 CHAPTER 8. BASIC LOGIN

require 'test helper'
class UsersLoginTest < ActionDispatch::IntegrationTest

test "login with invalid information" do
get login_path
assert template 'sessions/new'’
post login path, params: { session: { email:
assert template 'sessions/new'’
assert_not flash.empty?
get root path
assert flash.empty?

end

end

nn

, password: "" } }

After adding the test in Listing 8.9, the login test should be reD:

Listing 8.10: reD

$ rails test test/integration/users_login_test.rb

This shows how to run one (and only one) test file using rails test and the
full path to the file.

The way to get the failing test in Listing 8.9 to pass is to replace £1ash with
the special variant £lash.now, which is specifically designed for displaying
flash messages on rendered pages. Unlike the contents of £1lash, the contents
of flash.now disappear as soon as there is an additional request, which is
exactly the behavior we’ve tested in Listing 8.9. With this substitution, the
corrected application code appears as in Listing 8.11.

Listing 8.11: Correct code for failed login. ¢reeN
app/controllers/sessions controller.rb

class SessionsController < ApplicationController

def new
end

def create
user = User.find by(email: params|[:session][:email].downcase)
if user && user.authenticate(params[:session][:password])




8.2. LOGGING IN 451

# Log the user in and redirect to the user's show page.

else
flash.now[:danger] = 'Invalid email/password combination'
render 'new'
end
end

def destroy
end
end

We can then verify that both the login integration test and the full test suite
are GREEN:

Listing 8.12: crren

$ rails test test/integration/users_login test.rb
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify in your browser that the sequence from Section 8.1.4 works cor-
rectly, i.e., that the flash message disappears when you click on a second

page.

8.2 Logging in

Now that our login form can handle invalid submissions, the next step is to
handle valid submissions correctly by actually logging a user in. In this section,
we’ll log the user in with a temporary session cookie that expires automatically
upon browser close. In Section 9.1, we’ll add sessions that persist even after
closing the browser.


https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

452 CHAPTER 8. BASIC LOGIN

Implementing sessions will involve defining a large number of related func-
tions for use across multiple controllers and views. You may recall from Sec-
tion 4.2.4 that Ruby provides a module facility for packaging such functions
in one place. Conveniently, a Sessions helper module was generated automati-
cally when generating the Sessions controller (Section 8.1.1). Moreover, such
helpers are automatically included in Rails views; by including the module into
the base class of all controllers (the Application controller), we arrange to make
them available in our controllers as well (Listing 8.13).2

Listing 8.13: Including the Sessions helper module into the Application con-
troller.

app/controllers/application controller.rb

class ApplicationController < ActionController::Base

include SessionsHelper
end

With this configuration complete, we’re now ready to write the code to log users
in.

8.2.1 The log in method

Logging a user in is simple with the help of the session method defined by
Rails. (This method is separate and distinct from the Sessions controller gen-
erated in Section 8.1.1.) We can treat session as if it were a hash, and assign
to it as follows:

session|[:user id] = user.id

This places a temporary cookie on the user’s browser containing an encrypted
version of the user’s id, which allows us to retrieve the id on subsequent pages

21 like this technique because it connects to the pure Ruby way of including modules, but Rails 4 introduced
a technique called concerns that can also be used for this purpose. To learn how to use concerns, run a search for
“how to use concerns in Rails”.


https://www.google.com/search?q=how+to+use+concerns+in+rails

S

8.2. LOGGING IN 453

using session|[ :user_id]. In contrast to the persistent cookie created by the
cookies method (Section 9.1), the temporary cookie created by the session
method expires immediately when the browser is closed.

Because we’ll want to use the same login technique in a couple of different
places, we’ll define a method called 1og_in in the Sessions helper, as shown
in Listing 8.14.

Listing 8.14: The 1og_in function.
app/helpers/sessions_helper.rb

module SessionsHelper

# Logs in the given user.
def log in(user)
session[:user_id] = user.id
end
end

Because temporary cookies created using the session method are auto-
matically encrypted, the code in Listing 8.14 is secure, and there is no way for
an attacker to use the session information to log in as the user. This applies only
to temporary sessions initiated with the session method, though, and is not
the case for persistent sessions created using the cookies method. Permanent
cookies are vulnerable to a session hijacking attack, so in Chapter 9 we’ll have
to be much more careful about the information we place on the user’s browser.

With the 1og_in method defined in Listing 8.14, we’re now ready to com-
plete the session create action by logging the user in and redirecting to the
user’s profile page. The result appears in Listing 8.15.3

Listing 8.15: Logging in a user.
app/controllers/sessions controller.rb
class SessionsController < ApplicationController

def new
end

3The 1og_in method is available in the Sessions controller because of the module inclusion in Listing 8.13.



454 CHAPTER 8. BASIC LOGIN

def create
user = User.find by(email: params[:session][:email].downcase)
if user && user.authenticate(params[:session][:password])
log_in user
redirect_to user

else
flash.now[ :danger] = 'Invalid email/password combination'
render 'new'
end
end

def destroy
end
end

Note the compact redirect

redirect to user

which we saw before in Section 7.4.1. Rails automatically converts this to the
route for the user’s profile page:

user url(user)

With the create action defined in Listing 8.15, the login form defined in
Listing 8.4 should now be working. It doesn’t have any effects on the applica-
tion display, though, so short of inspecting the browser session directly there’s
no way to tell that you’re logged in. As a first step toward enabling more visible
changes, in Section 8.2.2 we’ll retrieve the current user from the database using
the id in the session. In Section 8.2.3, we’ll change the links on the application
layout, including a URL to the current user’s profile.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.


https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

8.2. LOGGING IN 455

1. Log in with a valid user and inspect your browser’s cookies. What is the
value of the session content? Hint: If you don’t know how to view your
browser’s cookies, Google for it (Box 1.2).

2. What is the value of the Expires attribute from the previous exercise?

8.2.2 Current user

Having placed the user’s id securely in the temporary session, we are now in a
position to retrieve it on subsequent pages, which we’ll do by defining a cur-
rent_user method to find the user in the database corresponding to the session
id. The purpose of current_user is to allow constructions such as

<%= current_user.name %>

and

redirect to current user

To find the current user, one possibility is to use the £ind method, as on the
user profile page (Listing 7.5):

User.find(session[:user_id])

But recall from Section 6.1 .4 that f£ind raises an exception if the user id doesn’t
exist. This behavior is appropriate on the user profile page because it will only
happen if the id is invalid, but in the present case session[ :user_ id] will
often be nil (i.e., for non-logged-in users). To handle this possibility, we’ll
use the same £ind_ by method used to find by email address in the create
method, with id in place of email:



456 CHAPTER 8. BASIC LOGIN

User.find by(id: session[:user_id])

Rather than raising an exception, this method returns nil (indicating no such
user) if the id is invalid.
We could now define the current_user method as follows:

def current_user
if session[:user id]
User.find by(id: session[:user_id])
end
end

(If the session user id doesn’t exist, the function just falls off the end and returns
nil automatically, which is exactly what we want.) This would work fine, but
it would hit the database multiple times if, e.g., current user appeared mul-
tiple times on a page. Instead, we’ll follow a common Ruby convention by
storing the result of User.find by in an instance variable, which hits the da-
tabase the first time but returns the instance variable immediately on subsequent
invocations:*

if @current_user.nil?

@current user = User.find by(id: session[:user id])
else

@current_user
end

Recalling the or operator | | seen in Section 4.2.2, we can rewrite this as fol-
lows:

@current user = @Qcurrent user || User.find by(id: session[:user_id])

4This practice of remembering variable assignments from one method invocation to the next is known as
memoization. (Note that this is a technical term; in particular, it’s not a misspelling of “memorization” —a subtlety
lost on the hapless copyeditor of a previous edition of this book.)


https://en.wikipedia.org/wiki/Memoization

8.2. LOGGING IN 457

Because a User object is true in a boolean context, the call to £ind_by only
gets executed if @current_user hasn’t yet been assigned.

Although the preceding code would work, it’s not idiomatically correct
Ruby; instead, the proper way to write the assignment to @current_user is
like this:

@current user ||= User.find by(id: session[:user_ id])

This uses the potentially confusing but frequently used | | = (“or equals™) oper-
ator (Box 8.1).

Box 8.1. What the *$@! is | |=?

The | | = (“or equals”) assignment operator is a common Ruby idiom and is
thus important for aspiring Rails developers to recognize. Although at first it may
seem mysterious, or equals is easy to understand by analogy.

We start by noting the common pattern of incrementing a variable:

Xx =x + 1

Many languages provide a syntactic shortcut for this operation; in Ruby (and in C,
C++, Perl, Python, Java, etc.), it can also appear as follows:

x += 1
Analogous constructs exist for other operators as well:

S rails console

> x =1
=> 1
>> x += 1
=> 2
>> x *= 3




458 CHAPTER 8. BASIC LOGIN

=> 6
>> x -= 8
=> -2
>> x /= 2
=> -1

In each case, the pattern is that x = x O y and x O= y are equivalent for any
operator O.

Another common Ruby pattern is assigning to a variable if it’s nil but other-
wise leaving it alone. Recalling the or operator | | seen in Section 4.2.2, we can
write this as follows:

>> @foo
=> nil

>> @foo
=> "bar"
>> @foo
=> "bar"

@foo || "bar"

@foo || "baz"

Since nil is false in a boolean context, the first assignment to @ foo isnil | |
"bar", which evaluates to "bar". Similarly, the second assignment is @foo
|| "baz",ie., "bar" || "baz", which also evaluates to "bar". This is
because anything other than nil or false is true in a boolean context, and
the series of | | expressions terminates after the first true expression is evaluated.
(This practice of evaluating | | expressions from left to right and stopping on the
first true value is known as short-circuit evaluation. The same principle applies to
&& statements, except in this case evaluation stops on the first false value.)
Comparing the console sessions for the various operators, we see that @foo =

@foo || "bar" followsthex = x O y pattern with | | in the place of O:
X = X + 1 -> X += 1
X = X w 3 -> X W= 3

X = X - 8 -> X -= 8




8.2. LOGGING IN 459

X = X / 2 -> X /= 2
@foo = @foo || "bar" -> @foo ||= "bar"
Thus we see that @foo = @foo || "bar" and @foo ||= "bar" are

equivalent. In the context of the current user, this suggests the following con-
struction:

@current user ||= User.find by(id: session[:user_id])

Voila !

(Technically, Ruby evaluates the expression @foo || @foo = "bar",
which avoids an unnecessary assignment when @foo isnot nil or false. But
this expression doesn’t explain the | | = notation as well, so the above discussion
uses the nearly equivalent @foo = @foo || "bar".)

Applying the results of the above discussion yields the succinct
current_user method shown in Listing 8.16. (There’s a slight amount of
repetition in the use of session[:user id], which we’ll eliminate in Sec-
tion 9.1.2.)

Listing 8.16: Finding the current user in the session.
app/helpers/sessions _helper.rb

module SessionsHelper

# Logs in the given user.

def log in(user)
session|[:user id] = user.id

end

# Returns the current logged-in user (if any).
def current_user
if session[:user_ id]
@current user ||= User.find by(id: session|[:user id])
end
end
end



https://m.xkcd.com/1475/

460 CHAPTER 8. BASIC LOGIN

With the working current_user method in Listing 8.16, we’re now in a po-
sition to make changes to our application based on user login status.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm at the console that User.find by(id: ...) returns nil
when the corresponding user doesn’t exist.

2. In a Rails console, create a session hash with key :user_id. By fol-
lowing the steps in Listing 8.17, confirm that the | | = operator works as
required.

Listing 8.17: Simulating session in the console.

>> session = {}

>> session[:user_id] = nil

>> @Qcurrent user ||= User.find by(id: session[:user_ id])
<What happens here?>

>> session[:user_id]= User.first.id

>> @current user ||= User.find by(id: session[:user id])
<Wwhat happens here?>
>> @current user ||= User.find by(id: session[:user id])

<Wwhat happens here?>

8.2.3 Changing the layout links

The first practical application of logging in involves changing the layout links
based on login status. In particular, as seen in the Figure 8.8 mockup,’> we’ll add
links for logging out, for user settings, for listing all users, and for the current
user’s profile page. Note in Figure 8.8 that the logout and profile links appear
in a dropdown “Account” menu; we’ll see in Listing 8.19 how to make such a
menu with Bootstrap.

>Image retrieved from https://www.flickr.com/photos/elevy/14730820387 on 2016-06-03. Copyright © 2014
by Elias Levy and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic license.


https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://creativecommons.org/licenses/by/2.0/

8.2. LOGGING IN 461

( Home Help Users Account )

Profile

Settings

Bruce Tiburon

Log out

Figure 8.8: A mockup of the user profile after a successful login.



462 CHAPTER 8. BASIC LOGIN

At this point, in real life I would consider writing an integration test to cap-
ture the behavior described above. As noted in Box 3.3, as you become more
familiar with the testing tools in Rails you may find yourself more inclined to
write tests first. In this case, though, such a test involves several new ideas, so
for now it’s best deferred to its own section (Section 8.2 .4).

The way to change the links in the site layout involves using an if-else state-
ment inside embedded Ruby to show one set of links if the user is logged in and
another set of links otherwise:

<% if logged in? %>

# Links for logged-in users
<% else %>

# Links for non-logged-in-users
<% end %>

This kind of code requires the existence of a logged_in? boolean method,
which we’ll now define.

A user is logged in if there is a current user in the session, i.e., if
current_user is not nil. Checking for this requires the use of the “not”
operator (Section 4.2.2), written using an exclamation point ! and usually read
as “bang”. The resulting logged_in? method appears in Listing 8.18.

Listing 8.18: The 1logged_in? helper method.
app/helpers/sessions helper.rb

module SessionsHelper

# Logs in the given user.
def log in(user)

session| :user_id] = user.id
end

# Returns the current logged-in user (if any).
def current_user
if session[:user_id]
@current user ||= User.find by(id: session[:user id])
end
end

# Returns true if the user is logged in, false otherwise.




8.2. LOGGING IN 463

def logged_in?
!current user.nil?
end
end

With the addition in Listing 8.18, we’re now ready to change the layout
links if a user is logged in. There are four new links, two of which are stubbed
out (to be completed in Chapter 10):

<%= link_to "Users", "#'oe>
<%= link_to "Settings", '#' %>

The logout link, meanwhile, uses the logout path defined in Listing 8.2:

<%= link_to "Log out", logout path, method: :delete %>

Notice that the logout link passes a hash argument indicating that it should sub-
mit with an HTTP DELETE request.® We’ll also add a profile link as follows:

<%= link to "Profile", current_ user %>

Here we could write

<%= link_to "Profile", user_path(current_user) %>

but as usual Rails allows us to link directly to the user by automatically convert-
Ing current user into user path(current user) in this context. Fi-
nally, when users aren’t logged in, we’ll use the login path defined in Listing 8.2
to make a link to the login form:

®Web browsers can’t actually issue DELETE requests; Rails fakes it with JavaScript.



464 CHAPTER 8. BASIC LOGIN

<%= link to "Log in", login_path %>

Putting everything together gives the updated header partial shown in List-
ing 8.19.

Listing 8.19: Changing the layout links for logged-in users.
app/views/layouts/ header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">
<div class="container">
<%= link to "sample app", root path, id: "logo" %>
<nav>
<ul class="nav navbar-nav navbar-right">
<1li><%= link to "Home", root path %></1i>
<1li><%= link to "Help", help path %></1li>
<% if logged in? %>
<1li><%= link to "Users", '#' %></1li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">
Account <b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><%= link_to "Profile", current user %></1li>
<1li><%= link_to "Settings", '#' %></1li>
<1li class="divider"></1i>
<li>
<%= link_to "Log out", logout_path, method: :delete %>
</1li>
</ul>
</1li>
<% else %>
<li><%= link to "Log in", login path %></1i>
<% end %>
</ul>
</nav>
</div>
</header>

As part of including the new links into the layout, Listing 8.19 takes advan-
tage of Bootstrap’s ability to make dropdown menus.” Note in particular the
inclusion of the special Bootstrap CSS classes such as dropdown, dropdown-
menu, etc. To activate the dropdown menu, we need to include Bootstrap’s

’See the Bootstrap components page for more information.


https://getbootstrap.com/docs/3.4/components/

8.2. LOGGING IN 465

custom JavaScript library into our application (which is not included automat-
ically as part of the bootstrap-sass gem in Listing 5.5), as well as the
jQuery library.

Section 5.2 mentioned briefly that the Rails asset pipeline works in parallel
with Webpack and Yarn, and we need to put both to work in order to include the
above JavaScript. The first step is to install both jQuery and Bootstrap’s Java-
Script library in our application, which coincidentally needs the same version
number for each:

$ yarn add jquery@3.4.1 bootstrap@3.4.1

In order to make jQuery available in our application, we need to edit Web-
pack’s environment file and add the content shown in Listing 8.20.

Listing 8.20: Adding jQuery configuration to Webpack.

config/webpack/environment. js

const { environment } = require('@rails/webpacker')

const webpack = require( 'webpack')
environment.plugins.prepend( 'Provide',
new webpack.ProvidePlugin({
$: 'jquery/src/jquery',
jQuery: 'jquery/src/jquery'
})
)

module.exports = environment

Finally, we need to require jQuery and import Bootstrap in our applica-
tion.js file, as shown in Listing 8.21 .8

Listing 8.21: Requiring and importing the necessary JavaScript libraries.
app/javascript/packs/application. js

8For what it’s worth, I don’t know offhand why one uses require and the other used import.



https://jquery.com/

466 CHAPTER 8. BASIC LOGIN

require("@rails/ujs").start()
require("turbolinks").start()
require("@rails/activestorage").start()
require("channels")

require("jquery")

import "bootstrap"

At this point, you should visit the login path and log in as a valid user (user-
name example@railstutorial.org,password foobar), which effectively
tests the code in the previous three sections.” With the code in Listing 8.19 and
Listing 8.21, you should see the dropdown menu and links for logged-in users,
as shown in Figure 8.9.

If you quit your browser completely, you should also be able to verify that
the application forgets your login status, requiring you to log in again to see the
changes described above.!”

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Using the cookie inspector in your browser (Section 8.2.1), remove the
session cookie and confirm that the layout links revert to the non-logged-
in state.

2. Log in again, confirming that the layout links change correctly. Then quit
your browser and start it again to confirm that the layout links revert to
the non-logged-in state. (If your browser has a “remember where I left
off” feature that automatically restores the session, be sure to disable it in
this step (Box 1.2).)

9You may have to restart the webserver to get this to work (Box 1.2).

19f you’re using the cloud IDE, I recommend using a different browser to test the login behavior so that you
don’t have to close down the browser running the IDE.


https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

8.2. LOGGING IN 467

[ ] ® < ] Oebeldcbd40edadbb06e0ca7fel38127vfs.cloud9.us-ea < t [ I
Home Help Account ~
Profile
Rails Tutorial Settings
a Log out
The Ruby on Rails Tutorial by Michael Hartl About Contact News

——— !ruby/object:ActionController::Parameters

parameters: !ruby/hash:ActiveSupport::HashWithIndifferentAccess
controller: users
action: show
id: '1'

permitted: false

Figure 8.9: A logged-in user with new links and a dropdown menu.



468 CHAPTER 8. BASIC LOGIN

8.2.4 Testing layout changes

Having verified by hand that the application is behaving properly upon suc-
cessful login, before moving on we’ll write an integration test to capture that
behavior and catch regressions. We’ll build on the test from Listing 8.9 and
write a series of steps to verify the following sequence of actions:

1. Visit the login path.

2. Post valid information to the sessions path.
3. Verify that the login link disappears.

4. Verify that a logout link appears

5. Verify that a profile link appears.

In order to see these changes, our test needs to log in as a previously reg-
istered user, which means that such a user must already exist in the database.
The default Rails way to do this is to use fixtures, which are a way of orga-
nizing data to be loaded into the test database. We discovered in Section 6.2.5
that we needed to delete the default fixtures so that our email uniqueness tests
would pass (Listing 6.31). Now we’re ready to start filling in that empty file
with custom fixtures of our own.

In the present case, we need only one user, whose information should con-
sist of a valid name and email address. Because we’ll need to log the user in,
we also have to include a valid password to compare with the password submit-
ted to the Sessions controller’s create action. Referring to the data model in
Figure 6.9, we see that this means creating a password_digest attribute for
the user fixture, which we’ll accomplish by defining a digest method of our
own.

As discussed in Section 6.3.1, the password digest is created using berypt
(via has_secure_password), so we’ll need to create the fixture password
using the same method. By inspecting the secure password source code, we
find that this method is


https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb

8.2. LOGGING IN 469

BCrypt: :Password.create(string, cost: cost)

where string is the string to be hashed and cost is the cost parameter that de-
termines the computational cost to calculate the hash. Using a high cost makes
it computationally intractable to use the hash to determine the original pass-
word, which is an important security precaution in a production environment,
but in tests we want the digest method to be as fast as possible. The secure
password source code has a line for this as well:

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN COST :
BCrypt: :Engine.cost

This rather obscure code, which you don’t need to understand in detail, arranges
for precisely the behavior described above: it uses the minimum cost parameter
in tests and a normal (high) cost parameter in production. (We’ll learn more
about the strange ?-: notation in Section 9.2.)

There are several places we could put the resulting digest method, but
we’ll have an opportunity in Section 9.1.1 to reuse digest in the User model.
This suggests placing the method in user.rb. Because we won’t necessarily
have access to a user object when calculating the digest (as will be the case in
the fixtures file), we’ll attach the digest method to the User class itself, which
(as we saw briefly in Section 4.4.1) makes it a class method. The result appears
in Listing 8.22.

Listing 8.22: Adding a digest method for use in fixtures.
app/models/user.rb

class User < ApplicationRecord

before save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID EMAIL REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/1

validates :email, presence: true, length: { maximum: 255 },
format: { with: VALID_EMAIL_REGEX },
uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }




470 CHAPTER 8. BASIC LOGIN

# Returns the hash digest of the given string.
def User.digest(string)
cost = ActiveModel::SecurePassword.min _cost ? BCrypt::Engine::MIN COST :
BCrypt: :Engine.cost
BCrypt: :Password.create(string, cost: cost)
end
end

With the digest method from Listing 8.22, we are now ready to create a
user fixture for a valid user, as shown in Listing 8.23.!!

Listing 8.23: A fixture for testing user login.
test/fixtures/users.yml

michael:
name: Michael Example
email: michael@example.com
password _digest: <%= User.digest('password') %>

Note in particular that fixtures support embedded Ruby, which allows us to use

<%= User.digest('password') %>

to create the valid password digest for the test user.

Although we’ve defined the password_digest attribute required by
has_secure_ password, sometimes it’s convenient to refer to the plain (vir-
tual) password as well. Unfortunately, this is impossible to arrange with fix-
tures, and adding a password attribute to Listing 8.23 causes Rails to com-
plain that there is no such column in the database (which is true). We’ll make
do by adopting the convention that all fixture users have the same password
('password’).

Having created a fixture with a valid user, we can retrieve it inside a test as
follows:

"t’s worth noting that indentation in fixture files must take the form of spaces, not tabs, so take care when
copying code like that shown in Listing 8.23.



8.2. LOGGING IN 471

user = users(:michael)

Here users corresponds to the fixture filename users.yml, while the symbol
:michael references user with the key shown in Listing 8.23.

With the fixture user as above, we can now write a test for the layout links by
converting the sequence enumerated at the beginning of this section into code,
as shown in Listing 8.24.

Listing 8.24: A test for user logging in with valid information. GrREEN
test/integration/users login test.rb

require 'test helper'
class UsersLoginTest < ActionDispatch::IntegrationTest

def setup
@user = users(:michael)
end

test "login with valid information" do
get login path
post login path, params: { session: { email: @user.email,
password: 'password' } }
assert_redirected_to Quser
follow_redirect!
assert_template 'users/show'
assert_select "a[href=?]", login path, count: 0

assert_select "a[href=?]", logout path
assert_select "a[href=?]", user path(Quser)
end
end

Here we’ve used

assert_redirected_to @user

to check the right redirect target and



472 CHAPTER 8. BASIC LOGIN

follow_redirect!

to actually visit the target page. Listing 8.24 also verifies that the login link
disappears by verifying that there are zero login path links on the page:

assert _select "a[href=?]", login path, count: 0

By including the extra count: 0 option, we tell assert_select that we ex-
pect there to be zero links matching the given pattern. (Compare this to count :
2 in Listing 5.32, which checks for exactly two matching links.)

Because the application code was already working, this test should be
GREEN:

Listing 8.25: cripn

$ rails test test/integration/users_login_test.rb

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm by commenting out everything after if user in Line 8 of List-
ing 8.15 that the tests still pass even if we don’t authenticate the user by
email and password, as shown in Listing 8.26. This is because Listing 8.9
doesn’t test the case of a correct user email but incorrect password. Fix
this serious omission in our test suite by adding a valid email to the Users
login test by (Listing 8.27). Verify that the tests are rep, then remove the
Line 8 comment to get back to creen. (Because it’s so important, we’ll
add this test to the main code in Section 8.3.)


https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

8.2. LOGGING IN

473

2. Use the “safe navigation” operator &. to simplify the boolean test in
Line 8 of Listing 8.15, as shown in Line 8 of Listing 8.28.!> This Ruby
feature allows us to condense the common pattern of obj && obj.method
into obj & .method. Confirm that the tests in Listing 8.27 still pass after

the change.

Listing 8.26: Commenting out the authentication code, but tests still creen.

app/controllers/sessions controller.rb

class SessionsController < ApplicationController

def new
end

def create
user = User.find by(email: params[:session][:email].downcase)
if user # && user.authenticate(params[:session][:password])
log_in user
redirect to user

else
flash.now[ :danger] = 'Invalid email/password combination'
render 'new'
end
end

def destroy
end
end

Listing 8.27: Testing the case of valid user email, invalid password.

test/integration/users login test.rb
require 'test helper'
class UsersLoginTest < ActionDispatch::IntegrationTest
def setup
@user = users(:michael)

end

test "login with valid email/invalid password" do
get login path

12Thanks to reader Aviv Levinsky for suggesting this addition.


http://mitrev.net/ruby/2015/11/13/the-operator-in-ruby/

474 CHAPTER 8. BASIC LOGIN

assert_template 'sessions/new'’
post login path, params: { session: { email: FILL IN,
password: "invalid" } }
assert template 'sessions/new'’
assert_not flash.empty?
get root_path
assert flash.empty?
end

end

Listing 8.28: Using the “safe navigation” operator &. to simplify the login
code.

app/controllers/sessions controller.rb

class SessionsController < ApplicationController

def new
end

def create
user = User.find by(email: params|[:session][:email].downcase)
if useré&.authenticate(params|:session][ :password])
log_in user
redirect to user

else
flash.now[:danger] = 'Invalid email/password combination'
render 'new'
end
end

def destroy
log_out
redirect_to root_url
end
end

8.2.5 Login upon signup

Although our authentication system is now working, newly registered users
might be confused, as they are not logged in by default. Because it would be
strange to force users to log in immediately after signing up, we’ll log in new



8.2. LOGGING IN 475

users automatically as part of the signup process. To arrange this behavior, all
we need to do is add a call to 1og_in in the Users controller create action,
as shown in Listing 8.29."3

Listing 8.29: Logging in the user upon signup.

app/controllers/users _controller.rb

class UsersController < ApplicationController

def show
@user = User.find(params|[:id])
end

def new
@user = User.new
end

def create
@user = User.new(user_ params)
if Quser.save
log_in Quser

flash[:success] = "Welcome to the Sample App!"
redirect_to Quser
else
render 'new'
end
end
private

def user_ params
params.require(:user).permit(:name, :email, :password,
:password_confirmation)
end
end

To test the behavior from Listing 8.29, we can add a line to the test from List-
ing 7.31 to check that the user is logged in. It’s helpful in this context to define
an is_logged_in? helper method to parallel the logged in? helper defined
in Listing 8.18, which returns true if there’s a user id in the (test) session and
false otherwise (Listing 8.30). (Because helper methods aren’t available in tests,
we can’t use the current user as in Listing 8.18, but the session method

13 As with the Sessions controller, the Log_in method is available in the Users controller because of the module
inclusion in Listing 8.13.



476 CHAPTER 8. BASIC LOGIN

is available, so we use that instead.) Here we use is_logged_in? instead of
logged_in? so that the test helper and Sessions helper methods have differ-
ent names, which prevents them from being mistaken for each other.!# (In this
case we could actually just include the Sessions helper and use logged_in?
directly, but this technique would fail in Chapter 9 due to details of how cookies
are handled in tests, so instead we define a test-specific method that will work
in all cases.)

Listing 8.30: A boolean method for login status inside tests.
test/test helper.rb

ENV[ 'RAILS ENV'] ||= 'test'

class ActiveSupport::TestCase
fixtures :all

# Returns true if a test user is logged in.
def is logged in?
!session|:user id].nil?
end
end

With the code in Listing 8.30, we can assert that the user is logged in after
signup using the line shown in Listing 8.31.

Listing 8.31: A test of login after signup. GREEN
test/integration/users _signup test.rb

require 'test helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

test "valid signup information" do

14For example, I once had a test suite that was crern even after accidentally deleting the main log_in method
in the Sessions helper. The reason is that the tests were happily using a test helper with the same name, thereby
passing even though the application was completely broken. As with is_logged_in?, we’ll avoid this issue by
defining the test helper log_in_as in Listing 9.24.



8.3. LOGGING OoUT 477

get signup_path

assert_difference 'User.count', 1 do
post users_path, params: { user: { name: "Example User",
email: "user@example.com",
password: "password",

password confirmation: "password" } }
end
follow_redirect!
assert template 'users/show'
assert is_logged_in?
end
end

At this point, the test suite should still be ¢GrREEN:

Listing 8.32: crren

$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Is the test suite RED or GREEN if you comment out the 1og_in line in List-
ing 8.29?

2. By using your text editor’s ability to comment out code, toggle back and
forth between commenting out code in Listing 8.29 and confirm that the
test suite toggles between rep and creen. (You will need to save the file
between toggles.)

8.3 Logging out

As discussed in Section 8.1, our authentication model is to keep users logged
in until they log out explicitly. In this section, we’ll add this necessary logout


https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.learnenough.com/text-editor
https://www.learnenough.com/r/learn_enough_text_editor/advanced_text_editing/writing_source_code#sec-commenting_out

478 CHAPTER 8. BASIC LOGIN

capability. Because the “Log out” link has already been defined (Listing 8.19),
all we need is to write a valid controller action to destroy user sessions.

So far, the Sessions controller actions have followed the RESTful conven-
tion of using new for a login page and create to complete the login. We’ll
continue this theme by using a destroy action to delete sessions, i.e., to log
out. Unlike the login functionality, which we use in both Listing 8.15 and List-
ing 8.29, we’ll only be logging out in one place, so we’ll put the relevant code
directly in the destroy action. As we’ll see in Section 9.3, this design (with a
little refactoring) will also make the authentication machinery easier to test.

Logging out involves undoing the effects of the 1og_in method from List-
ing 8.14, which involves deleting the user id from the session.!> To do this, we
use the delete method as follows:

session.delete(:user_ id)

We’ll also set the current user to nil, although in the present case this won’t
matter because of an immediate redirect to the root URL.!® As with 1og_in and
associated methods, we’ll put the resulting 1og _out method in the Sessions
helper module, as shown in Listing 8.33.

Listing 8.33: The 1og_out method.
app/helpers/sessions _helper.rb

module SessionsHelper

# Logs in the given user.

def log in(user)
session|[:user id] = user.id

end

1550me browsers offer a “remember where I left off” feature, which restores the session automatically, so be
sure to disable any such feature before trying to log out.

16Setting @current_user to nil would only matter if @current_user were created before the destroy
action (which it isn’t) and if we didn’t issue an immediate redirect (which we do). This is an unlikely combination
of events, and with the application as presently constructed it isn’t necessary, but because it’s security-related I
include it for completeness.


https://stackoverflow.com/questions/20449641/rails-4-session-value-never-expires-or-dies-when-browser-closes

8.3. LOGGING OoUT 479

# Logs out the current user.
def log out
session.delete(:user_id)
@current user = nil
end
end

We can put the 1log_out method to use in the Sessions controller’s de-
stroy action, as shown in Listing 8.34.

Listing 8.34: Destroying a session (user logout).
app/controllers/sessions controller.rb

class SessionsController < ApplicationController

def new
end

def create
user = User.find by(email: params|[:session][:email].downcase)
if user && user.authenticate(params[:session][:password])
log_in user
redirect to user

else
flash.now[ :danger] = 'Invalid email/password combination'
render 'new'
end
end

def destroy
log_out
redirect to root url
end
end

To test the logout machinery, we can add some steps to the user login test
from Listing 8.24. After logging in, we use delete to issue a DELETE request
to the logout path (Table 8.1) and verify that the user is logged out and redirected
to the root URL. We also check that the login link reappears and that the logout
and profile links disappear. The new steps appear in Listing 8.35.



480 CHAPTER 8. BASIC LOGIN

Listing 8.35: A test for user logout (and an improved test for invalid login).
GREEN
test/integration/users login test.rb

require 'test helper'
class UsersLoginTest < ActionDispatch::IntegrationTest

def setup
@user = users(:michael)
end

test "login with valid email/invalid password" do
get login path
assert template 'sessions/new'’
post login path, params: { session: { email: @user.email,
password: "invalid" } }
assert_not is_logged_in?
assert_template 'sessions/new'’
assert_not flash.empty?
get root path
assert flash.empty?
end

test "login with valid information followed by logout" do
get login path
post login_path, params: { session: { email: @user.email,
password: 'password' } }
assert is_logged_in?
assert redirected to Quser
follow_redirect!
assert_ template 'users/show'
assert_select "a[href=?]", login_path, count: 0
assert_select "a[href=?]", logout path
assert_select "a[href=?]", user_path(@user)
delete logout_path
assert_not is_logged_in?
assert_redirected_to root_url
follow redirect!
assert_select "a[href=?]", login path

assert _select "a[href=?]", logout path, count: 0
assert_select "a[href=?]", user path(@user), count: 0
end

end

(Now that we have is_logged_in? available in tests, we’ve also thrown in a
bonus assert is_logged_in? immediately after posting valid information
to the sessions path. We’ve also added a similar assertion and the solution to



84. CONCLUSION 481

the exercise from Section 8.2.4 by adding the results of Listing 8.27.)
With the session destroy action thus defined and tested, the initial sign-
up/login/logout triumvirate is complete, and the test suite should be criEn:

Listing 8.36: crrenN

$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm in a browser that the “Log out” link causes the correct changes
in the site layout. What is the correspondence between these changes and
the final three steps in Listing 8.35?

2. By checking the site cookies, confirm that the session is correctly re-
moved after logging out.

8.4 Conclusion

With the material in this chapter, our sample application has a fully functional
login and authentication system. In the next chapter, we’ll take our app to
the next level by adding the ability to remember users for longer than a sin-
gle browser session.

Before moving on, merge your changes back into the master branch:

rails test

git add -A

git commit -m "Implement basic login"
git checkout master

git merge basic-login

wv» v n



https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

482

CHAPTER 8. BASIC LOGIN

Then push up to the remote repository:

$ rails test
$ git push

Finally, deploy to Heroku as usual:

$ git push heroku

8.4.1 What we learned in this chapter

Rails can maintain state from one page to the next using temporary cook-
ies via the session method.

The login form is designed to create a new session to log a user in.
The £lash.now method is used for flash messages on rendered pages.

Test-driven development is useful when debugging by reproducing the
bug in a test.

Using the session method, we can securely place a user id on the brow-
ser to create a temporary session.

We can change features such as links on the layouts based on login status.

Integration tests can verify correct routes, database updates, and proper
changes to the layout.



