
10.3. SHOWING ALL USERS 567

up or act strangely when you’re using the debugger; use your technical
sophistication (Box 1.2) to resolve any issues.)

10.3 Showing all users
In this section, we’ll add the penultimate user action, the index action, which is
designed to display all the users instead of just one. Along the way, we’ll learn
how to seed the database with sample users and how to paginate the user out-
put so that the index page can scale up to display a potentially large number of
users. A mockup of the result—users, pagination links, and a “Users” naviga-
tion link—appears in Figure 10.8.8 In Section 10.4, we’ll add an administrative
interface to the users index so that users can also be destroyed.

10.3.1 Users index
To get started with the users index, we’ll first implement a security model. Al-
though we’ll keep individual user show pages visible to all site visitors, the user
index will be restricted to logged-in users so that there’s a limit to how much
unregistered users can see by default.9

To protect the index page from unauthorized access, we’ll first add a short
test to verify that the index action is redirected properly (Listing 10.34).

Listing 10.34: Testing the index action redirect. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

8Image retrieved from https://www.flickr.com/photos/glasgows/338937124/ on 2014-08-25. Copyright © 2008
by M&R Glasgow and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic license.

9This is the same authorization model used by Twitter.

https://en.wiktionary.org/wiki/penultimate#English
https://creativecommons.org/licenses/by/2.0/

568 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.8: A mockup of the users index page.

10.3. SHOWING ALL USERS 569

test "should get new" do

get signup_path

assert_response :success

end

test "should redirect index when not logged in" do

get users_path

assert_redirected_to login_url

end

.

.

.

end

Then we just need to add an index action and include it in the list of actions
protected by the logged_in_user before filter (Listing 10.35).

Listing 10.35: Requiring a logged-in user for the index action. green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update]

before_action :correct_user, only: [:edit, :update]

def index

end

def show

@user = User.find(params[:id])

end

.

.

.

end

To display the users themselves, we need to make a variable containing
all the site’s users and then render each one by iterating through them in the
index view. As you may recall from the corresponding action in the toy app
(Listing 2.9), we can use User.all to pull all the users out of the database,
assigning them to an @users instance variable for use in the view, as seen in
Listing 10.36. (If displaying all the users at once seems like a bad idea, you’re
right, and we’ll remove this blemish in Section 10.3.3.)

570 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.36: The user index action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update]

.

.

.

def index

@users = User.all

end

.

.

.

end

To make the actual index page, we’ll make a view (which you’ll have to
create) that iterates through the users and wraps each one in an li tag. We do
this with the each method, displaying each user’s Gravatar and name, while
wrapping the whole thing in a ul tag (Listing 10.37).

Listing 10.37: The users index view.
app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<ul class="users">

<% @users.each do |user| %>

<%= gravatar_for user, size: 50 %>

<%= link_to user.name, user %>

<% end %>

The code in Listing 10.37 uses the result of Listing 10.38 from Section 7.1.4,
which allows us to pass an option to the Gravatar helper specifying a size other
than the default. If you didn’t do that exercise, update your Users helper file
with the contents of Listing 10.38 before proceeding. (You are also welcome
to use the Ruby 2.0–style version from Listing 7.13 instead.)

10.3. SHOWING ALL USERS 571

Listing 10.38: Adding an options hash in the gravatar_for helper.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.

def gravatar_for(user, options = { size: 80 })

size = options[:size]

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)

gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}?s=#{size}"

image_tag(gravatar_url, alt: user.name, class: "gravatar")

end

end

Let’s also add a little CSS (or, rather, SCSS) for style (Listing 10.39).

Listing 10.39: CSS for the users index.
app/assets/stylesheets/custom.scss

.

.

.

/* Users index */

.users {

list-style: none;

margin: 0;

li {

overflow: auto;

padding: 10px 0;

border-bottom: 1px solid $gray-lighter;

}

}

Finally, we’ll add the URL to the users link in the site’s navigation header
using users_path, thereby using the last of the unused named routes in Ta-
ble 7.1. The result appears in Listing 10.40.

Listing 10.40: Adding the URL to the users link.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

572 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<%= link_to "sample app", root_path, id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", root_path %>

<%= link_to "Help", help_path %>

<% if logged_in? %>

<%= link_to "Users", users_path %>

<li class="dropdown">

Account <b class="caret">

<ul class="dropdown-menu">

<%= link_to "Profile", current_user %>

<%= link_to "Settings", edit_user_path(current_user) %>

<li class="divider">

<%= link_to "Log out", logout_path, method: :delete %>

<% else %>

<%= link_to "Log in", login_path %>

<% end %>

</nav>

</div>

</header>

With that, the users index is fully functional, with all tests green:

Listing 10.41: green
$ rails test

On the other hand, as seen in Figure 10.9, it is a bit… lonely. Let’s remedy this
sad situation.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 573

Figure 10.9: The users index page with only one user.

574 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

1. We’ve now filled in all the links in the site layout. Write an integration
test for all the layout links, including the proper behavior for logged-in
and non-logged-in users. Hint: Use the log_in_as helper and add to
the steps shown in Listing 5.32.

10.3.2 Sample users
In this section, we’ll give our lonely sample user some company. Of course,
to create enough users to make a decent users index, we could use our web
browser to visit the signup page and make the new users one by one, but a far
better solution is to use Ruby to make the users for us.

First, we’ll add the Faker gem to the Gemfile, which will allow us to make
sample users with semi-realistic names and email addresses (Listing 10.42).10

(Ordinarily, you’d probably want to restrict the faker gem to a development
environment, but in the case of the sample app we’ll be using it on our produc-
tion site as well (Section 10.5).)

Listing 10.42: Adding the Faker gem to the Gemfile.
source 'https://rubygems.org'

gem 'rails', '6.0.1'

gem 'bcrypt', '3.1.13'

gem 'faker', '2.1.2'

gem 'bootstrap-sass', '3.4.1'

.

.

.

Then install as usual:

$ bundle install

Next, we’ll add a Ruby program to seed the database with sample users,
for which Rails uses the standard file db/seeds.rb. The result appears in

10As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://gemfiles-6th-ed.railstutorial.org/

10.3. SHOWING ALL USERS 575

Listing 10.43. (The code in Listing 10.43 is a bit advanced, so don’t worry too
much about the details.)

Listing 10.43: A program for seeding the database with sample users.
db/seeds.rb

Create a main sample user.

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password_confirmation: "foobar")

Generate a bunch of additional users.

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

email: email,

password: password,

password_confirmation: password)

end

The code in Listing 10.43 creates an example user with name and email address
replicating our previous one, and then makes 99 more. The create! method
is just like the create method, except it raises an exception (Section 6.1.4) for
an invalid user rather than returning false. This behavior makes debugging
easier by avoiding silent errors.

With the code as in Listing 10.43, we can reset the database and then invoke
the Rake task using db:seed:11

$ rails db:migrate:reset

$ rails db:seed

Seeding the database can be slow, and on some systems could take up to a few
minutes. Also, some readers have reported that they are unable to run the reset
command if the Rails server is running, so you may have to stop the server first
before proceeding (Box 1.2).

11In principle, these two tasks can be combined in rails db:reset, but as of this writing this command
doesn’t work with the latest version of Rails.

576 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.10: The users index page with 100 sample users.

After running the db:seedRake task, our application should have 100 sam-
ple users. As seen in Figure 10.10, I’ve taken the liberty of associating the first
few sample addresses with Gravatars so that they’re not all the default Gravatar
image.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 577

1. Verify that trying to visit the edit page of another user results in a redirect
as required by Section 10.2.2.

10.3.3 Pagination
Our original user doesn’t suffer from loneliness any more, but now we have the
opposite problem: our user has too many companions, and they all appear on the
same page. Right now there are a hundred, which is already a reasonably large
number, and on a real site it could be thousands. The solution is to paginate the
users, so that (for example) only 30 show up on a page at any one time.

There are several pagination methods available in Rails; we’ll use one of
the simplest and most robust, called will_paginate. To use it, we need to in-
clude both the will_paginate gem and bootstrap-will_paginate,
which configures will_paginate to use Bootstrap’s pagination styles. The up-
dated Gemfile appears in Listing 10.44.12

Listing 10.44: Including will_paginate in the Gemfile.
source 'https://rubygems.org'

gem 'rails', '6.0.1'

gem 'bcrypt', '3.1.13'

gem 'faker', '2.1.2'

gem 'will_paginate', '3.1.8'

gem 'bootstrap-will_paginate', '1.0.0'

.

.

.

Then run bundle install:

$ bundle install

You should also restart the webserver to ensure that the new gems are loaded
properly.

12As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://github.com/mislav/will_paginate/wiki
https://gemfiles-6th-ed.railstutorial.org/

578 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

To get pagination working, we need to add some code to the index view
telling Rails to paginate the users, and we need to replace User.all in the
index action with an object that knows about pagination. We’ll start by adding
the special will_paginate method in the view (Listing 10.45); we’ll see in a
moment why the code appears both above and below the user list.

Listing 10.45: The users index with pagination.
app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<%= will_paginate %>

<ul class="users">

<% @users.each do |user| %>

<%= gravatar_for user, size: 50 %>

<%= link_to user.name, user %>

<% end %>

<%= will_paginate %>

The will_paginate method is a little magical; inside a users view, it
automatically looks for an @users object, and then displays pagination links
to access other pages. The view in Listing 10.45 doesn’t work yet, though,
because currently @users contains the results of User.all (Listing 10.36),
whereas will_paginate requires that we paginate the results explicitly using
the paginate method:

$ rails console

>> User.paginate(page: 1)

User Load (1.5ms) SELECT "users".* FROM "users" LIMIT 11 OFFSET 0

(1.7ms) SELECT COUNT(*) FROM "users"

=> #<ActiveRecord::Relation [#<User id: 1,...

>> User.paginate(page: 1).length

User Load (3.0ms) SELECT "users".* FROM "users" LIMIT ? OFFSET ? [["LIMIT", 30],

["OFFSET", 0]]

=> 30

10.3. SHOWING ALL USERS 579

Note that paginate takes a hash argument with key :page and value equal to
the page requested. User.paginate pulls the users out of the database one
chunk at a time (30 by default), based on the :page parameter. So, for example,
page 1 is users 1–30, page 2 is users 31–60, etc. If page is nil, paginate
simply returns the first page. (The console result above shows 11 results rather
than 30 due to a console limit in Active Record itself, but calling the length
method bypasses this restriction.)

Using the paginatemethod, we can paginate the users in the sample appli-
cation by using paginate in place of all in the index action (Listing 10.46).
Here the page parameter comes from params[:page], which is generated
automatically by will_paginate.

Listing 10.46: Paginating the users in the index action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update]

.

.

.

def index

@users = User.paginate(page: params[:page])

end

.

.

.

end

The users index page should now be working, appearing as in Figure 10.11.
(On some systems, you may have to restart the Rails server at this point.) Be-
cause we included will_paginate both above and below the user list, the
pagination links appear in both places.

If you now click on either the 2 link or Next link, you’ll get the second page
of results, as shown in Figure 10.12.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://stackoverflow.com/questions/53059021/rails-model-querying-returns-11-records-but-no-limit-is-set
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

580 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.11: The users index page with pagination.

10.3. SHOWING ALL USERS 581

Figure 10.12: Page 2 of the users index.

582 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm at the console that setting the page to nil pulls out the first page
of users.

2. What is the Ruby class of the pagination object? How does it compare to
the class of User.all?

10.3.4 Users index test
Now that our users index page is working, we’ll write a lightweight test for it,
including a minimal test for the pagination from Section 10.3.3. The idea is to
log in, visit the index path, verify the first page of users is present, and then
confirm that pagination is present on the page. For these last two steps to work,
we need to have enough users in the test database to invoke pagination, i.e.,
more than 30.

We created a second user in the fixtures in Listing 10.23, but 30 or so
more users is a lot to create by hand. Luckily, as we’ve seen with the user
fixture’s password_digest attribute, fixture files support embedded Ruby,
which
means we can create 30 additional users as shown in Listing 10.47. (List-
ing 10.47 also creates a couple of other named users for future reference.)

Listing 10.47: Adding 30 extra users to the fixture.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

archer:

name: Sterling Archer

email: duchess@example.gov

password_digest: <%= User.digest('password') %>

lana:

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 583

name: Lana Kane

email: hands@example.gov

password_digest: <%= User.digest('password') %>

malory:

name: Malory Archer

email: boss@example.gov

password_digest: <%= User.digest('password') %>

<% 30.times do |n| %>

user_<%= n %>:

name: <%= "User #{n}" %>

email: <%= "user-#{n}@example.com" %>

password_digest: <%= User.digest('password') %>

<% end %>

With the fixtures defined in Listing 10.47, we’re ready to write a test of the
users index. First we generate the relevant test:

$ rails generate integration_test users_index

invoke test_unit

create test/integration/users_index_test.rb

The test itself involves checking for a div with the required pagination class
and verifying that the first page of users is present. The result appears in List-
ing 10.48.

Listing 10.48: A test of the users index, including pagination. green
test/integration/users_index_test.rb

require 'test_helper'

class UsersIndexTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "index including pagination" do

log_in_as(@user)

get users_path

assert_template 'users/index'

assert_select 'div.pagination'

584 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

User.paginate(page: 1).each do |user|

assert_select 'a[href=?]', user_path(user), text: user.name

end

end

end

The result should be a green test suite:

Listing 10.49: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By commenting out the pagination links in Listing 10.45, confirm that the
test in Listing 10.48 goes red.

2. Confirm that commenting out only one of the calls to will_paginate
leaves the tests green. How would you test for the presence of both sets
of will_paginate links? Hint: Use a count from Table 5.2.

10.3.5 Partial refactoring
The paginated users index is now complete, but there’s one improvement I
can’t resist including: Rails has some incredibly slick tools for making compact
views, and in this section we’ll refactor the index page to use them. Because
our code is well-tested, we can refactor with confidence, assured that we are
unlikely to break our site’s functionality.

The first step in our refactoring is to replace the user li from Listing 10.45
with a render call (Listing 10.50).

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 585

Listing 10.50: The first refactoring attempt in the index view. red
app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<%= will_paginate %>

<ul class="users">

<% @users.each do |user| %>

<%= render user %>

<% end %>

<%= will_paginate %>

Here we call render not on a string with the name of a partial, but rather on a
user variable of class User;13 in this context, Rails automatically looks for a
partial called _user.html.erb, which we must create (Listing 10.51).

Listing 10.51: A partial to render a single user. green
app/views/users/_user.html.erb

<%= gravatar_for user, size: 50 %>

<%= link_to user.name, user %>

This is a definite improvement, but we can do even better: we can call ren-
der directly on the @users variable (Listing 10.52).

Listing 10.52: The fully refactored users index. green
app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

13The name user is immaterial—we could have written @users.each do |foobar| and then used render
foobar. The key is the class of the object—in this case, User.

586 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<%= will_paginate %>

<ul class="users">

<%= render @users %>

<%= will_paginate %>

Here Rails infers that @users is a list of User objects; moreover, when called
with a collection of users, Rails automatically iterates through them and renders
each one with the _user.html.erb partial (inferring the name of the partial
from the name of the class). The result is the impressively compact code in
Listing 10.52.

As with any refactoring, you should verify that the test suite is still green
after changing the application code:

Listing 10.53: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Comment out the render line in Listing 10.52 and confirm that the re-
sulting tests are red.

10.4 Deleting users
Now that the users index is complete, there’s only one canonical REST action
left: destroy. In this section, we’ll add links to delete users, as mocked up
in Figure 10.13, and define the destroy action necessary to accomplish the

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

