
Chapter 10

Updating, showing, and
deleting users
In this chapter, we will complete the REST actions for the Users resource (Ta-
ble 7.1) by adding edit, update, index, and destroy actions. We’ll start by
giving users the ability to update their profiles, which will also provide a natural
opportunity to enforce an authorization model (made possible by the authenti-
cation code in Chapter 8). Then we’ll make a listing of all users (also requiring
authentication), which will motivate the introduction of sample data and pagi-
nation. Finally, we’ll add the ability to destroy users, wiping them clear from
the database. Since we can’t allow just any user to have such dangerous powers,
we’ll take care to create a privileged class of administrative users authorized to
delete other users.

10.1 Updating users
The pattern for editing user information closely parallels that for creating new
users (Chapter 7). Instead of a new action rendering a view for new users, we
have an edit action rendering a view to edit users; instead of create respond-
ing to a POST request, we have an update action responding to a PATCH re-
quest (Box 3.2). The biggest difference is that, while anyone can sign up, only
the current user should be able to update their information. The authentication

531

532 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

machinery from Chapter 8 will allow us to use a before filter to ensure that this
is the case.

To get started, let’s start work on an updating-users topic branch:

$ git checkout -b updating-users

10.1.1 Edit form
We start with the edit form, whose mockup appears in Figure 10.1.1 To turn the
mockup in Figure 10.1 into a working page, we need to fill in both the Users
controller edit action and the user edit view. We start with the edit action,
which requires pulling the relevant user out of the database. Note from Table 7.1
that the proper URL for a user’s edit page is /users/1/edit (assuming the user’s
id is 1). Recall that the id of the user is available in the params[:id] variable,
which means that we can find the user with the code in Listing 10.1.

Listing 10.1: The user edit action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

def create

@user = User.new(user_params)

if @user.save

log_in @user

flash[:success] = "Welcome to the Sample App!"

redirect_to @user

else

render 'new'

1Image retrieved from https://www.flickr.com/photos/sashawolff/4598355045/ on 2014-08-25. Copyright ©
2010 by Sasha Wolff and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic license.

https://creativecommons.org/licenses/by/2.0/

10.1. UPDATING USERS 533

Figure 10.1: A mockup of the user edit page.

534 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

end

end

def edit

@user = User.find(params[:id])

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

The corresponding user edit view (which you will have to create by hand)
is shown in Listing 10.2. Note how closely this resembles the new user view
from Listing 7.15; the large overlap suggests factoring the repeated code into a
partial, which is left as an exercise (Section 10.1.1).

Listing 10.2: The user edit view.
app/views/users/edit.html.erb

<% provide(:title, "Edit user") %>

<h1>Update your profile</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages' %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Save changes", class: "btn btn-primary" %>

<% end %>

10.1. UPDATING USERS 535

<div class="gravatar_edit">

<%= gravatar_for @user %>

change

</div>

</div>

</div>

Here we have reused the shared error_messages partial introduced in Sec-
tion 7.3.3. By the way, the use of target="_blank" in the Gravatar link is
a neat trick to get the browser to open the page in a new window or tab, which
is sometimes convenient behavior when linking to third-party sites. (There’s
a minor security issue associated with target="_blank"; dealing with this
detail is left as an exercise (Section 10.1.1).)

With the @user instance variable from Listing 10.1, the edit page should
render properly, as shown in Figure 10.2. The “Name” and “Email” fields in
Figure 10.2 also shows how Rails automatically pre-fills the Name and Email
fields using the attributes of the existing @user variable.

Looking at the HTML source for Figure 10.2, we see a form tag as expected,
as in Listing 10.3 (slight details may differ).

Listing 10.3: HTML for the edit form defined in Listing 10.2 and shown in
Figure 10.2.
<form accept-charset="UTF-8" action="/users/1" class="edit_user"

id="edit_user_1" method="post">

<input name="_method" type="hidden" value="patch" />

.

.

.

</form>

Note here the hidden input field:

<input name="_method" type="hidden" value="patch" />

Since web browsers can’t natively send PATCH requests (as required by the
REST conventions from Table 7.1), Rails fakes it with a POST request and a

536 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.2: The initial user edit page with pre-filled name and email.

10.1. UPDATING USERS 537

hidden input field.2
There’s another subtlety to address here: the code form_with(@user) in

Listing 10.2 is exactly the same as the code in Listing 7.15—so how does Rails
know to use a POST request for new users and a PATCH for editing users? The
answer is that it is possible to tell whether a user is new or already exists in the
database via Active Record’s new_record? boolean method:

$ rails console

>> User.new.new_record?

=> true

>> User.first.new_record?

=> false

When constructing a form using form_with(@user), Rails uses POST if
@user.new_record? is true and PATCH if it is false.

As a final touch, we’ll fill in the URL of the settings link in the site navi-
gation. This is easy using the named route edit_user_path from Table 7.1,
together with the handy current_user helper method defined in Listing 9.9:

<%= link_to "Settings", edit_user_path(current_user) %>

The full application code appears in Listing 10.4).

Listing 10.4: Adding a URL to the “Settings” link in the site layout.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", root_path, id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", root_path %>

<%= link_to "Help", help_path %>

<% if logged_in? %>

<%= link_to "Users", '#' %>

2Don’t worry about how this works; the details are of interest to developers of the Rails framework itself, and
by design are not important for Rails application developers.

538 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<li class="dropdown">

Account <b class="caret">

<ul class="dropdown-menu">

<%= link_to "Profile", current_user %>

<%= link_to "Settings", edit_user_path(current_user) %>

<li class="divider">

<%= link_to "Log out", logout_path, method: :delete %>

<% else %>

<%= link_to "Log in", login_path %>

<% end %>

</nav>

</div>

</header>

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. As noted above, there’s a minor security issue associated with using
target="_blank" to open URLs, which is that the target site gains con-
trol of what’s known as the “window object” associated with the HTML
document. The result is that the target site could potentially introduce
malicious content, such as a phishing page. This is extremely unlikely
to happen when linking to a reputable site like Gravatar, but it turns out
that we can eliminate the risk entirely by setting the rel attribute (“re-
lationship”) to "noopener" in the origin link. Add this attribute to the
Gravatar edit link in Listing 10.2.

2. Remove the duplicated form code by refactoring the new.html.erb and
edit.html.erb views to use the partial in Listing 10.5, as shown in
Listing 10.6 and Listing 10.7. Note the use of the provide method,

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Phishing
https://www.google.com/search?q=target+_blank+security

10.1. UPDATING USERS 539

which we used before in Section 3.4.3 to eliminate duplication in the lay-
out.3

Listing 10.5: A partial for the new and edit form.
app/views/users/_form.html.erb

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages', object: @user %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit yield(:button_text), class: "btn btn-primary" %>

<% end %>

Listing 10.6: The signup view with partial.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<% provide(:button_text, 'Create my account') %>

<h1>Sign up</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= render 'form' %>

</div>

</div>

Listing 10.7: The edit view with partial.
app/views/users/edit.html.erb

3Thanks to Jose Carlos Montero Gómez for a suggestion that further reduced duplication in the new and edit
partials.

540 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<% provide(:title, 'Edit user') %>

<% provide(:button_text, 'Save changes') %>

<h1>Update your profile</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= render 'form' %>

<div class="gravatar_edit">

<%= gravatar_for @user %>

Change

</div>

</div>

</div>

10.1.2 Unsuccessful edits
In this section we’ll handle unsuccessful edits, following similar ideas to un-
successful signups (Section 7.3). We start by creating an update action, which
uses update (Section 6.1.5) to update the user based on the submitted params
hash, as shown in Listing 10.8. With invalid information, the update attempt
returns false, so the else branch renders the edit page. We’ve seen this pat-
tern before; the structure closely parallels the first version of the create action
(Listing 7.18).

Listing 10.8: The initial user update action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

def create

@user = User.new(user_params)

if @user.save

log_in @user

flash[:success] = "Welcome to the Sample App!"

redirect_to @user

else

10.1. UPDATING USERS 541

render 'new'

end

end

def edit

@user = User.find(params[:id])

end

def update

@user = User.find(params[:id])

if @user.update(user_params)

Handle a successful update.

else

render 'edit'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

Note the use of user_params in the call to update, which uses strong param-
eters to prevent mass assignment vulnerability (as described in Section 7.3.2).

Because of the existing User model validations and the error-messages par-
tial in Listing 10.2, submission of invalid information results in helpful error
messages (Figure 10.3).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm by submitting various invalid combinations of username, email,
and password that the edit form won’t accept invalid submissions.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

542 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.3: Error messages from submitting the update form.

10.1. UPDATING USERS 543

10.1.3 Testing unsuccessful edits
We left Section 10.1.2 with a working edit form. Following the testing guide-
lines from Box 3.3, we’ll now write an integration test to catch any regressions.
Our first step is to generate an integration test as usual:

$ rails generate integration_test users_edit

invoke test_unit

create test/integration/users_edit_test.rb

Then we’ll write a simple test of an unsuccessful edit, as shown in Listing 10.9.
The test in Listing 10.9 checks for the correct behavior by verifying that the edit
template is rendered after getting the edit page and re-rendered upon submission
of invalid information. Note the use of the patch method to issue a PATCH
request, which follows the same pattern as get, post, and delete.

Listing 10.9: A test for an unsuccessful edit. green
test/integration/users_edit_test.rb

require 'test_helper'

class UsersEditTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "unsuccessful edit" do

get edit_user_path(@user)

assert_template 'users/edit'

patch user_path(@user), params: { user: { name: "",

email: "foo@invalid",

password: "foo",

password_confirmation: "bar" } }

assert_template 'users/edit'

end

end

At this point, the test suite should still be green:

544 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.10: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Add a line in Listing 10.9 to test for the correct number of error messages.
Hint: Use an assert_select (Table 5.2) that tests for a div with class
alert containing the text “The form contains 4 errors.”

10.1.4 Successful edits (with TDD)
Now it’s time to get the edit form to work. Editing the profile images is already
functional since we’ve outsourced image upload to the Gravatar website: we
can edit a Gravatar by clicking on the “change” link in Figure 10.2, which opens
the Gravatar site in a new tab (due to target="_blank" in Listing 10.2), as
shown in Figure 10.4. Let’s get the rest of the user edit functionality working
as well.

As you get more comfortable with testing, you might find that it’s useful
to write integration tests before writing the application code instead of after.
In this context, such tests are sometimes known as acceptance tests, since they
determine when a particular feature should be accepted as complete. To see how
this works, we’ll complete the user edit feature using test-driven development.

We’ll test for the correct behavior of updating users by writing a test similar
to the one shown in Listing 10.9, only this time we’ll submit valid informa-
tion. Then we’ll check for a nonempty flash message and a successful redirect
to the profile page, while also verifying that the user’s information correctly
changed in the database. The result appears in Listing 10.11. Note that the
password and confirmation in Listing 10.11 are blank, which is convenient for

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.1. UPDATING USERS 545

Figure 10.4: The Gravatar image-editing interface.

https://gravatar.com/

546 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

users who don’t want to update their passwords every time they update their
names or email addresses. Note also the use of @user.reload (first seen in
Section 6.1.5) to reload the user’s values from the database and confirm that
they were successfully updated. (This is the kind of detail you could easily
forget initially, which is why acceptance testing (and TDD generally) require a
certain level of experience to be effective.)

Listing 10.11: A test of a successful edit. red
test/integration/users_edit_test.rb

require 'test_helper'

class UsersEditTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "successful edit" do

get edit_user_path(@user)

assert_template 'users/edit'

name = "Foo Bar"

email = "foo@bar.com"

patch user_path(@user), params: { user: { name: name,

email: email,

password: "",

password_confirmation: "" } }

assert_not flash.empty?

assert_redirected_to @user

@user.reload

assert_equal name, @user.name

assert_equal email, @user.email

end

end

The update action needed to get the tests in Listing 10.11 to pass is similar
to the final form of the create action (Listing 8.29), as seen in Listing 10.12.

Listing 10.12: The user update action. red
app/controllers/users_controller.rb

10.1. UPDATING USERS 547

class UsersController < ApplicationController

.

.

.

def update

@user = User.find(params[:id])

if @user.update(user_params)

flash[:success] = "Profile updated"

redirect_to @user

else

render 'edit'

end

end

.

.

.

end

As indicated in the caption to Listing 10.12, the test suite is still red, which
is the result of the password length validation (Listing 6.43) failing due to the
empty password and confirmation in Listing 10.11. To get the tests to green, we
need to make an exception to the password validation if the password is empty.
We can do this by passing the allow_nil: true option to validates, as
seen in Listing 10.13.

Listing 10.13: Allowing empty passwords on update. green
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }, allow_nil: true

.

.

.

end

In case you’re worried that Listing 10.13 might allow new users to sign up
with empty passwords, recall from Section 6.3.3 that has_secure_password

548 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

includes a separate presence validation that specifically catches nil passwords.
(Because nil passwords now bypass the main presence validation but are still
caught by has_secure_password, this also fixes the duplicate error message
mentioned in Section 7.3.3.)

With the code in this section, the user edit page should be working (Fig-
ure 10.5), as you can double-check by re-running the test suite, which should
now be green:

Listing 10.14: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Double-check that you can now make edits by making a few changes on
the development version of the application.

2. What happens when you change the email address to one without an as-
sociated Gravatar?

10.2 Authorization
In the context of web applications, authentication allows us to identify users of
our site, while authorization lets us control what they can do. One nice effect
of building the authentication machinery in Chapter 8 is that we are now in a
position to implement authorization as well.

Although the edit and update actions from Section 10.1 are functionally
complete, they suffer from a ridiculous security flaw: they allow anyone (even
non-logged-in users) to access either action and update the information for any

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

