
Chapter 9

Advanced login
The basic login system developed in Chapter 8 is fully functional, but most
modern websites include the ability to “remember” users when they visit the site
again even if they’ve closed their browsers in the interim. In this chapter, we
use permanent cookies to implement this behavior. We’ll start by automatically
remembering users when they log in (Section 9.1), a common model used by
sites such as Bitbucket and GitHub. We’ll then add the ability to optionally
remember users using a “remember me” checkbox, a model used by sites such
as Twitter and Facebook.

Because the Chapter 8 login system is complete by itself, the core of the
sample application will work fine without it, and if desired you can skip right to
Chapter 10 (and from there to Chapter 13). On the other hand, learning how to
implement the “remember me” feature is both highly instructive by itself and
lays an essential foundation for account activation (Chapter 11) and password
reset (Chapter 12). Moreover, the result is an outstanding example of computer
magic: You’ve seen a billion of these “remember me” login forms on the Web,
and now’s your chance to learn how to make one.

9.1 Remember me
In this section, we’ll add the ability to remember our users’ login state even
after they close and reopen their browsers. This “remember me” behavior will

483

https://www.learnenough.com/r/learn_enough_command_line/basics#aside-computer_magic
https://www.learnenough.com/r/learn_enough_command_line/basics#aside-computer_magic

484 CHAPTER 9. ADVANCED LOGIN

happen automatically, and users will automatically stay logged in until they
explicitly log out. As we’ll see, the resulting machinery will make it easy to
add an optional “remember me” checkbox as well (Section 9.2).

As usual, I suggest switching to a topic branch before proceeding:

$ git checkout -b advanced-login

9.1.1 Remember token and digest
In Section 8.2, we used the Rails session method to store the user’s id, but
this information disappears when the user closes their browser. In this section,
we’ll take the first step toward persistent sessions by generating a remember
token appropriate for creating permanent cookies using the cookies method,
together with a secure remember digest for authenticating those tokens.

As noted in Section 8.2.1, information stored using session is automat-
ically secure, but this is not the case with information stored using cookies.
In particular, persistent cookies are vulnerable to session hijacking, in which
an attacker uses a stolen remember token to log in as a particular user. There
are four main ways to steal cookies: (1) using a packet sniffer to detect cookies
being passed over insecure networks,1 (2) compromising a database containing
remember tokens, (3) using cross-site scripting (XSS), and (4) gaining physical
access to a machine with a logged-in user.

We prevented the first problem in Section 7.5 by using Secure Sockets Layer
(SSL) site-wide, which protects network data from packet sniffers. We’ll pre-
vent the second problem by storing a hash digest of the remember tokens instead
of the token itself, in much the same way that we stored password digests instead
of raw passwords in Section 6.3.2 Rails automatically prevents the third prob-
lem by escaping any content inserted into view templates. Finally, although
there’s no iron-clad way to stop attackers who have physical access to a logged-
in computer, we’ll minimize the fourth problem by changing tokens every time

1Session hijacking was widely publicized by the Firesheep application, which showed that remember tokens
at many high-profile sites were visible when connected to public Wi-Fi networks.

2Rails 5 introduced a has_secure_token method that automatically generates random tokens, but it stores
the unhashed values in the database, and hence is unsuitable for our present purposes.

https://en.wikipedia.org/wiki/Session_hijacking
https://en.wikipedia.org/wiki/Packet_analyzer
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://codebutler.com/2010/10/24/firesheep/

9.1. REMEMBER ME 485

a user logs out and by taking care to cryptographically sign any potentially
sensitive information we place on the browser.

With these design and security considerations in mind, our plan for creating
persistent sessions appears as follows:

1. Create a random string of digits for use as a remember token.

2. Place the token in the browser cookies with an expiration date far in the
future.

3. Save the hash digest of the token to the database.

4. Place an encrypted version of the user’s id in the browser cookies.

5. When presented with a cookie containing a persistent user id, find the user
in the database using the given id, and verify that the remember token
cookie matches the associated hash digest from the database.

Note how similar the final step is to logging a user in, where we retrieve the
user by email address and then verify (using the authenticate method) that
the submitted password matches the password digest (Listing 8.7). As a result,
our implementation will parallel aspects of has_secure_password.

We’ll start by adding the required remember_digest attribute to the User
model, as shown in Figure 9.1.
To add the data model from Figure 9.1 to our application, we’ll generate a mi-
gration:

$ rails generate migration add_remember_digest_to_users remember_digest:string

(Compare to the password digest migration in Section 6.3.1.) As in previous
migrations, we’ve used a migration name that ends in _to_users to tell Rails
that the migration is designed to alter the users table in the database. Because
we also included the attribute (remember_digest) and type (string), Rails
generates a default migration for us, as shown in Listing 9.1.

https://en.wikipedia.org/wiki/Digital_signature

486 CHAPTER 9. ADVANCED LOGIN

updated_at datetime
datetimecreated_at

remember_digest string
stringpassword_digest

email string

id
name string

integer
users

Figure 9.1: The User model with an added remember_digest attribute.

Listing 9.1: The generated migration for the remember digest.
db/migrate/[timestamp]_add_remember_digest_to_users.rb

class AddRememberDigestToUsers < ActiveRecord::Migration[6.0]

def change

add_column :users, :remember_digest, :string

end

end

Because we don’t expect to retrieve users by remember digest, there’s no
need to put an index on the remember_digest column, and we can use the
default migration as generated above:

$ rails db:migrate

Now we have to decide what to use as a remember token. There are many
mostly equivalent possibilities—essentially, any long random string will do.
The urlsafe_base64 method from the SecureRandom module in the Ruby
standard library fits the bill:3 it returns a random string of length 22 composed

3This choice is based on the RailsCast on remember me.

http://railscasts.com/episodes/274-remember-me-reset-password

9.1. REMEMBER ME 487

of the characters A–Z, a–z, 0–9, “-”, and “_” (for a total of 64 possibilities, thus
“base64”). A typical base64 string appears as follows:

$ rails console

>> SecureRandom.urlsafe_base64

=> "brl_446-8bqHv87AQzUj_Q"

Just as it’s perfectly fine if two users have the same password,4 there’s no
need for remember tokens to be unique, but it’s more secure if they are.5 In the
case of the base64 string above, each of the 22 characters has 64 possibilities, so
the probability of two remember tokens colliding is a negligibly small 1/6422 =
2−132 ≈ 10−40.6 As a bonus, by using base64 strings specifically designed to
be safe in URLs (as indicated by the name urlsafe_base64), we’ll be able
to use the same token generator to make account activation and password reset
links in Chapter 12.

Remembering users involves creating a remember token and saving the di-
gest of the token to the database. We’ve already defined a digest method
for use in the test fixtures (Listing 8.22), and we can use the results of the dis-
cussion above to create a new_token method to create a new token. As with
digest, the new token method doesn’t need a user object, so we’ll make it a
class method.7 The result is the User model shown in Listing 9.2.

Listing 9.2: Adding a method for generating tokens.
app/models/user.rb

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

4In any case, with bcrypt’s salted hashes there’s no way for us to tell if two users’ passwords match.
5With unique remember tokens, an attacker always needs both the user id and the remember token cookies to

hijack the session.
6This hasn’t stopped some developers from adding a check to verify that no collision has occurred, but such

efforts result from failing to grasp just how small 10−40 is. For example, if we generated a billion tokens a second
for the entire age of the Universe (4.4 × 107 s), the expected number of collisions would still be on the order of
2× 10−23, which is zero in any operational sense of the word.

7As a general rule, if a method doesn’t need an instance of an object, it should be a class method. Indeed, this
decision will prove to be wise in Section 11.2.

https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Salt_%28cryptography%29

488 CHAPTER 9. ADVANCED LOGIN

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

Returns the hash digest of the given string.

def User.digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

Returns a random token.

def User.new_token

SecureRandom.urlsafe_base64

end

end

Our plan for the implementation is to make a user.remember method that
associates a remember token with the user and saves the corresponding remem-
ber digest to the database. Because of the migration in Listing 9.1, the User
model already has a remember_digest attribute, but it doesn’t yet have a
remember_token attribute. We need a way to make a token available via
user.remember_token (for storage in the cookies) without storing it in the
database. We solved a similar issue with secure passwords in Section 6.3, which
paired a virtual password attribute with a secure password_digest attribute
in the database. In that case, the virtual password attribute was created auto-
matically by has_secure_password, but we’ll have to write the code for a
remember_token ourselves. The way to do this is to use attr_accessor to
create an accessible attribute, which we saw before in Section 4.4.5:

class User < ApplicationRecord

attr_accessor :remember_token

.

.

.

def remember

self.remember_token = ...

update_attribute(:remember_digest, ...)

end

end

9.1. REMEMBER ME 489

Note the form of the assignment in the first line of the remember method. Be-
cause of the way Ruby handles assignments inside objects, without self the
assignment would create a local variable called remember_token, which isn’t
what we want. Using self ensures that assignment sets the user’s remem-
ber_token attribute. (Now you know why the before_save callback from
Listing 6.32 uses self.email instead of just email.) Meanwhile, the second
line of remember uses the update_attribute method to update the remem-
ber digest. (As noted in Section 6.1.5, this method bypasses the validations,
which is necessary in this case because we don’t have access to the user’s pass-
word or confirmation.)

With these considerations in mind, we can create a valid token and associ-
ated digest by first making a new remember token using User.new_token,
and then updating the remember digest with the result of applying User.-

digest. This procedure gives the remember method shown in Listing 9.3.

Listing 9.3: Adding a remember method to the User model. green
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

Returns the hash digest of the given string.

def User.digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

Returns a random token.

def User.new_token

SecureRandom.urlsafe_base64

end

Remembers a user in the database for use in persistent sessions.

def remember

490 CHAPTER 9. ADVANCED LOGIN

self.remember_token = User.new_token

update_attribute(:remember_digest, User.digest(remember_token))

end

end

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In the console, assign user to the first user in the database, and verify
by calling it directly that the remember method works. How do remem-
ber_token and remember_digest compare?

2. In Listing 9.3, we defined the new token and digest class methods by ex-
plicitly prefixing them with User. This works fine and, because they are
actually called using User.new_token and User.digest, it is prob-
ably the clearest way to define them. But there are two perhaps more
idiomatically correct ways to define class methods, one slightly confus-
ing and one extremely confusing. By running the test suite, verify that the
implementations in Listing 9.4 (slightly confusing) and Listing 9.5 (ex-
tremely confusing) are correct. (Note that, in the context of Listing 9.4
and Listing 9.5, self is the User class, whereas the other uses of self
in the User model refer to a user object instance. This is part of what
makes them confusing.)

Listing 9.4: Defining the new token and digest methods using self. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns the hash digest of the given string.

def self.digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

9.1. REMEMBER ME 491

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

Returns a random token.

def self.new_token

SecureRandom.urlsafe_base64

end

.

.

.

end

Listing 9.5: Defining the new token and digest methods using class <<

self. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

class << self

Returns the hash digest of the given string.

def digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

Returns a random token.

def new_token

SecureRandom.urlsafe_base64

end

end

.

.

.

9.1.2 Login with remembering
Having created a working user.remember method, we can now create a per-
sistent session by storing a user’s (encrypted) id and remember token as perma-
nent cookies on the browser. The way to do this is with the cookies method,

492 CHAPTER 9. ADVANCED LOGIN

which (as with session) we can treat as a hash. A cookie consists of two
pieces of information, a value and an optional expires date. For example,
we could make a persistent session by creating a cookie with value equal to the
remember token that expires 20 years from now:

cookies[:remember_token] = { value: remember_token,

expires: 20.years.from_now.utc }

(This uses one of the convenient Rails time helpers, as discussed in Box 9.1.)
This pattern of setting a cookie that expires 20 years in the future is so common
that Rails has a special permanent method to implement it, so that we can
simply write

cookies.permanent[:remember_token] = remember_token

This causes Rails to set the expiration to 20.years.from_now automatically.

Box 9.1. Cookies expire 20.years.from_now
You may recall from Section 4.4.2 that Ruby lets you add methods to any

class, even built-in ones. In that section, we added a palindrome? method
to the String class (and discovered as a result that "deified" is a palin-
drome), and we also saw how Rails adds a blank? method to class Object
(so that "".blank?, " ".blank?, and nil.blank? are all true). The
cookies.permanent method, which creates “permanent” cookies with an
expiration 20.years.from_now, gives yet another example of this practice
through one of Rails’ time helpers, which are methods added to Fixnum (the base
class for integers):

$ rails console

>> 1.year.from_now

=> Wed, 21 Jun 2017 19:36:29 UTC +00:00

>> 10.weeks.ago

=> Tue, 12 Apr 2016 19:36:44 UTC +00:00

9.1. REMEMBER ME 493

Rails adds other helpers, too:

>> 1.kilobyte

=> 1024

>> 5.megabytes

=> 5242880

These are useful for upload validations, making it easy to restrict, say, image up-
loads to 5.megabytes.

Although it should be used with caution, the flexibility to add methods to built-
in classes allows for extraordinarily natural additions to plain Ruby. Indeed, much
of the elegance of Rails ultimately derives from the malleability of the underlying
Ruby language.

To store the user’s id in the cookies, we could follow the pattern used with
the session method (Listing 8.14) using something like

cookies[:user_id] = user.id

Because it places the id as plain text, this method exposes the form of the ap-
plication’s cookies and makes it easier for an attacker to compromise user ac-
counts. To avoid this problem, we’ll use a signed cookie, which securely en-
crypts the cookie before placing it on the browser:8

cookies.signed[:user_id] = user.id

Because we want the user id to be paired with the permanent remember token,
we should make it permanent as well, which we can do by chaining the signed
and permanent methods:

8Signing and encrypting are different operations in general, but as of Rails 4 the signed method does both by
default.

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Encryption
https://api.rubyonrails.org/classes/ActionDispatch/Session/CookieStore.html

494 CHAPTER 9. ADVANCED LOGIN

cookies.permanent.signed[:user_id] = user.id

After the cookies are set, on subsequent page views we can retrieve the user
with code like

User.find_by(id: cookies.signed[:user_id])

where cookies.signed[:user_id] automatically decrypts the user id
cookie. We can then use bcrypt to verify that cookies[:remember_token]
matches the remember_digest generated in Listing 9.3. (In case you’re won-
dering why we don’t just use the signed user id, without the remember token,
this would allow an attacker with possession of the encrypted id to log in as the
user in perpetuity. In the present design, an attacker with both cookies can log
in as the user only until the user logs out.)

The final piece of the puzzle is to verify that a given remember token
matches the user’s remember digest, and in this context there are a couple of
equivalent ways to use bcrypt to verify a match. If you look at the secure pass-
word source code, you’ll find a comparison like this:9

BCrypt::Password.new(password_digest) == unencrypted_password

In our case, the analogous code would look like this:

BCrypt::Password.new(remember_digest) == remember_token

If you think about it, this code is really strange: it appears to be comparing a
bcrypt password digest directly with a token, which would imply decrypting
the digest in order to compare using ==. But the whole point of using bcrypt
is for hashing to be irreversible, so this can’t be right. Indeed, digging into

9As noted in Section 6.3.1, “unencrypted password” is a misnomer, as the secure password is hashed, not
encrypted.

https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb
https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb

9.1. REMEMBER ME 495

the source code of the bcrypt gem verifies that the comparison operator == is
being redefined, and under the hood the comparison above is equivalent to the
following:

BCrypt::Password.new(remember_digest).is_password?(remember_token)

Instead of ==, this uses the boolean method is_password? to perform the
comparison. Because its meaning is a little clearer, we’ll prefer this second
comparison form in the application code.

The above discussion suggests putting the digest–token comparison into an
authenticated? method in the User model, which plays a role similar to
that of the authenticate method provided by has_secure_password for
authenticating a user (Listing 8.15). The implementation appears in Listing 9.6.
(Although the authenticated? method in Listing 9.6 is tied specifically to
the remember digest, it will turn out to be useful in other contexts as well, and
we’ll generalize it in Chapter 11.)

Listing 9.6: Adding an authenticated? method to the User model.
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

Returns the hash digest of the given string.

def User.digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

Returns a random token.

def User.new_token

SecureRandom.urlsafe_base64

https://github.com/codahale/bcrypt-ruby/blob/master/lib/bcrypt/password.rb

496 CHAPTER 9. ADVANCED LOGIN

end

Remembers a user in the database for use in persistent sessions.

def remember

self.remember_token = User.new_token

update_attribute(:remember_digest, User.digest(remember_token))

end

Returns true if the given token matches the digest.

def authenticated?(remember_token)

BCrypt::Password.new(remember_digest).is_password?(remember_token)

end

end

Note that the remember_token argument in the authenticated?

method defined in Listing 9.6 is not the same as the accessor that we defined in
Listing 9.3 using attr_accessor :remember_token; instead, it is a vari-
able local to the method. (Because the argument refers to the remember to-
ken, it is not uncommon to use a method argument that has the same name.)
Also note the use of the remember_digest attribute, which is the same as
self.remember_digest and, like name and email in Chapter 6, is created
automatically by Active Record based on the name of the corresponding data-
base column (Listing 9.1).

We’re now in a position to remember a logged-in user, which we’ll do by
adding a remember helper to go along with log_in, as shown in Listing 9.7.

Listing 9.7: Logging in and remembering a user. red
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

log_in user

remember user

redirect_to user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

9.1. REMEMBER ME 497

end

end

def destroy

log_out

redirect_to root_url

end

end

As with log_in, Listing 9.7 defers the real work to the Sessions helper, where
we define a remember method that calls user.remember, thereby generating
a remember token and saving its digest to the database. It then uses cookies
to create permanent cookies for the user id and remember token as described
above. The result appears in Listing 9.8.

Listing 9.8: Remembering the user. green
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

Remembers a user in a persistent session.

def remember(user)

user.remember

cookies.permanent.signed[:user_id] = user.id

cookies.permanent[:remember_token] = user.remember_token

end

Returns the current logged-in user (if any).

def current_user

if session[:user_id]

@current_user ||= User.find_by(id: session[:user_id])

end

end

Returns true if the user is logged in, false otherwise.

def logged_in?

!current_user.nil?

end

Logs out the current user.

def log_out

498 CHAPTER 9. ADVANCED LOGIN

session.delete(:user_id)

@current_user = nil

end

end

With the code in Listing 9.8, a user logging in will be remembered in the
sense that their browser will get a valid remember token, but it doesn’t yet do us
any good because the current_user method defined in Listing 8.16 knows
only about the temporary session:

@current_user ||= User.find_by(id: session[:user_id])

In the case of persistent sessions, we want to retrieve the user from the tem-
porary session if session[:user_id] exists, but otherwise we should look
for cookies[:user_id] to retrieve (and log in) the user corresponding to the
persistent session. We can accomplish this as follows:

if session[:user_id]

@current_user ||= User.find_by(id: session[:user_id])

elsif cookies.signed[:user_id]

user = User.find_by(id: cookies.signed[:user_id])

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

(This follows the same user && user.authenticated pattern we saw in
Listing 8.7.) The code above will work, but note the repeated use of both ses-
sion and cookies. We can eliminate this duplication as follows:

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.signed[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

9.1. REMEMBER ME 499

This uses the common but potentially confusing construction

if (user_id = session[:user_id])

Despite appearances, this is not a comparison (which would use double-equals
==), but rather is an assignment. If you were to read it in words, you wouldn’t
say “If user id equals session of user id…”, but rather something like “If session
of user id exists (while setting user id to session of user id)…”.10

Defining the current_user helper as discussed above leads to the imple-
mentation shown in Listing 9.9.

Listing 9.9: Updating current_user for persistent sessions. red
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

Remembers a user in a persistent session.

def remember(user)

user.remember

cookies.permanent.signed[:user_id] = user.id

cookies.permanent[:remember_token] = user.remember_token

end

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.signed[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

10I generally use the convention of putting such assignments in parentheses, which is a visual reminder that it’s
not a comparison.

500 CHAPTER 9. ADVANCED LOGIN

Returns true if the user is logged in, false otherwise.

def logged_in?

!current_user.nil?

end

Logs out the current user.

def log_out

session.delete(:user_id)

@current_user = nil

end

end

With the code as in Listing 9.9, newly logged in users are correctly remem-
bered, as you can verify by logging in, closing the browser, and checking that
you’re still logged in when you restart the sample application and revisit the
sample application.11 If you want, you can even inspect the browser cookies to
see the result directly (Figure 9.2).12

There’s only one problem with our application as it stands: short of clearing
their browser cookies (or waiting 20 years), there’s no way for users to log out.
This is exactly the sort of thing our test suite should catch, and indeed the tests
should currently be red:

11Alert reader Jack Fahnestock has noted that there is an edge case that isn’t covered by the current design:

1. Log in with “remember me” checked in browser A (saving hashed remember token A to remem-

ber_digest).

2. Log in with “remember me” checked in browser B (saving hashed remember_token B to remem-

ber_digest, overwriting remember token A saved in browser A).

3. Close browser A (now relying on permanent cookies for login—second conditional in current_user

method).

4. Reopen browser A (logged_in? returns false, even though permanent cookies are on the browser).

Although this is a arguably a more secure design than remembering the user in multiple places, it violates
the expectation that users can be permanently remembered on more than one browser. The solution, which is
substantially more complicated than the present design, is to factor the remember digest into a separate table,
where each row has a user id and a digest. Checking for the current user would then look through the table for
a digest corresponding to a particular remember token. Furthermore, the forget in Listing 9.11 method would
delete only the row corresponding to the digest of the current browser. For security purposes, logging out would
remove all digests for that user.

12Google “<your browser name> inspect cookies” to learn how to inspect the cookies on your system.

https://en.wikipedia.org/wiki/Edge_case

9.1. REMEMBER ME 501

Figure 9.2: The remember token cookie in the local browser.

Listing 9.10: red
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By finding the cookie in your local browser, verify that a remember token
and encrypted user id are present after logging in.

2. At the console, verify directly that the authenticated?method defined
in Listing 9.6 works correctly.

9.1.3 Forgetting users
To allow users to log out, we’ll define methods to forget users in analogy with
the ones to remember them. The resulting user.forget method just undoes

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

502 CHAPTER 9. ADVANCED LOGIN

user.remember by updating the remember digest with nil, as shown in List-
ing 9.11.

Listing 9.11: Adding a forget method to the User model. red
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

Returns the hash digest of the given string.

def User.digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

Returns a random token.

def User.new_token

SecureRandom.urlsafe_base64

end

Remembers a user in the database for use in persistent sessions.

def remember

self.remember_token = User.new_token

update_attribute(:remember_digest, User.digest(remember_token))

end

Returns true if the given token matches the digest.

def authenticated?(remember_token)

BCrypt::Password.new(remember_digest).is_password?(remember_token)

end

Forgets a user.

def forget

update_attribute(:remember_digest, nil)

end

end

With the code in Listing 9.11, we’re now ready to forget a permanent ses-
sion by adding a forget helper and calling it from the log_out helper (List-

9.1. REMEMBER ME 503

ing 9.12). As seen in Listing 9.12, the forget helper calls user.forget and
then deletes the user_id and remember_token cookies.

Listing 9.12: Logging out from a persistent session. green
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

.

.

.

Forgets a persistent session.

def forget(user)

user.forget

cookies.delete(:user_id)

cookies.delete(:remember_token)

end

Logs out the current user.

def log_out

forget(current_user)

session.delete(:user_id)

@current_user = nil

end

end

At this point, the tests suite should be green:

Listing 9.13: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

504 CHAPTER 9. ADVANCED LOGIN

1. After logging out, verify that the corresponding cookies have been re-
moved from your browser.

9.1.4 Two subtle bugs
There are two closely related subtleties left to address. The first subtlety is
that, even though the “Log out” link appears only when logged-in, a user could
potentially have multiple browser windows open to the site. If the user logged
out in one window, thereby setting current_user to nil, clicking the “Log
out” link in a second window would result in an error because of forget-
(current_user) in the log_out method (Listing 9.12).13 We can avoid this
by logging out only if the user is logged in.

The second subtlety is that a user could be logged in (and remembered) in
multiple browsers, such as Chrome and Firefox, which causes a problem if the
user logs out in the first browser but not the second, and then closes and re-
opens the second one.14 For example, suppose that the user logs out in Firefox,
thereby setting the remember digest to nil (via user.forget in Listing 9.11).
The application will still work in Firefox; because the log_out method in List-
ing 9.12 deletes the user’s id, both highlighted conditionals are false:

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.signed[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

As a result, evaluation falls off the end of the current_user method, thereby
returning nil as required.

13Thanks to reader Paulo Célio Júnior for pointing this out.
14Thanks to reader Niels de Ron for pointing this out.

9.1. REMEMBER ME 505

In contrast, if we close Chrome, we set session[:user_id] to nil (be-
cause all session variables expire automatically on browser close), but the
user_id cookie will still be present. This means that the corresponding user
will still be pulled out of the database when Chrome is re-launched:

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.signed[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

Consequently, the inner if conditional will be evaluated:

user && user.authenticated?(cookies[:remember_token])

In particular, because user isn’t nil, the second expression will be evaluated,
which raises an error. This is because the user’s remember digest was deleted as
part of logging out (Listing 9.11) in Firefox, so when we access the application
in Chrome we end up calling

BCrypt::Password.new(remember_digest).is_password?(remember_token)

with a nil remember digest, thereby raising an exception inside the bcrypt
library. To fix this, we want authenticated? to return false instead.

These are exactly the sorts of subtleties that benefit from test-driven devel-
opment, so we’ll write tests to catch the two errors before correcting them. We
first get the integration test from Listing 8.35 to red, as shown in Listing 9.14.

506 CHAPTER 9. ADVANCED LOGIN

Listing 9.14: A test for logging out in a second window. red
test/integration/users_login_test.rb

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

.

.

.

test "login with valid information followed by logout" do

get login_path

post login_path, params: { session: { email: @user.email,

password: 'password' } }

assert is_logged_in?

assert_redirected_to @user

follow_redirect!

assert_template 'users/show'

assert_select "a[href=?]", login_path, count: 0

assert_select "a[href=?]", logout_path

assert_select "a[href=?]", user_path(@user)

delete logout_path

assert_not is_logged_in?

assert_redirected_to root_url

Simulate a user clicking logout in a second window.

delete logout_path

follow_redirect!

assert_select "a[href=?]", login_path

assert_select "a[href=?]", logout_path, count: 0

assert_select "a[href=?]", user_path(@user), count: 0

end

end

The second call to delete logout_path in Listing 9.14 should raise an error
due to the missing current_user, leading to a red test suite:

Listing 9.15: red
$ rails test

The application code simply involves calling log_out only if logged_-
in? is true, as shown in Listing 9.16.

9.1. REMEMBER ME 507

Listing 9.16: Only logging out if logged in. green
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

.

.

.

def destroy

log_out if logged_in?

redirect_to root_url

end

end

The second case, involving a scenario with two different browsers, is harder
to simulate with an integration test, but it’s easy to check in the User model
test directly. All we need is to start with a user that has no remember digest
(which is true for the @user variable defined in the setup method) and then
call authenticated?, as shown in Listing 9.17. (Note that we’ve just left
the remember token blank; it doesn’t matter what its value is, because the error
occurs before it ever gets used.)

Listing 9.17: A test of authenticated? with a nonexistent digest. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

test "authenticated? should return false for a user with nil digest" do

assert_not @user.authenticated?('')

end

end

Because BCrypt::Password.new(nil) raises an error, the test suite
should now be red:

508 CHAPTER 9. ADVANCED LOGIN

Listing 9.18: red
$ rails test

To fix the error and get to green, all we need to do is return false if the
remember digest is nil, as shown in Listing 9.19.

Listing 9.19: Updating authenticated? to handle a nonexistent digest.
green
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns true if the given token matches the digest.

def authenticated?(remember_token)

return false if remember_digest.nil?

BCrypt::Password.new(remember_digest).is_password?(remember_token)

end

Forgets a user.

def forget

update_attribute(:remember_digest, nil)

end

end

This uses the return keyword to return immediately if the remember digest
is nil, which is a common way to emphasize that the rest of the method gets
ignored in that case. The equivalent code

if remember_digest.nil?

false

else

BCrypt::Password.new(remember_digest).is_password?(remember_token)

end

would also work fine, but I prefer the explicitness of the version in Listing 9.19
(which also happens to be slightly shorter).

With the code in Listing 9.19, our full test suite should be green, and both
subtleties should now be addressed:

9.2. “REMEMBER ME” CHECKBOX 509

Listing 9.20: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Comment out the fix in Listing 9.16 and then verify that the first subtle
bug is present by opening two logged-in tabs, logging out in one, and then
clicking “Log out” link in the other.

2. Comment out the fix in Listing 9.19 and verify that the second subtle
bug is present by logging out in one browser and closing and opening the
second browser.

3. Uncomment the fixes and confirm that the test suite goes from red to
green.

9.2 “Remember me” checkbox
With the code in Section 9.1.3, our application has a complete, professional-
grade authentication system. As a final step, we’ll see how to make staying
logged in optional using a “remember me” checkbox. A mockup of the login
form with such a checkbox appears in Figure 9.3.

To write the implementation, we start by adding a checkbox to the login
form from Listing 8.4. As with labels, text fields, password fields, and submit
buttons, checkboxes can be created with a Rails helper method. In order to
get the styling right, though, we have to nest the checkbox inside the label, as
follows:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

510 CHAPTER 9. ADVANCED LOGIN

Figure 9.3: A mockup of a “remember me” checkbox.

9.2. “REMEMBER ME” CHECKBOX 511

<%= f.label :remember_me, class: "checkbox inline" do %>

<%= f.check_box :remember_me %>

Remember me on this computer

<% end %>

Putting this into the login form gives the code shown in Listing 9.21.

Listing 9.21: Adding a “remember me” checkbox to the login form.
app/views/sessions/new.html.erb

<% provide(:title, "Log in") %>

<h1>Log in</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: login_path, scope: :session, local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :remember_me, class: "checkbox inline" do %>

<%= f.check_box :remember_me %>

Remember me on this computer

<% end %>

<%= f.submit "Log in", class: "btn btn-primary" %>

<% end %>

<p>New user? <%= link_to "Sign up now!", signup_path %></p>

</div>

</div>

In Listing 9.21, we’ve included the CSS classes checkbox and inline,
which Bootstrap uses to put the checkbox and the text (“Remember me on this
computer”) in the same line. In order to complete the styling, we need just a
few more CSS rules, as shown in Listing 9.22. The resulting login form appears
in Figure 9.4.

512 CHAPTER 9. ADVANCED LOGIN

Listing 9.22: CSS for the “remember me” checkbox.
app/assets/stylesheets/custom.scss

.

.

.

/* forms */

.

.

.

.checkbox {

margin-top: -10px;

margin-bottom: 10px;

span {

margin-left: 20px;

font-weight: normal;

}

}

#session_remember_me {

width: auto;

margin-left: 0;

}

Having edited the login form, we’re now ready to remember users if they
check the checkbox and forget them otherwise. Incredibly, because of all our
work in the previous sections, the implementation can be reduced to one line.
We start by noting that the params hash for submitted login forms now includes
a value based on the checkbox (as you can verify by submitting the form in
Listing 9.21 with invalid information and inspecting the values in the debug
section of the page). In particular, the value of

params[:session][:remember_me]

is '1' if the box is checked and '0' if it isn’t.
By testing the relevant value of the params hash, we can now remember or

forget the user based on the value of the submission:15

15Note that this means unchecking the box will log out the user on all browsers on all computers. The alternate
design of remembering user login sessions on each browser independently is potentially more convenient for users,
but it’s less secure, and is also more complicated to implement. Ambitious readers are invited to try their hand at
implementing it.

9.2. “REMEMBER ME” CHECKBOX 513

Figure 9.4: The login form with an added “remember me” checkbox.

514 CHAPTER 9. ADVANCED LOGIN

if params[:session][:remember_me] == '1'

remember(user)

else

forget(user)

end

As explained in Box 9.2, this sort of if-then branching structure can be con-
verted to one line using the ternary operator as follows:16

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

Using this to replace remember user in the Sessions controller’s create

method (Listing 9.7) leads to the amazingly compact code shown in
Listing 9.23. (Now you’re in a position to understand the code in Listing 8.22,
which uses the ternary operator to define the bcrypt cost variable.)

Listing 9.23: Handling the submission of the “remember me” checkbox.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

log_in user

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

redirect_to user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

log_out if logged_in?

redirect_to root_url

end

end

16Before we wrote remember user without parentheses, but when used with the ternary operator omitting
them results in a syntax error.

9.2. “REMEMBER ME” CHECKBOX 515

With the implementation in Listing 9.23, our login system is complete, as you
can verify by checking or unchecking the box in your browser.

Box 9.2. 10 types of people

There’s an old joke that there are 10 kinds of people in the world: those who
understand binary and those who don’t (10, of course, being 2 in binary). In this
spirit, we can say that there are 10 kinds of people in the world: those who like the
ternary operator, those who don’t, and those who don’t yet know about it. (If you
happen to be in the third category, soon you won’t be any longer.)

When you do a lot of programming, you quickly learn that one of the most
common bits of control flow goes something like this:

if boolean?

do_one_thing

else

do_something_else

end

Ruby, like many other languages (including C/C++, Perl, PHP, and Java), allows
you to replace this with a much more compact expression using the ternary oper-
ator (so called because it consists of three parts):

boolean? ? do_one_thing : do_something_else

You can also use the ternary operator to replace assignment, so that

if boolean?

var = foo

else

var = bar

end

becomes

516 CHAPTER 9. ADVANCED LOGIN

var = boolean? ? foo : bar

Finally, it’s often convenient to use the ternary operator in a function’s return value:

def foo

do_stuff

boolean? ? "bar" : "baz"

end

Since Ruby implicitly returns the value of the last expression in a function, here
the foo method returns "bar" or "baz" depending on whether boolean? is
true or false.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By inspecting your browser’s cookies directly, verify that the “remember
me” checkbox is having its intended effect.

2. At the console, invent examples showing both possible behaviors of the
ternary operator (Box 9.2).

9.3 Remember tests
Although our “remember me” functionality is now working, it’s important to
write some tests to verify its behavior. One reason is to catch implementation
errors, as discussed in a moment. Even more important, though, is that the core
user persistence code is in fact completely untested at present. Fixing these

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

9.3. REMEMBER TESTS 517

issues will require some trickery, but the result will be a far more powerful test
suite.

9.3.1 Testing the “remember me” box
When I originally implemented the checkbox handling in Listing 9.23, instead
of the correct

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

I actually used

params[:session][:remember_me] ? remember(user) : forget(user)

In this context, params[:session][:remember_me] is either '0' or '1',
both of which are true in a boolean context, so the resulting expression is
always true, and the application acts as if the checkbox is always checked. This
is exactly the kind of error a test should catch.

Because remembering users requires that they be logged in, our first step is
to define a helper to log users in inside tests. In Listing 8.24, we logged a user
in using the post method and a valid session hash, but it’s cumbersome to
do this every time. To avoid needless repetition, we’ll write a helper method
called log_in_as to log in for us.

Our method for logging a user in depends on the type of test. Inside con-
troller tests, we can manipulate the session method directly, assigning
user.id to the :user_id key (as first seen in Listing 8.14):

def log_in_as(user)

session[:user_id] = user.id

end

We call the method log_in_as to avoid any confusion with the application
code’s log_inmethod as defined in Listing 8.14. Its location is in the Active-
Support::TestCase class inside the test_helper file, the same location
as the is_logged_in? helper from Listing 8.30:

518 CHAPTER 9. ADVANCED LOGIN

class ActiveSupport::TestCase

fixtures :all

Returns true if a test user is logged in.

def is_logged_in?

!session[:user_id].nil?

end

Log in as a particular user.

def log_in_as(user)

session[:user_id] = user.id

end

end

We won’t actually need this version of the method in this chapter, but we’ll put
it to use in Chapter 10.

Inside integration tests, we can’t manipulate session directly, but we can
post to the sessions path as in Listing 8.24, which leads to the log_in_as

method shown here:

class ActionDispatch::IntegrationTest

Log in as a particular user.

def log_in_as(user, password: 'password', remember_me: '1')

post login_path, params: { session: { email: user.email,

password: password,

remember_me: remember_me } }

end

end

Because it’s located inside the ActionDispatch::IntegrationTest class,
this is the version of log_in_as that will be called inside integration tests. We
use the same method name in both cases because it lets us do things like use
code from a controller test in an integration without making any changes to the
login method.

Putting these two methods together yields the parallel log_in_as helpers
shown in Listing 9.24.

9.3. REMEMBER TESTS 519

Listing 9.24: Adding a log_in_as helper.
test/test_helper.rb

ENV['RAILS_ENV'] ||= 'test'

.

.

.

class ActiveSupport::TestCase

fixtures :all

Returns true if a test user is logged in.

def is_logged_in?

!session[:user_id].nil?

end

Log in as a particular user.

def log_in_as(user)

session[:user_id] = user.id

end

end

class ActionDispatch::IntegrationTest

Log in as a particular user.

def log_in_as(user, password: 'password', remember_me: '1')

post login_path, params: { session: { email: user.email,

password: password,

remember_me: remember_me } }

end

end

Note that, for maximum flexibility, the second log_in_as method in List-
ing 9.24 accepts keyword arguments (as in Listing 7.13), with default values
for the password and for the “remember me” checkbox set to 'password' and
'1', respectively.

To verify the behavior of the “remember me” checkbox, we’ll write two
tests, one each for submitting with and without the checkbox checked. This is
easy using the login helper defined in Listing 9.24, with the two cases appearing
as

log_in_as(@user, remember_me: '1')

and

520 CHAPTER 9. ADVANCED LOGIN

log_in_as(@user, remember_me: '0')

(Because '1' is the default value of remember_me, we could omit the corre-
sponding option in the first case above, but I’ve included it to make the parallel
structure more apparent.)

After logging in, we can check if the user has been remembered by looking
for the remember_token key in the cookies. Ideally, we would check that
the cookie’s value is equal to the user’s remember token, but as currently de-
signed there’s no way for the test to get access to it: the user variable in the
controller has a remember token attribute, but (because remember_token is
virtual) the @user variable in the test doesn’t. Fixing this minor blemish is left
as an exercise (Section 9.3.1), but for now we can just test to see if the relevant
cookie is nil or not. The results appear in Listing 9.25. (Recall from List-
ing 8.24 that users(:michael) references the fixture user from Listing 8.23.)

Listing 9.25: A test of the “remember me” checkbox. green
test/integration/users_login_test.rb

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "login with remembering" do

log_in_as(@user, remember_me: '1')

assert_not_empty cookies[:remember_token]

end

test "login without remembering" do

Log in to set the cookie.

log_in_as(@user, remember_me: '1')

Log in again and verify that the cookie is deleted.

log_in_as(@user, remember_me: '0')

assert_empty cookies[:remember_token]

end

end

9.3. REMEMBER TESTS 521

Assuming you didn’t make the same implementation mistake I did, the tests
should be green:

Listing 9.26: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. As mentioned above, the application currently doesn’t have any way to
access the virtual remember_token attribute in the integration test in
Listing 9.25. It is possible, though, using a special test method called
assigns. Inside a test, you can access instance variables defined in the
controller by using assigns with the corresponding symbol. For exam-
ple, if the create action defines an @user variable, we can access it
in the test using assigns(:user). Right now, the Sessions controller
create action defines a normal (non-instance) variable called user, but
if we change it to an instance variable we can test that cookies correctly
contains the user’s remember token. By filling in the missing elements
in Listing 9.27 and Listing 9.28 (indicated with question marks ? and
FILL_IN), complete this improved test of the “remember me” checkbox.

Listing 9.27: A template for using an instance variable in the create action.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

?user = User.find_by(email: params[:session][:email].downcase)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

522 CHAPTER 9. ADVANCED LOGIN

if ?user && ?user.authenticate(params[:session][:password])

log_in ?user

params[:session][:remember_me] == '1' ? remember(?user) : forget(?user)

redirect_to ?user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

log_out if logged_in?

redirect_to root_url

end

end

Listing 9.28: A template for an improved “remember me” test. green
test/integration/users_login_test.rb

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "login with remembering" do

log_in_as(@user, remember_me: '1')

assert_equal FILL_IN, assigns(:user).FILL_IN

end

test "login without remembering" do

Log in to set the cookie.

log_in_as(@user, remember_me: '1')

Log in again and verify that the cookie is deleted.

log_in_as(@user, remember_me: '0')

assert_empty cookies[:remember_token]

end

.

.

.

end

9.3. REMEMBER TESTS 523

9.3.2 Testing the remember branch
In Section 9.1.2, we verified by hand that the persistent session implemented in
the preceding sections is working, but in fact the relevant branch in the cur-
rent_user method is currently completely untested. My favorite way to han-
dle this kind of situation is to raise an exception in the suspected untested block
of code: if the code isn’t covered, the tests will still pass; if it is covered, the re-
sulting error will identify the relevant test. The result in the present case appears
in Listing 9.29.

Listing 9.29: Raising an exception in an untested branch. green
app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.signed[:user_id])

raise # The tests still pass, so this branch is currently untested.

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

.

.

.

end

At this point, the tests are green:

Listing 9.30: green
$ rails test

This is a problem, of course, because the code in Listing 9.29 is broken. More-
over, persistent sessions are cumbersome to check by hand, so if we ever want

524 CHAPTER 9. ADVANCED LOGIN

to refactor the current_user method (as we will in Chapter 11) it’s important
to test it.

Because both versions of the log_in_as helper method defined in List-
ing 9.24 automatically set session[:user_id] (either explicitly or by post-
ing to the login path), testing the “remember” branch of the current_user

method is difficult in an integration test. Luckily, we can bypass this restriction
by testing the current_user method directly in a Sessions helper test, whose
file we have to create:

$ touch test/helpers/sessions_helper_test.rb

The test sequence is simple:

1. Define a user variable using the fixtures.

2. Call the remember method to remember the given user.

3. Verify that current_user is equal to the given user.

Because the remember method doesn’t set session[:user_id], this proce-
dure will test the desired “remember” branch. The result appears in Listing 9.31.

Listing 9.31: A test for persistent sessions. red
test/helpers/sessions_helper_test.rb

require 'test_helper'

class SessionsHelperTest < ActionView::TestCase

def setup

@user = users(:michael)

remember(@user)

end

test "current_user returns right user when session is nil" do

assert_equal @user, current_user

assert is_logged_in?

end

9.3. REMEMBER TESTS 525

test "current_user returns nil when remember digest is wrong" do

@user.update_attribute(:remember_digest, User.digest(User.new_token))

assert_nil current_user

end

end

Note that we’ve added a second test, which checks that the current user is nil if
the user’s remember digest doesn’t correspond correctly to the remember token,
thereby testing the authenticated? expression in the nested if statement:

if user && user.authenticated?(cookies[:remember_token])

Incidentally, in Listing 9.31 we could write

assert_equal current_user, @user

instead, and it would work just the same, but (as mentioned briefly in Sec-
tion 5.3.4) the conventional order for the arguments to assert_equal is ex-
pected, actual:

assert_equal <expected>, <actual>

which in the case of Listing 9.31 gives

assert_equal @user, current_user

With the code as in Listing 9.31, the test is red as required:

Listing 9.32: red
$ rails test test/helpers/sessions_helper_test.rb

We can get the tests in Listing 9.31 to pass by removing the raise and
restoring the original current_user method, as shown in Listing 9.33.

526 CHAPTER 9. ADVANCED LOGIN

Listing 9.33: Removing the raised exception. green
app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.signed[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

.

.

.

end

At this point, the test suite should be green:

Listing 9.34: green
$ rails test

Now that the “remember” branch of current_user is tested, we can be con-
fident of catching regressions without having to check by hand.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify by removing the authenticated? expression in Listing 9.33 that
the second test in Listing 9.31 fails, thereby confirming that it tests the
right thing.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

9.4. CONCLUSION 527

9.4 Conclusion
We’ve covered a lot of ground in the last three chapters, transforming our
promising but unformed application into a site capable of the full suite of signup
and login behaviors. All that is needed to complete the authentication function-
ality is to restrict access to pages based on login status and user identity. We’ll
accomplish this task en route to giving users the ability to edit their information,
which is the main goal of Chapter 10.

Before moving on, merge your changes back into the master branch:

$ rails test

$ git add -A

$ git commit -m "Implement advanced login"

$ git checkout master

$ git merge advanced-login

$ git push

Before deploying to Heroku, it’s worth noting that the application will
briefly be in an invalid state after pushing but before the migration is finished.
On a production site with significant traffic, it’s a good idea to turn maintenance
mode on before making the changes:

$ heroku maintenance:on

$ git push heroku

$ heroku run rails db:migrate

$ heroku maintenance:off

This arranges to show a standard error page during the deployment and migra-
tion (Figure 9.5). (We won’t bother with this step again, but it’s good to see it
at least once.) For more information, see the Heroku documentation on error
pages.

9.4.1 What we learned in this chapter
• Rails can maintain state from one page to the next using persistent cookies

via the cookies method.

https://devcenter.heroku.com/articles/maintenance-mode
https://devcenter.heroku.com/articles/maintenance-mode
https://devcenter.heroku.com/articles/error-pages
https://devcenter.heroku.com/articles/error-pages

528 CHAPTER 9. ADVANCED LOGIN

Figure 9.5: The production app in maintenance mode.

9.4. CONCLUSION 529

• We associate to each user a remember token and a corresponding remem-
ber digest for use in persistent sessions.

• Using the cookies method, we create a persistent session by placing a
permanent remember token cookie on the browser.

• Login status is determined by the presence of a current user based on the
temporary session’s user id or the permanent session’s unique remember
token.

• The application signs users out by deleting the session’s user id and re-
moving the permanent cookie from the browser.

• The ternary operator is a compact way to write simple if-then statements.

