
548 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

includes a separate presence validation that specifically catches nil passwords.
(Because nil passwords now bypass the main presence validation but are still
caught by has_secure_password, this also fixes the duplicate error message
mentioned in Section 7.3.3.)

With the code in this section, the user edit page should be working (Fig-
ure 10.5), as you can double-check by re-running the test suite, which should
now be green:

Listing 10.14: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Double-check that you can now make edits by making a few changes on
the development version of the application.

2. What happens when you change the email address to one without an as-
sociated Gravatar?

10.2 Authorization
In the context of web applications, authentication allows us to identify users of
our site, while authorization lets us control what they can do. One nice effect
of building the authentication machinery in Chapter 8 is that we are now in a
position to implement authorization as well.

Although the edit and update actions from Section 10.1 are functionally
complete, they suffer from a ridiculous security flaw: they allow anyone (even
non-logged-in users) to access either action and update the information for any

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.2. AUTHORIZATION 549

Figure 10.5: The result of a successful edit.

550 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

user. In this section, we’ll implement a security model that requires users to
be logged in and prevents them from updating any information other than their
own.

In Section 10.2.1, we’ll handle the case of non-logged-in users who try to
access a protected page to which they might normally have access. Because this
could easily happen in the normal course of using the application, such users
will be forwarded to the login page with a helpful message, as mocked up in
Figure 10.6. On the other hand, users who try to access a page for which they
would never be authorized (such as a logged-in user trying to access a different
user’s edit page) will be redirected to the root URL (Section 10.2.2).

10.2.1 Requiring logged-in users
To implement the forwarding behavior shown in Figure 10.6, we’ll use a before
filter in the Users controller. Before filters use the before_action command
to arrange for a particular method to be called before the given actions.4 To
require users to be logged in, we define a logged_in_usermethod and invoke
it using before_action :logged_in_user, as shown in Listing 10.15.

Listing 10.15: Adding a logged_in_user before filter. red
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Before filters

Confirms a logged-in user.

4The command for before filters used to be called before_filter, but the Rails core team decided to rename
it to emphasize that the filter takes place before particular controller actions.

10.2. AUTHORIZATION 551

Figure 10.6: A mockup of the result of visiting a protected page

552 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

def logged_in_user

unless logged_in?

flash[:danger] = "Please log in."

redirect_to login_url

end

end

end

By default, before filters apply to every action in a controller, so here we re-
strict the filter to act only on the :edit and :update actions by passing the
appropriate only: options hash.

We can see the result of the before filter in Listing 10.15 by logging out and
attempting to access the user edit page /users/1/edit, as seen in Figure 10.7.

As indicated in the caption of Listing 10.15, our test suite is currently red:

Listing 10.16: red
$ rails test

The reason is that the edit and update actions now require a logged-in user, but
no user is logged in inside the corresponding tests.

We’ll fix our test suite by logging the user in before hitting the edit or update
actions. This is easy using the log_in_as helper developed in Section 9.3
(Listing 9.24), as shown in Listing 10.17.

Listing 10.17: Logging in a test user. green
test/integration/users_edit_test.rb

require 'test_helper'

class UsersEditTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "unsuccessful edit" do

log_in_as(@user)

get edit_user_path(@user)

.

10.2. AUTHORIZATION 553

Figure 10.7: The login form after trying to access a protected page.

554 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

.

.

end

test "successful edit" do

log_in_as(@user)

get edit_user_path(@user)

.

.

.

end

end

(We could eliminate some duplication by putting the test login in the setup

method of Listing 10.17, but in Section 10.2.3 we’ll change one of the tests
to visit the edit page before logging in, which isn’t possible if the login step
happens during the test setup.)

At this point, our test suite should be green:

Listing 10.18: green
$ rails test

Even though our test suite is now passing, we’re not finished with the before
filter, because the suite is still green even if we remove our security model, as
you can verify by commenting it out (Listing 10.19). This is a Bad Thing—of
all the regressions we’d like our test suite to catch, a massive security hole is
probably #1, so the code in Listing 10.19 should definitely be red. Let’s write
tests to arrange that.

Listing 10.19: Commenting out the before filter to test our security model.
green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

.

.

.

end

http://catb.org/jargon/html/B/Bad-Thing.html

10.2. AUTHORIZATION 555

Because the before filter operates on a per-action basis, we’ll put the cor-
responding tests in the Users controller test. The plan is to hit the edit and
update actions with the right kinds of requests and verify that the flash is set
and that the user is redirected to the login path. From Table 7.1, we see that
the proper requests are GET and PATCH, respectively, which means using the
get and patch methods inside the tests. The results (which include adding a
setup method to define an @user variable) appear in Listing 10.20.

Listing 10.20: Testing that edit and update are protected. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "should redirect edit when not logged in" do

get edit_user_path(@user)

assert_not flash.empty?

assert_redirected_to login_url

end

test "should redirect update when not logged in" do

patch user_path(@user), params: { user: { name: @user.name,

email: @user.email } }

assert_not flash.empty?

assert_redirected_to login_url

end

end

Note that the second test shown in Listing 10.20 involves using the patch

method to send a PATCH request to user_path(@user). According to Ta-
ble 7.1, such a request gets routed to the update action in the Users controller,
as required.

The test suite should now be red, as required. To get it to green, just un-
comment the before filter (Listing 10.21).

556 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.21: Uncommenting the before filter. green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

.

.

.

end

With that, our test suite should be green:

Listing 10.22: green
$ rails test

Any accidental exposure of the edit methods to unauthorized users will now be
caught immediately by our test suite.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. As noted above, by default before filters apply to every action in a con-
troller, which in our cases is an error (requiring, e.g., that users log in
to hit the signup page, which is absurd). By commenting out the only:
hash in Listing 10.15, confirm that the test suite catches this error.

10.2.2 Requiring the right user
Of course, requiring users to log in isn’t quite enough; users should only be
allowed to edit their own information. As we saw in Section 10.2.1, it’s easy
to have a test suite that misses an essential security flaw, so we’ll proceed us-
ing test-driven development to be sure our code implements the security model

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.2. AUTHORIZATION 557

correctly. To do this, we’ll add tests to the Users controller test to complement
the ones shown in Listing 10.20.

In order to make sure users can’t edit other users’ information, we need to
be able to log in as a second user. This means adding a second user to our users
fixture file, as shown in Listing 10.23.

Listing 10.23: Adding a second user to the fixture file.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

archer:

name: Sterling Archer

email: duchess@example.gov

password_digest: <%= User.digest('password') %>

By using the log_in_as method defined in Listing 9.24, we can test the
edit and update actions as in Listing 10.24. Note that we expect to redirect
users to the root path instead of the login path because a user trying to edit a
different user would already be logged in.

Listing 10.24: Tests for trying to edit as the wrong user. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

.

.

.

test "should redirect edit when logged in as wrong user" do

log_in_as(@other_user)

get edit_user_path(@user)

assert flash.empty?

558 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

assert_redirected_to root_url

end

test "should redirect update when logged in as wrong user" do

log_in_as(@other_user)

patch user_path(@user), params: { user: { name: @user.name,

email: @user.email } }

assert flash.empty?

assert_redirected_to root_url

end

end

To redirect users trying to edit another user’s profile, we’ll add a second
method called correct_user, together with a before filter to call it (List-
ing 10.25). Note that the correct_user before filter defines the @user vari-
able, so Listing 10.25 also shows that we can eliminate the @user assignments
in the edit and update actions.

Listing 10.25: A before filter to protect the edit/update pages. green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

before_action :correct_user, only: [:edit, :update]

.

.

.

def edit

end

def update

if @user.update(user_params)

flash[:success] = "Profile updated"

redirect_to @user

else

render 'edit'

end

end

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

10.2. AUTHORIZATION 559

end

Before filters

Confirms a logged-in user.

def logged_in_user

unless logged_in?

flash[:danger] = "Please log in."

redirect_to login_url

end

end

Confirms the correct user.

def correct_user

@user = User.find(params[:id])

redirect_to(root_url) unless @user == current_user

end

end

At this point, our test suite should be green:

Listing 10.26: green
$ rails test

As a final refactoring, we’ll adopt a common convention and define a cur-
rent_user? boolean method for use in the correct_user before filter. We’ll
use this method to replace code like

unless @user == current_user

with the more expressive

unless current_user?(@user)

The result appears in Listing 10.27. Note that by writing user && user ==

current_user, we also catch the edge case where user is nil.5
5Thanks to reader Andrew Moor for pointing this out. Andrew also noted that we can use the safe navigation

operator introduced in Section 8.2.4 to write this as user&. == current_user.

560 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.27: The current_user? method.
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

Remembers a user in a persistent session.

def remember(user)

user.remember

cookies.permanent.signed[:user_id] = user.id

cookies.permanent[:remember_token] = user.remember_token

end

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.signed[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

Returns true if the given user is the current user.

def current_user?(user)

user && user == current_user

end

.

.

.

end

Replacing the direct comparison with the boolean method gives the code shown
in Listing 10.28.

Listing 10.28: The final correct_user before filter. green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

10.2. AUTHORIZATION 561

before_action :correct_user, only: [:edit, :update]

.

.

.

def edit

end

def update

if @user.update(user_params)

flash[:success] = "Profile updated"

redirect_to @user

else

render 'edit'

end

end

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Before filters

Confirms a logged-in user.

def logged_in_user

unless logged_in?

flash[:danger] = "Please log in."

redirect_to login_url

end

end

Confirms the correct user.

def correct_user

@user = User.find(params[:id])

redirect_to(root_url) unless current_user?(@user)

end

end

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

562 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

1. Why is it important to protect both the edit and update actions?

2. Which action could you more easily test in a browser?

10.2.3 Friendly forwarding
Our site authorization is complete as written, but there is one minor blemish:
when users try to access a protected page, they are currently redirected to their
profile pages regardless of where they were trying to go. In other words, if a
non-logged-in user tries to visit the edit page, after logging in the user will be
redirected to /users/1 instead of /users/1/edit. It would be much friendlier to
redirect them to their intended destination instead.

The application code will turn out to be relatively complicated, but we can
write a ridiculously simple test for friendly forwarding just by reversing the
order of logging in and visiting the edit page in Listing 10.17. As seen in List-
ing 10.29, the resulting test tries to visit the edit page, then logs in, and then
checks that the user is redirected to the edit page instead of the default profile
page. (Listing 10.29 also removes the test for rendering the edit template since
that’s no longer the expected behavior.)

Listing 10.29: A test for friendly forwarding. red
test/integration/users_edit_test.rb

require 'test_helper'

class UsersEditTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "successful edit with friendly forwarding" do

get edit_user_path(@user)

log_in_as(@user)

assert_redirected_to edit_user_url(@user)

name = "Foo Bar"

email = "foo@bar.com"

patch user_path(@user), params: { user: { name: name,

10.2. AUTHORIZATION 563

email: email,

password: "",

password_confirmation: "" } }

assert_not flash.empty?

assert_redirected_to @user

@user.reload

assert_equal name, @user.name

assert_equal email, @user.email

end

end

Now that we have a failing test, we’re ready to implement friendly for-
warding.6 In order to forward users to their intended destination, we need to
store the location of the requested page somewhere, and then redirect to that
location instead of to the default. We accomplish this with a pair of meth-
ods, store_location and redirect_back_or, both defined in the Sessions
helper (Listing 10.30).

Listing 10.30: Code to implement friendly forwarding. red
app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

Redirects to stored location (or to the default).

def redirect_back_or(default)

redirect_to(session[:forwarding_url] || default)

session.delete(:forwarding_url)

end

Stores the URL trying to be accessed.

def store_location

session[:forwarding_url] = request.original_url if request.get?

end

end

Here the storage mechanism for the forwarding URL is the same session fa-
cility we used in Section 8.2.1 to log the user in. Listing 10.30 also uses the re-
quest object (via request.original_url) to get the URL of the requested
page.

6The code in this section is adapted from the Clearance gem by thoughtbot.

https://github.com/thoughtbot/clearance
https://thoughtbot.com/

564 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

The store_location method in Listing 10.30 puts the requested URL in
the session variable under the key :forwarding_url, but only for a GET

request. This prevents storing the forwarding URL if a user, say, submits a
form when not logged in (which is an edge case but could happen if, e.g., a
user deleted the session cookies by hand before submitting the form). In such a
case, the resulting redirect would issue a GET request to a URL expecting POST,
PATCH, or DELETE, thereby causing an error. Including if request.get?

prevents this from happening.7
To make use of store_location, we need to add it to the logged_in_-

user before filter, as shown in Listing 10.31.

Listing 10.31: Adding store_location to the logged-in user before filter.
red
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

before_action :correct_user, only: [:edit, :update]

.

.

.

def edit

end

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Before filters

Confirms a logged-in user.

def logged_in_user

unless logged_in?

store_location

flash[:danger] = "Please log in."

redirect_to login_url

end

7Thanks to reader Yoel Adler for pointing out this subtle issue, and for discovering the solution.

10.2. AUTHORIZATION 565

end

Confirms the correct user.

def correct_user

@user = User.find(params[:id])

redirect_to(root_url) unless current_user?(@user)

end

end

To implement the forwarding itself, we use the redirect_back_or

method to redirect to the requested URL if it exists, or some default URL oth-
erwise, which we add to the Sessions controller create action to redirect after
successful login (Listing 10.32). The redirect_back_or method uses the or
operator || through

session[:forwarding_url] || default

This evaluates to session[:forwarding_url] unless it’s nil, in which
case it evaluates to the given default URL. Note that Listing 10.30 is care-
ful to remove the forwarding URL (via session.delete(:forwarding-

_url)); otherwise, subsequent login attempts would forward to the protected
page until the user closed their browser. (Testing for this is left as an exercise
(Section 10.2.3).) Also note that the session deletion occurs even though the
line with the redirect appears first; redirects don’t happen until an explicit re-
turn or the end of the method, so any code appearing after the redirect is still
executed.

Listing 10.32: The Sessions create action with friendly forwarding. green
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

.

.

.

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

log_in user

566 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

redirect_back_or user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

.

.

.

end

With that, the friendly forwarding integration test in Listing 10.29 should
pass, and the basic user authentication and page protection implementation is
complete. As usual, it’s a good idea to verify that the test suite is green before
proceeding:

Listing 10.33: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Write a test to make sure that friendly forwarding only forwards to the
given URL the first time. On subsequent login attempts, the forwarding
URL should revert to the default (i.e., the profile page). Hint: Add to
the test in Listing 10.29 by checking for the right value of session-
[:forwarding_url].

2. Put a debugger (Section 7.1.3) in the Sessions controller’s new action,
then log out and try to visit /users/1/edit. Confirm in the debugger that the
value of session[:forwarding_url] is correct. What is the value of
request.get? for the new action? (Sometimes the terminal can freeze

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 567

up or act strangely when you’re using the debugger; use your technical
sophistication (Box 1.2) to resolve any issues.)

10.3 Showing all users
In this section, we’ll add the penultimate user action, the index action, which is
designed to display all the users instead of just one. Along the way, we’ll learn
how to seed the database with sample users and how to paginate the user out-
put so that the index page can scale up to display a potentially large number of
users. A mockup of the result—users, pagination links, and a “Users” naviga-
tion link—appears in Figure 10.8.8 In Section 10.4, we’ll add an administrative
interface to the users index so that users can also be destroyed.

10.3.1 Users index
To get started with the users index, we’ll first implement a security model. Al-
though we’ll keep individual user show pages visible to all site visitors, the user
index will be restricted to logged-in users so that there’s a limit to how much
unregistered users can see by default.9

To protect the index page from unauthorized access, we’ll first add a short
test to verify that the index action is redirected properly (Listing 10.34).

Listing 10.34: Testing the index action redirect. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

8Image retrieved from https://www.flickr.com/photos/glasgows/338937124/ on 2014-08-25. Copyright © 2008
by M&R Glasgow and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic license.

9This is the same authorization model used by Twitter.

https://en.wiktionary.org/wiki/penultimate#English
https://creativecommons.org/licenses/by/2.0/

