
586 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<%= will_paginate %>

<ul class="users">

<%= render @users %>

<%= will_paginate %>

Here Rails infers that @users is a list of User objects; moreover, when called
with a collection of users, Rails automatically iterates through them and renders
each one with the _user.html.erb partial (inferring the name of the partial
from the name of the class). The result is the impressively compact code in
Listing 10.52.

As with any refactoring, you should verify that the test suite is still green
after changing the application code:

Listing 10.53: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Comment out the render line in Listing 10.52 and confirm that the re-
sulting tests are red.

10.4 Deleting users
Now that the users index is complete, there’s only one canonical REST action
left: destroy. In this section, we’ll add links to delete users, as mocked up
in Figure 10.13, and define the destroy action necessary to accomplish the

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.4. DELETING USERS 587

deletion. But first, we’ll create the class of administrative users, or admins, au-
thorized to do so. In the context of authorization, such a set of special privileges
is known as a role.

10.4.1 Administrative users
We will identify privileged administrative users with a boolean admin attribute
in the User model, which will lead automatically to an admin? boolean method
to test for admin status. The resulting data model appears in Figure 10.14.

As usual, we add the admin attribute with a migration, indicating the
boolean type on the command line:

$ rails generate migration add_admin_to_users admin:boolean

The migration adds the admin column to the users table, as shown in List-
ing 10.54. Note that we’ve added the argument default: false to add_-

column in Listing 10.54, which means that users will not be administrators
by default. (Without the default: false argument, admin will be nil by
default, which is still false, so this step is not strictly necessary. It is more
explicit, though, and communicates our intentions more clearly both to Rails
and to readers of our code.)

Listing 10.54: The migration to add a boolean admin attribute to users.
db/migrate/[timestamp]_add_admin_to_users.rb

class AddAdminToUsers < ActiveRecord::Migration[6.0]

def change

add_column :users, :admin, :boolean, default: false

end

end

Next, we migrate as usual:

https://en.wikipedia.org/wiki/Role-based_access_control

588 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.13: A mockup of the users index with delete links.

10.4. DELETING USERS 589

updated_at datetime
created_at datetime

admin boolean
remember_digest string

stringpassword_digest

email string

id
name string

integer
users

Figure 10.14: The User model with an added admin boolean attribute.

$ rails db:migrate

As expected, Rails figures out the boolean nature of the admin attribute and
automatically adds the question-mark method admin?:

$ rails console --sandbox

>> user = User.first

>> user.admin?

=> false

>> user.toggle!(:admin)

=> true

>> user.admin?

=> true

Here we’ve used the toggle! method to flip the admin attribute from false

to true.
As a final step, let’s update our seed data to make the first user an admin by

default (Listing 10.55).

590 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.55: The seed data code with an admin user.
db/seeds.rb

Create a main sample user.

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password_confirmation: "foobar",

admin: true)

Generate a bunch of additional users.

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

email: email,

password: password,

password_confirmation: password)

end

Then reset and reseed the database:

$ rails db:migrate:reset

$ rails db:seed

Revisiting strong parameters
You might have noticed that Listing 10.55 makes the user an admin by including
admin: true in the initialization hash. This underscores the danger of expos-
ing our objects to the wild Web—if we simply passed an initialization hash in
from an arbitrary web request, a malicious user could send a PATCH request as
follows:14

patch /users/17?admin=1

This request would make user 17 an admin, which would be a potentially serious
security breach.

14Command-line tools such as curl can issue PATCH requests of this form.

10.4. DELETING USERS 591

Because of this danger, it is essential that we only update attributes that are
safe to edit through the web. As noted in Section 7.3.2, this is accomplished
using strong parameters by calling require and permit on the params hash:

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Note in particular that admin is not in the list of permitted attributes. This is
what prevents arbitrary users from granting themselves administrative access
to our application. Because of its importance, it’s a good idea to write a test for
any attribute that isn’t editable, and writing such a test for the admin attribute
is left as an exercise (Section 10.4.1).

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By issuing a PATCH request directly to the user path as shown in List-
ing 10.56, verify that the admin attribute isn’t editable through the web.
To be sure your test is covering the right thing, your first step should be to
add admin to the list of permitted parameters in user_params so that
the initial test is red. For the final line, make sure to load the updated user
information from the database (Section 6.1.5).

Listing 10.56: Testing that the admin attribute is forbidden.
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

592 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

@other_user = users(:archer)

end

.

.

.

test "should redirect update when not logged in" do

patch user_path(@user), params: { user: { name: @user.name,

email: @user.email } }

assert_not flash.empty?

assert_redirected_to login_url

end

test "should not allow the admin attribute to be edited via the web" do

log_in_as(@other_user)

assert_not @other_user.admin?

patch user_path(@other_user), params: {

user: { password: "password",

password_confirmation: "password",

admin: FILL_IN } }

assert_not @other_user.FILL_IN.admin?

end

.

.

.

end

10.4.2 The destroy action
The final step needed to complete the Users resource is to add delete links and
a destroy action. We’ll start by adding a delete link for each user on the users
index page, restricting access to administrative users. The resulting "delete"
links will be displayed only if the current user is an admin (Listing 10.57).

Listing 10.57: User delete links (viewable only by admins).
app/views/users/_user.html.erb

<%= gravatar_for user, size: 50 %>

<%= link_to user.name, user %>

<% if current_user.admin? && !current_user?(user) %>

| <%= link_to "delete", user, method: :delete,

data: { confirm: "You sure?" } %>

<% end %>

10.4. DELETING USERS 593

Figure 10.15: The users index with delete links.

Note the method: :delete argument, which arranges for the link to issue
the necessary DELETE request. We’ve also wrapped each link inside an if

statement so that only admins can see them. The result for our admin user
appears in Figure 10.15.

Web browsers can’t send DELETE requests natively, so Rails fakes them
with JavaScript. This means that the delete links won’t work if the user has
JavaScript disabled. If you must support non-JavaScript-enabled browsers you
can fake a DELETE request using a form and a POST request, which works
even without JavaScript.15

15See the RailsCast on “Destroy Without JavaScript” for details.

http://railscasts.com/episodes/77-destroy-without-javascript

594 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

To get the delete links to work, we need to add a destroy action (Table 7.1),
which finds the corresponding user and destroys it with the Active Record de-
stroy method, finally redirecting to the users index, as seen in Listing 10.58.
Because users have to be logged in to delete users, Listing 10.58 also adds :de-
stroy to the logged_in_user before filter.

Listing 10.58: Adding a working destroy action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update, :destroy]

before_action :correct_user, only: [:edit, :update]

.

.

.

def destroy

User.find(params[:id]).destroy

flash[:success] = "User deleted"

redirect_to users_url

end

private

.

.

.

end

As constructed, only admins can destroy users through the web since only
they can see the delete links, but there’s still a terrible security hole: any suf-
ficiently sophisticated attacker could simply issue a DELETE request directly
from the command line to delete any user on the site. To secure the site prop-
erly, we also need access control on the destroy action, so that only admins
can delete users.

As in Section 10.2.1 and Section 10.2.2, we’ll enforce access control using
a before filter, this time to restrict access to the destroy action to admins. The
resulting admin_user before filter appears in Listing 10.59.

Listing 10.59: A before filter restricting the destroy action to admins.
app/controllers/users_controller.rb

10.4. DELETING USERS 595

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update, :destroy]

before_action :correct_user, only: [:edit, :update]

before_action :admin_user, only: :destroy

.

.

.

private

.

.

.

Confirms an admin user.

def admin_user

redirect_to(root_url) unless current_user.admin?

end

end

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. As the admin user, destroy a few sample users through the web interface.
What are the corresponding entries in the server log?

10.4.3 User destroy tests
With something as dangerous as destroying users, it’s important to have good
tests for the expected behavior. We start by arranging for one of our fixture
users to be an admin, as shown in Listing 10.60.

Listing 10.60: Making one of the fixture users an admin.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

admin: true

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

596 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

archer:

name: Sterling Archer

email: duchess@example.gov

password_digest: <%= User.digest('password') %>

lana:

name: Lana Kane

email: hands@example.gov

password_digest: <%= User.digest('password') %>

malory:

name: Malory Archer

email: boss@example.gov

password_digest: <%= User.digest('password') %>

<% 30.times do |n| %>

user_<%= n %>:

name: <%= "User #{n}" %>

email: <%= "user-#{n}@example.com" %>

password_digest: <%= User.digest('password') %>

<% end %>

Following the practice from Section 10.2.1, we’ll put action-level tests of
access control in the Users controller test file. As with the logout test in List-
ing 8.35, we’ll use delete to issue a DELETE request directly to the destroy
action. We need to check two cases: first, users who aren’t logged in should
be redirected to the login page; second, users who are logged in but who aren’t
admins should be redirected to the Home page. The result appears in List-
ing 10.61.

Listing 10.61: Action-level tests for admin access control. green
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

.

.

.

10.4. DELETING USERS 597

test "should redirect destroy when not logged in" do

assert_no_difference 'User.count' do

delete user_path(@user)

end

assert_redirected_to login_url

end

test "should redirect destroy when logged in as a non-admin" do

log_in_as(@other_user)

assert_no_difference 'User.count' do

delete user_path(@user)

end

assert_redirected_to root_url

end

end

Note that Listing 10.61 also makes sure that the user count doesn’t change using
the assert_no_difference method (seen before in Listing 7.23).

The tests in Listing 10.61 verify the behavior in the case of an unauthorized
(non-admin) user, but we also want to check that an admin can use a delete link
to successfully destroy a user. Since the delete links appear on the users index,
we’ll add these tests to the users index test from Listing 10.48. The only really
tricky part is verifying that a user gets deleted when an admin clicks on a delete
link, which we’ll accomplish as follows:

assert_difference 'User.count', -1 do

delete user_path(@other_user)

end

This uses the assert_difference method first seen in Listing 7.31 when
creating a user, this time verifying that a user is destroyed by checking that
User.count changes by−1when issuing a delete request to the correspond-
ing user path.

Putting everything together gives the pagination and delete test in List-
ing 10.62, which includes tests for both admins and non-admins.

Listing 10.62: An integration test for delete links and destroying users. green
test/integration/users_index_test.rb

598 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

require 'test_helper'

class UsersIndexTest < ActionDispatch::IntegrationTest

def setup

@admin = users(:michael)

@non_admin = users(:archer)

end

test "index as admin including pagination and delete links" do

log_in_as(@admin)

get users_path

assert_template 'users/index'

assert_select 'div.pagination'

first_page_of_users = User.paginate(page: 1)

first_page_of_users.each do |user|

assert_select 'a[href=?]', user_path(user), text: user.name

unless user == @admin

assert_select 'a[href=?]', user_path(user), text: 'delete'

end

end

assert_difference 'User.count', -1 do

delete user_path(@non_admin)

end

end

test "index as non-admin" do

log_in_as(@non_admin)

get users_path

assert_select 'a', text: 'delete', count: 0

end

end

Note that Listing 10.62 checks for the right delete links, including skipping
the test if the user happens to be the admin (which lacks a delete link due to
Listing 10.57).

At this point, our deletion code is well-tested, and the test suite should be
green:

Listing 10.63: green
$ rails test

10.5. CONCLUSION 599

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By commenting out the admin user before filter in Listing 10.59, confirm
that the tests go red.

10.5 Conclusion
We’ve come a long way since introducing the Users controller way back in
Section 5.4. Those users couldn’t even sign up; now users can sign up, log in,
log out, view their profiles, edit their settings, and see an index of all users—and
some can even destroy other users.

As it presently stands, the sample application forms a solid foundation for
any website requiring users with authentication and authorization. In Chap-
ter 11 and Chapter 12, we’ll add two additional refinements: an account acti-
vation link for newly registered users (verifying a valid email address in the
process) and password resets to help users who forget their passwords.

Before moving on, be sure to merge all the changes into the master branch:

$ git add -A

$ git commit -m "Finish user edit, update, index, and destroy actions"

$ git checkout master

$ git merge updating-users

$ git push

You can also deploy the application and even populate the production database
with sample users (using the pg:reset task to reset the production database):

$ rails test

$ git push heroku

$ heroku pg:reset DATABASE

$ heroku run rails db:migrate

$ heroku run rails db:seed

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

