
516 CHAPTER 9. ADVANCED LOGIN

var = boolean? ? foo : bar

Finally, it’s often convenient to use the ternary operator in a function’s return value:

def foo

do_stuff

boolean? ? "bar" : "baz"

end

Since Ruby implicitly returns the value of the last expression in a function, here
the foo method returns "bar" or "baz" depending on whether boolean? is
true or false.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By inspecting your browser’s cookies directly, verify that the “remember
me” checkbox is having its intended effect.

2. At the console, invent examples showing both possible behaviors of the
ternary operator (Box 9.2).

9.3 Remember tests
Although our “remember me” functionality is now working, it’s important to
write some tests to verify its behavior. One reason is to catch implementation
errors, as discussed in a moment. Even more important, though, is that the core
user persistence code is in fact completely untested at present. Fixing these

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

9.3. REMEMBER TESTS 517

issues will require some trickery, but the result will be a far more powerful test
suite.

9.3.1 Testing the “remember me” box
When I originally implemented the checkbox handling in Listing 9.23, instead
of the correct

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

I actually used

params[:session][:remember_me] ? remember(user) : forget(user)

In this context, params[:session][:remember_me] is either '0' or '1',
both of which are true in a boolean context, so the resulting expression is
always true, and the application acts as if the checkbox is always checked. This
is exactly the kind of error a test should catch.

Because remembering users requires that they be logged in, our first step is
to define a helper to log users in inside tests. In Listing 8.24, we logged a user
in using the post method and a valid session hash, but it’s cumbersome to
do this every time. To avoid needless repetition, we’ll write a helper method
called log_in_as to log in for us.

Our method for logging a user in depends on the type of test. Inside con-
troller tests, we can manipulate the session method directly, assigning
user.id to the :user_id key (as first seen in Listing 8.14):

def log_in_as(user)

session[:user_id] = user.id

end

We call the method log_in_as to avoid any confusion with the application
code’s log_inmethod as defined in Listing 8.14. Its location is in the Active-
Support::TestCase class inside the test_helper file, the same location
as the is_logged_in? helper from Listing 8.30:

518 CHAPTER 9. ADVANCED LOGIN

class ActiveSupport::TestCase

fixtures :all

Returns true if a test user is logged in.

def is_logged_in?

!session[:user_id].nil?

end

Log in as a particular user.

def log_in_as(user)

session[:user_id] = user.id

end

end

We won’t actually need this version of the method in this chapter, but we’ll put
it to use in Chapter 10.

Inside integration tests, we can’t manipulate session directly, but we can
post to the sessions path as in Listing 8.24, which leads to the log_in_as

method shown here:

class ActionDispatch::IntegrationTest

Log in as a particular user.

def log_in_as(user, password: 'password', remember_me: '1')

post login_path, params: { session: { email: user.email,

password: password,

remember_me: remember_me } }

end

end

Because it’s located inside the ActionDispatch::IntegrationTest class,
this is the version of log_in_as that will be called inside integration tests. We
use the same method name in both cases because it lets us do things like use
code from a controller test in an integration without making any changes to the
login method.

Putting these two methods together yields the parallel log_in_as helpers
shown in Listing 9.24.

9.3. REMEMBER TESTS 519

Listing 9.24: Adding a log_in_as helper.
test/test_helper.rb

ENV['RAILS_ENV'] ||= 'test'

.

.

.

class ActiveSupport::TestCase

fixtures :all

Returns true if a test user is logged in.

def is_logged_in?

!session[:user_id].nil?

end

Log in as a particular user.

def log_in_as(user)

session[:user_id] = user.id

end

end

class ActionDispatch::IntegrationTest

Log in as a particular user.

def log_in_as(user, password: 'password', remember_me: '1')

post login_path, params: { session: { email: user.email,

password: password,

remember_me: remember_me } }

end

end

Note that, for maximum flexibility, the second log_in_as method in List-
ing 9.24 accepts keyword arguments (as in Listing 7.13), with default values
for the password and for the “remember me” checkbox set to 'password' and
'1', respectively.

To verify the behavior of the “remember me” checkbox, we’ll write two
tests, one each for submitting with and without the checkbox checked. This is
easy using the login helper defined in Listing 9.24, with the two cases appearing
as

log_in_as(@user, remember_me: '1')

and

520 CHAPTER 9. ADVANCED LOGIN

log_in_as(@user, remember_me: '0')

(Because '1' is the default value of remember_me, we could omit the corre-
sponding option in the first case above, but I’ve included it to make the parallel
structure more apparent.)

After logging in, we can check if the user has been remembered by looking
for the remember_token key in the cookies. Ideally, we would check that
the cookie’s value is equal to the user’s remember token, but as currently de-
signed there’s no way for the test to get access to it: the user variable in the
controller has a remember token attribute, but (because remember_token is
virtual) the @user variable in the test doesn’t. Fixing this minor blemish is left
as an exercise (Section 9.3.1), but for now we can just test to see if the relevant
cookie is nil or not. The results appear in Listing 9.25. (Recall from List-
ing 8.24 that users(:michael) references the fixture user from Listing 8.23.)

Listing 9.25: A test of the “remember me” checkbox. green
test/integration/users_login_test.rb

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "login with remembering" do

log_in_as(@user, remember_me: '1')

assert_not_empty cookies[:remember_token]

end

test "login without remembering" do

Log in to set the cookie.

log_in_as(@user, remember_me: '1')

Log in again and verify that the cookie is deleted.

log_in_as(@user, remember_me: '0')

assert_empty cookies[:remember_token]

end

end

9.3. REMEMBER TESTS 521

Assuming you didn’t make the same implementation mistake I did, the tests
should be green:

Listing 9.26: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. As mentioned above, the application currently doesn’t have any way to
access the virtual remember_token attribute in the integration test in
Listing 9.25. It is possible, though, using a special test method called
assigns. Inside a test, you can access instance variables defined in the
controller by using assigns with the corresponding symbol. For exam-
ple, if the create action defines an @user variable, we can access it
in the test using assigns(:user). Right now, the Sessions controller
create action defines a normal (non-instance) variable called user, but
if we change it to an instance variable we can test that cookies correctly
contains the user’s remember token. By filling in the missing elements
in Listing 9.27 and Listing 9.28 (indicated with question marks ? and
FILL_IN), complete this improved test of the “remember me” checkbox.

Listing 9.27: A template for using an instance variable in the create action.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

?user = User.find_by(email: params[:session][:email].downcase)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

522 CHAPTER 9. ADVANCED LOGIN

if ?user && ?user.authenticate(params[:session][:password])

log_in ?user

params[:session][:remember_me] == '1' ? remember(?user) : forget(?user)

redirect_to ?user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

log_out if logged_in?

redirect_to root_url

end

end

Listing 9.28: A template for an improved “remember me” test. green
test/integration/users_login_test.rb

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "login with remembering" do

log_in_as(@user, remember_me: '1')

assert_equal FILL_IN, assigns(:user).FILL_IN

end

test "login without remembering" do

Log in to set the cookie.

log_in_as(@user, remember_me: '1')

Log in again and verify that the cookie is deleted.

log_in_as(@user, remember_me: '0')

assert_empty cookies[:remember_token]

end

.

.

.

end

9.3. REMEMBER TESTS 523

9.3.2 Testing the remember branch
In Section 9.1.2, we verified by hand that the persistent session implemented in
the preceding sections is working, but in fact the relevant branch in the cur-
rent_user method is currently completely untested. My favorite way to han-
dle this kind of situation is to raise an exception in the suspected untested block
of code: if the code isn’t covered, the tests will still pass; if it is covered, the re-
sulting error will identify the relevant test. The result in the present case appears
in Listing 9.29.

Listing 9.29: Raising an exception in an untested branch. green
app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.signed[:user_id])

raise # The tests still pass, so this branch is currently untested.

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

.

.

.

end

At this point, the tests are green:

Listing 9.30: green
$ rails test

This is a problem, of course, because the code in Listing 9.29 is broken. More-
over, persistent sessions are cumbersome to check by hand, so if we ever want

524 CHAPTER 9. ADVANCED LOGIN

to refactor the current_user method (as we will in Chapter 11) it’s important
to test it.

Because both versions of the log_in_as helper method defined in List-
ing 9.24 automatically set session[:user_id] (either explicitly or by post-
ing to the login path), testing the “remember” branch of the current_user

method is difficult in an integration test. Luckily, we can bypass this restriction
by testing the current_user method directly in a Sessions helper test, whose
file we have to create:

$ touch test/helpers/sessions_helper_test.rb

The test sequence is simple:

1. Define a user variable using the fixtures.

2. Call the remember method to remember the given user.

3. Verify that current_user is equal to the given user.

Because the remember method doesn’t set session[:user_id], this proce-
dure will test the desired “remember” branch. The result appears in Listing 9.31.

Listing 9.31: A test for persistent sessions. red
test/helpers/sessions_helper_test.rb

require 'test_helper'

class SessionsHelperTest < ActionView::TestCase

def setup

@user = users(:michael)

remember(@user)

end

test "current_user returns right user when session is nil" do

assert_equal @user, current_user

assert is_logged_in?

end

9.3. REMEMBER TESTS 525

test "current_user returns nil when remember digest is wrong" do

@user.update_attribute(:remember_digest, User.digest(User.new_token))

assert_nil current_user

end

end

Note that we’ve added a second test, which checks that the current user is nil if
the user’s remember digest doesn’t correspond correctly to the remember token,
thereby testing the authenticated? expression in the nested if statement:

if user && user.authenticated?(cookies[:remember_token])

Incidentally, in Listing 9.31 we could write

assert_equal current_user, @user

instead, and it would work just the same, but (as mentioned briefly in Sec-
tion 5.3.4) the conventional order for the arguments to assert_equal is ex-
pected, actual:

assert_equal <expected>, <actual>

which in the case of Listing 9.31 gives

assert_equal @user, current_user

With the code as in Listing 9.31, the test is red as required:

Listing 9.32: red
$ rails test test/helpers/sessions_helper_test.rb

We can get the tests in Listing 9.31 to pass by removing the raise and
restoring the original current_user method, as shown in Listing 9.33.

526 CHAPTER 9. ADVANCED LOGIN

Listing 9.33: Removing the raised exception. green
app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.signed[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

.

.

.

end

At this point, the test suite should be green:

Listing 9.34: green
$ rails test

Now that the “remember” branch of current_user is tested, we can be con-
fident of catching regressions without having to check by hand.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify by removing the authenticated? expression in Listing 9.33 that
the second test in Listing 9.31 fails, thereby confirming that it tests the
right thing.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

