
9.2. “REMEMBER ME” CHECKBOX 509

Listing 9.20: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Comment out the fix in Listing 9.16 and then verify that the first subtle
bug is present by opening two logged-in tabs, logging out in one, and then
clicking “Log out” link in the other.

2. Comment out the fix in Listing 9.19 and verify that the second subtle
bug is present by logging out in one browser and closing and opening the
second browser.

3. Uncomment the fixes and confirm that the test suite goes from red to
green.

9.2 “Remember me” checkbox
With the code in Section 9.1.3, our application has a complete, professional-
grade authentication system. As a final step, we’ll see how to make staying
logged in optional using a “remember me” checkbox. A mockup of the login
form with such a checkbox appears in Figure 9.3.

To write the implementation, we start by adding a checkbox to the login
form from Listing 8.4. As with labels, text fields, password fields, and submit
buttons, checkboxes can be created with a Rails helper method. In order to
get the styling right, though, we have to nest the checkbox inside the label, as
follows:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

510 CHAPTER 9. ADVANCED LOGIN

Figure 9.3: A mockup of a “remember me” checkbox.

9.2. “REMEMBER ME” CHECKBOX 511

<%= f.label :remember_me, class: "checkbox inline" do %>

<%= f.check_box :remember_me %>

Remember me on this computer

<% end %>

Putting this into the login form gives the code shown in Listing 9.21.

Listing 9.21: Adding a “remember me” checkbox to the login form.
app/views/sessions/new.html.erb

<% provide(:title, "Log in") %>

<h1>Log in</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: login_path, scope: :session, local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :remember_me, class: "checkbox inline" do %>

<%= f.check_box :remember_me %>

Remember me on this computer

<% end %>

<%= f.submit "Log in", class: "btn btn-primary" %>

<% end %>

<p>New user? <%= link_to "Sign up now!", signup_path %></p>

</div>

</div>

In Listing 9.21, we’ve included the CSS classes checkbox and inline,
which Bootstrap uses to put the checkbox and the text (“Remember me on this
computer”) in the same line. In order to complete the styling, we need just a
few more CSS rules, as shown in Listing 9.22. The resulting login form appears
in Figure 9.4.

512 CHAPTER 9. ADVANCED LOGIN

Listing 9.22: CSS for the “remember me” checkbox.
app/assets/stylesheets/custom.scss

.

.

.

/* forms */

.

.

.

.checkbox {

margin-top: -10px;

margin-bottom: 10px;

span {

margin-left: 20px;

font-weight: normal;

}

}

#session_remember_me {

width: auto;

margin-left: 0;

}

Having edited the login form, we’re now ready to remember users if they
check the checkbox and forget them otherwise. Incredibly, because of all our
work in the previous sections, the implementation can be reduced to one line.
We start by noting that the params hash for submitted login forms now includes
a value based on the checkbox (as you can verify by submitting the form in
Listing 9.21 with invalid information and inspecting the values in the debug
section of the page). In particular, the value of

params[:session][:remember_me]

is '1' if the box is checked and '0' if it isn’t.
By testing the relevant value of the params hash, we can now remember or

forget the user based on the value of the submission:15

15Note that this means unchecking the box will log out the user on all browsers on all computers. The alternate
design of remembering user login sessions on each browser independently is potentially more convenient for users,
but it’s less secure, and is also more complicated to implement. Ambitious readers are invited to try their hand at
implementing it.

9.2. “REMEMBER ME” CHECKBOX 513

Figure 9.4: The login form with an added “remember me” checkbox.

514 CHAPTER 9. ADVANCED LOGIN

if params[:session][:remember_me] == '1'

remember(user)

else

forget(user)

end

As explained in Box 9.2, this sort of if-then branching structure can be con-
verted to one line using the ternary operator as follows:16

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

Using this to replace remember user in the Sessions controller’s create

method (Listing 9.7) leads to the amazingly compact code shown in
Listing 9.23. (Now you’re in a position to understand the code in Listing 8.22,
which uses the ternary operator to define the bcrypt cost variable.)

Listing 9.23: Handling the submission of the “remember me” checkbox.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

log_in user

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

redirect_to user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

log_out if logged_in?

redirect_to root_url

end

end

16Before we wrote remember user without parentheses, but when used with the ternary operator omitting
them results in a syntax error.

9.2. “REMEMBER ME” CHECKBOX 515

With the implementation in Listing 9.23, our login system is complete, as you
can verify by checking or unchecking the box in your browser.

Box 9.2. 10 types of people

There’s an old joke that there are 10 kinds of people in the world: those who
understand binary and those who don’t (10, of course, being 2 in binary). In this
spirit, we can say that there are 10 kinds of people in the world: those who like the
ternary operator, those who don’t, and those who don’t yet know about it. (If you
happen to be in the third category, soon you won’t be any longer.)

When you do a lot of programming, you quickly learn that one of the most
common bits of control flow goes something like this:

if boolean?

do_one_thing

else

do_something_else

end

Ruby, like many other languages (including C/C++, Perl, PHP, and Java), allows
you to replace this with a much more compact expression using the ternary oper-
ator (so called because it consists of three parts):

boolean? ? do_one_thing : do_something_else

You can also use the ternary operator to replace assignment, so that

if boolean?

var = foo

else

var = bar

end

becomes

516 CHAPTER 9. ADVANCED LOGIN

var = boolean? ? foo : bar

Finally, it’s often convenient to use the ternary operator in a function’s return value:

def foo

do_stuff

boolean? ? "bar" : "baz"

end

Since Ruby implicitly returns the value of the last expression in a function, here
the foo method returns "bar" or "baz" depending on whether boolean? is
true or false.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By inspecting your browser’s cookies directly, verify that the “remember
me” checkbox is having its intended effect.

2. At the console, invent examples showing both possible behaviors of the
ternary operator (Box 9.2).

9.3 Remember tests
Although our “remember me” functionality is now working, it’s important to
write some tests to verify its behavior. One reason is to catch implementation
errors, as discussed in a moment. Even more important, though, is that the core
user persistence code is in fact completely untested at present. Fixing these

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

