
Chapter 10

Updating, showing, and
deleting users
In this chapter, we will complete the REST actions for the Users resource (Ta-
ble 7.1) by adding edit, update, index, and destroy actions. We’ll start by
giving users the ability to update their profiles, which will also provide a natural
opportunity to enforce an authorization model (made possible by the authenti-
cation code in Chapter 8). Then we’ll make a listing of all users (also requiring
authentication), which will motivate the introduction of sample data and pagi-
nation. Finally, we’ll add the ability to destroy users, wiping them clear from
the database. Since we can’t allow just any user to have such dangerous powers,
we’ll take care to create a privileged class of administrative users authorized to
delete other users.

10.1 Updating users
The pattern for editing user information closely parallels that for creating new
users (Chapter 7). Instead of a new action rendering a view for new users, we
have an edit action rendering a view to edit users; instead of create respond-
ing to a POST request, we have an update action responding to a PATCH re-
quest (Box 3.2). The biggest difference is that, while anyone can sign up, only
the current user should be able to update their information. The authentication

531

532 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

machinery from Chapter 8 will allow us to use a before filter to ensure that this
is the case.

To get started, let’s start work on an updating-users topic branch:

$ git checkout -b updating-users

10.1.1 Edit form
We start with the edit form, whose mockup appears in Figure 10.1.1 To turn the
mockup in Figure 10.1 into a working page, we need to fill in both the Users
controller edit action and the user edit view. We start with the edit action,
which requires pulling the relevant user out of the database. Note from Table 7.1
that the proper URL for a user’s edit page is /users/1/edit (assuming the user’s
id is 1). Recall that the id of the user is available in the params[:id] variable,
which means that we can find the user with the code in Listing 10.1.

Listing 10.1: The user edit action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

def create

@user = User.new(user_params)

if @user.save

log_in @user

flash[:success] = "Welcome to the Sample App!"

redirect_to @user

else

render 'new'

1Image retrieved from https://www.flickr.com/photos/sashawolff/4598355045/ on 2014-08-25. Copyright ©
2010 by Sasha Wolff and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic license.

https://creativecommons.org/licenses/by/2.0/

10.1. UPDATING USERS 533

Figure 10.1: A mockup of the user edit page.

534 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

end

end

def edit

@user = User.find(params[:id])

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

The corresponding user edit view (which you will have to create by hand)
is shown in Listing 10.2. Note how closely this resembles the new user view
from Listing 7.15; the large overlap suggests factoring the repeated code into a
partial, which is left as an exercise (Section 10.1.1).

Listing 10.2: The user edit view.
app/views/users/edit.html.erb

<% provide(:title, "Edit user") %>

<h1>Update your profile</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages' %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Save changes", class: "btn btn-primary" %>

<% end %>

10.1. UPDATING USERS 535

<div class="gravatar_edit">

<%= gravatar_for @user %>

change

</div>

</div>

</div>

Here we have reused the shared error_messages partial introduced in Sec-
tion 7.3.3. By the way, the use of target="_blank" in the Gravatar link is
a neat trick to get the browser to open the page in a new window or tab, which
is sometimes convenient behavior when linking to third-party sites. (There’s
a minor security issue associated with target="_blank"; dealing with this
detail is left as an exercise (Section 10.1.1).)

With the @user instance variable from Listing 10.1, the edit page should
render properly, as shown in Figure 10.2. The “Name” and “Email” fields in
Figure 10.2 also shows how Rails automatically pre-fills the Name and Email
fields using the attributes of the existing @user variable.

Looking at the HTML source for Figure 10.2, we see a form tag as expected,
as in Listing 10.3 (slight details may differ).

Listing 10.3: HTML for the edit form defined in Listing 10.2 and shown in
Figure 10.2.
<form accept-charset="UTF-8" action="/users/1" class="edit_user"

id="edit_user_1" method="post">

<input name="_method" type="hidden" value="patch" />

.

.

.

</form>

Note here the hidden input field:

<input name="_method" type="hidden" value="patch" />

Since web browsers can’t natively send PATCH requests (as required by the
REST conventions from Table 7.1), Rails fakes it with a POST request and a

536 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.2: The initial user edit page with pre-filled name and email.

10.1. UPDATING USERS 537

hidden input field.2
There’s another subtlety to address here: the code form_with(@user) in

Listing 10.2 is exactly the same as the code in Listing 7.15—so how does Rails
know to use a POST request for new users and a PATCH for editing users? The
answer is that it is possible to tell whether a user is new or already exists in the
database via Active Record’s new_record? boolean method:

$ rails console

>> User.new.new_record?

=> true

>> User.first.new_record?

=> false

When constructing a form using form_with(@user), Rails uses POST if
@user.new_record? is true and PATCH if it is false.

As a final touch, we’ll fill in the URL of the settings link in the site navi-
gation. This is easy using the named route edit_user_path from Table 7.1,
together with the handy current_user helper method defined in Listing 9.9:

<%= link_to "Settings", edit_user_path(current_user) %>

The full application code appears in Listing 10.4).

Listing 10.4: Adding a URL to the “Settings” link in the site layout.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", root_path, id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", root_path %>

<%= link_to "Help", help_path %>

<% if logged_in? %>

<%= link_to "Users", '#' %>

2Don’t worry about how this works; the details are of interest to developers of the Rails framework itself, and
by design are not important for Rails application developers.

538 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<li class="dropdown">

Account <b class="caret">

<ul class="dropdown-menu">

<%= link_to "Profile", current_user %>

<%= link_to "Settings", edit_user_path(current_user) %>

<li class="divider">

<%= link_to "Log out", logout_path, method: :delete %>

<% else %>

<%= link_to "Log in", login_path %>

<% end %>

</nav>

</div>

</header>

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. As noted above, there’s a minor security issue associated with using
target="_blank" to open URLs, which is that the target site gains con-
trol of what’s known as the “window object” associated with the HTML
document. The result is that the target site could potentially introduce
malicious content, such as a phishing page. This is extremely unlikely
to happen when linking to a reputable site like Gravatar, but it turns out
that we can eliminate the risk entirely by setting the rel attribute (“re-
lationship”) to "noopener" in the origin link. Add this attribute to the
Gravatar edit link in Listing 10.2.

2. Remove the duplicated form code by refactoring the new.html.erb and
edit.html.erb views to use the partial in Listing 10.5, as shown in
Listing 10.6 and Listing 10.7. Note the use of the provide method,

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Phishing
https://www.google.com/search?q=target+_blank+security

10.1. UPDATING USERS 539

which we used before in Section 3.4.3 to eliminate duplication in the lay-
out.3

Listing 10.5: A partial for the new and edit form.
app/views/users/_form.html.erb

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages', object: @user %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit yield(:button_text), class: "btn btn-primary" %>

<% end %>

Listing 10.6: The signup view with partial.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<% provide(:button_text, 'Create my account') %>

<h1>Sign up</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= render 'form' %>

</div>

</div>

Listing 10.7: The edit view with partial.
app/views/users/edit.html.erb

3Thanks to Jose Carlos Montero Gómez for a suggestion that further reduced duplication in the new and edit
partials.

540 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<% provide(:title, 'Edit user') %>

<% provide(:button_text, 'Save changes') %>

<h1>Update your profile</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= render 'form' %>

<div class="gravatar_edit">

<%= gravatar_for @user %>

Change

</div>

</div>

</div>

10.1.2 Unsuccessful edits
In this section we’ll handle unsuccessful edits, following similar ideas to un-
successful signups (Section 7.3). We start by creating an update action, which
uses update (Section 6.1.5) to update the user based on the submitted params
hash, as shown in Listing 10.8. With invalid information, the update attempt
returns false, so the else branch renders the edit page. We’ve seen this pat-
tern before; the structure closely parallels the first version of the create action
(Listing 7.18).

Listing 10.8: The initial user update action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

def create

@user = User.new(user_params)

if @user.save

log_in @user

flash[:success] = "Welcome to the Sample App!"

redirect_to @user

else

10.1. UPDATING USERS 541

render 'new'

end

end

def edit

@user = User.find(params[:id])

end

def update

@user = User.find(params[:id])

if @user.update(user_params)

Handle a successful update.

else

render 'edit'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

Note the use of user_params in the call to update, which uses strong param-
eters to prevent mass assignment vulnerability (as described in Section 7.3.2).

Because of the existing User model validations and the error-messages par-
tial in Listing 10.2, submission of invalid information results in helpful error
messages (Figure 10.3).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm by submitting various invalid combinations of username, email,
and password that the edit form won’t accept invalid submissions.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

542 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.3: Error messages from submitting the update form.

10.1. UPDATING USERS 543

10.1.3 Testing unsuccessful edits
We left Section 10.1.2 with a working edit form. Following the testing guide-
lines from Box 3.3, we’ll now write an integration test to catch any regressions.
Our first step is to generate an integration test as usual:

$ rails generate integration_test users_edit

invoke test_unit

create test/integration/users_edit_test.rb

Then we’ll write a simple test of an unsuccessful edit, as shown in Listing 10.9.
The test in Listing 10.9 checks for the correct behavior by verifying that the edit
template is rendered after getting the edit page and re-rendered upon submission
of invalid information. Note the use of the patch method to issue a PATCH
request, which follows the same pattern as get, post, and delete.

Listing 10.9: A test for an unsuccessful edit. green
test/integration/users_edit_test.rb

require 'test_helper'

class UsersEditTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "unsuccessful edit" do

get edit_user_path(@user)

assert_template 'users/edit'

patch user_path(@user), params: { user: { name: "",

email: "foo@invalid",

password: "foo",

password_confirmation: "bar" } }

assert_template 'users/edit'

end

end

At this point, the test suite should still be green:

544 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.10: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Add a line in Listing 10.9 to test for the correct number of error messages.
Hint: Use an assert_select (Table 5.2) that tests for a div with class
alert containing the text “The form contains 4 errors.”

10.1.4 Successful edits (with TDD)
Now it’s time to get the edit form to work. Editing the profile images is already
functional since we’ve outsourced image upload to the Gravatar website: we
can edit a Gravatar by clicking on the “change” link in Figure 10.2, which opens
the Gravatar site in a new tab (due to target="_blank" in Listing 10.2), as
shown in Figure 10.4. Let’s get the rest of the user edit functionality working
as well.

As you get more comfortable with testing, you might find that it’s useful
to write integration tests before writing the application code instead of after.
In this context, such tests are sometimes known as acceptance tests, since they
determine when a particular feature should be accepted as complete. To see how
this works, we’ll complete the user edit feature using test-driven development.

We’ll test for the correct behavior of updating users by writing a test similar
to the one shown in Listing 10.9, only this time we’ll submit valid informa-
tion. Then we’ll check for a nonempty flash message and a successful redirect
to the profile page, while also verifying that the user’s information correctly
changed in the database. The result appears in Listing 10.11. Note that the
password and confirmation in Listing 10.11 are blank, which is convenient for

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.1. UPDATING USERS 545

Figure 10.4: The Gravatar image-editing interface.

https://gravatar.com/

546 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

users who don’t want to update their passwords every time they update their
names or email addresses. Note also the use of @user.reload (first seen in
Section 6.1.5) to reload the user’s values from the database and confirm that
they were successfully updated. (This is the kind of detail you could easily
forget initially, which is why acceptance testing (and TDD generally) require a
certain level of experience to be effective.)

Listing 10.11: A test of a successful edit. red
test/integration/users_edit_test.rb

require 'test_helper'

class UsersEditTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "successful edit" do

get edit_user_path(@user)

assert_template 'users/edit'

name = "Foo Bar"

email = "foo@bar.com"

patch user_path(@user), params: { user: { name: name,

email: email,

password: "",

password_confirmation: "" } }

assert_not flash.empty?

assert_redirected_to @user

@user.reload

assert_equal name, @user.name

assert_equal email, @user.email

end

end

The update action needed to get the tests in Listing 10.11 to pass is similar
to the final form of the create action (Listing 8.29), as seen in Listing 10.12.

Listing 10.12: The user update action. red
app/controllers/users_controller.rb

10.1. UPDATING USERS 547

class UsersController < ApplicationController

.

.

.

def update

@user = User.find(params[:id])

if @user.update(user_params)

flash[:success] = "Profile updated"

redirect_to @user

else

render 'edit'

end

end

.

.

.

end

As indicated in the caption to Listing 10.12, the test suite is still red, which
is the result of the password length validation (Listing 6.43) failing due to the
empty password and confirmation in Listing 10.11. To get the tests to green, we
need to make an exception to the password validation if the password is empty.
We can do this by passing the allow_nil: true option to validates, as
seen in Listing 10.13.

Listing 10.13: Allowing empty passwords on update. green
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }, allow_nil: true

.

.

.

end

In case you’re worried that Listing 10.13 might allow new users to sign up
with empty passwords, recall from Section 6.3.3 that has_secure_password

548 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

includes a separate presence validation that specifically catches nil passwords.
(Because nil passwords now bypass the main presence validation but are still
caught by has_secure_password, this also fixes the duplicate error message
mentioned in Section 7.3.3.)

With the code in this section, the user edit page should be working (Fig-
ure 10.5), as you can double-check by re-running the test suite, which should
now be green:

Listing 10.14: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Double-check that you can now make edits by making a few changes on
the development version of the application.

2. What happens when you change the email address to one without an as-
sociated Gravatar?

10.2 Authorization
In the context of web applications, authentication allows us to identify users of
our site, while authorization lets us control what they can do. One nice effect
of building the authentication machinery in Chapter 8 is that we are now in a
position to implement authorization as well.

Although the edit and update actions from Section 10.1 are functionally
complete, they suffer from a ridiculous security flaw: they allow anyone (even
non-logged-in users) to access either action and update the information for any

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.2. AUTHORIZATION 549

Figure 10.5: The result of a successful edit.

550 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

user. In this section, we’ll implement a security model that requires users to
be logged in and prevents them from updating any information other than their
own.

In Section 10.2.1, we’ll handle the case of non-logged-in users who try to
access a protected page to which they might normally have access. Because this
could easily happen in the normal course of using the application, such users
will be forwarded to the login page with a helpful message, as mocked up in
Figure 10.6. On the other hand, users who try to access a page for which they
would never be authorized (such as a logged-in user trying to access a different
user’s edit page) will be redirected to the root URL (Section 10.2.2).

10.2.1 Requiring logged-in users
To implement the forwarding behavior shown in Figure 10.6, we’ll use a before
filter in the Users controller. Before filters use the before_action command
to arrange for a particular method to be called before the given actions.4 To
require users to be logged in, we define a logged_in_usermethod and invoke
it using before_action :logged_in_user, as shown in Listing 10.15.

Listing 10.15: Adding a logged_in_user before filter. red
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Before filters

Confirms a logged-in user.

4The command for before filters used to be called before_filter, but the Rails core team decided to rename
it to emphasize that the filter takes place before particular controller actions.

10.2. AUTHORIZATION 551

Figure 10.6: A mockup of the result of visiting a protected page

552 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

def logged_in_user

unless logged_in?

flash[:danger] = "Please log in."

redirect_to login_url

end

end

end

By default, before filters apply to every action in a controller, so here we re-
strict the filter to act only on the :edit and :update actions by passing the
appropriate only: options hash.

We can see the result of the before filter in Listing 10.15 by logging out and
attempting to access the user edit page /users/1/edit, as seen in Figure 10.7.

As indicated in the caption of Listing 10.15, our test suite is currently red:

Listing 10.16: red
$ rails test

The reason is that the edit and update actions now require a logged-in user, but
no user is logged in inside the corresponding tests.

We’ll fix our test suite by logging the user in before hitting the edit or update
actions. This is easy using the log_in_as helper developed in Section 9.3
(Listing 9.24), as shown in Listing 10.17.

Listing 10.17: Logging in a test user. green
test/integration/users_edit_test.rb

require 'test_helper'

class UsersEditTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "unsuccessful edit" do

log_in_as(@user)

get edit_user_path(@user)

.

10.2. AUTHORIZATION 553

Figure 10.7: The login form after trying to access a protected page.

554 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

.

.

end

test "successful edit" do

log_in_as(@user)

get edit_user_path(@user)

.

.

.

end

end

(We could eliminate some duplication by putting the test login in the setup

method of Listing 10.17, but in Section 10.2.3 we’ll change one of the tests
to visit the edit page before logging in, which isn’t possible if the login step
happens during the test setup.)

At this point, our test suite should be green:

Listing 10.18: green
$ rails test

Even though our test suite is now passing, we’re not finished with the before
filter, because the suite is still green even if we remove our security model, as
you can verify by commenting it out (Listing 10.19). This is a Bad Thing—of
all the regressions we’d like our test suite to catch, a massive security hole is
probably #1, so the code in Listing 10.19 should definitely be red. Let’s write
tests to arrange that.

Listing 10.19: Commenting out the before filter to test our security model.
green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

.

.

.

end

http://catb.org/jargon/html/B/Bad-Thing.html

10.2. AUTHORIZATION 555

Because the before filter operates on a per-action basis, we’ll put the cor-
responding tests in the Users controller test. The plan is to hit the edit and
update actions with the right kinds of requests and verify that the flash is set
and that the user is redirected to the login path. From Table 7.1, we see that
the proper requests are GET and PATCH, respectively, which means using the
get and patch methods inside the tests. The results (which include adding a
setup method to define an @user variable) appear in Listing 10.20.

Listing 10.20: Testing that edit and update are protected. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "should redirect edit when not logged in" do

get edit_user_path(@user)

assert_not flash.empty?

assert_redirected_to login_url

end

test "should redirect update when not logged in" do

patch user_path(@user), params: { user: { name: @user.name,

email: @user.email } }

assert_not flash.empty?

assert_redirected_to login_url

end

end

Note that the second test shown in Listing 10.20 involves using the patch

method to send a PATCH request to user_path(@user). According to Ta-
ble 7.1, such a request gets routed to the update action in the Users controller,
as required.

The test suite should now be red, as required. To get it to green, just un-
comment the before filter (Listing 10.21).

556 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.21: Uncommenting the before filter. green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

.

.

.

end

With that, our test suite should be green:

Listing 10.22: green
$ rails test

Any accidental exposure of the edit methods to unauthorized users will now be
caught immediately by our test suite.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. As noted above, by default before filters apply to every action in a con-
troller, which in our cases is an error (requiring, e.g., that users log in
to hit the signup page, which is absurd). By commenting out the only:
hash in Listing 10.15, confirm that the test suite catches this error.

10.2.2 Requiring the right user
Of course, requiring users to log in isn’t quite enough; users should only be
allowed to edit their own information. As we saw in Section 10.2.1, it’s easy
to have a test suite that misses an essential security flaw, so we’ll proceed us-
ing test-driven development to be sure our code implements the security model

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.2. AUTHORIZATION 557

correctly. To do this, we’ll add tests to the Users controller test to complement
the ones shown in Listing 10.20.

In order to make sure users can’t edit other users’ information, we need to
be able to log in as a second user. This means adding a second user to our users
fixture file, as shown in Listing 10.23.

Listing 10.23: Adding a second user to the fixture file.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

archer:

name: Sterling Archer

email: duchess@example.gov

password_digest: <%= User.digest('password') %>

By using the log_in_as method defined in Listing 9.24, we can test the
edit and update actions as in Listing 10.24. Note that we expect to redirect
users to the root path instead of the login path because a user trying to edit a
different user would already be logged in.

Listing 10.24: Tests for trying to edit as the wrong user. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

.

.

.

test "should redirect edit when logged in as wrong user" do

log_in_as(@other_user)

get edit_user_path(@user)

assert flash.empty?

558 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

assert_redirected_to root_url

end

test "should redirect update when logged in as wrong user" do

log_in_as(@other_user)

patch user_path(@user), params: { user: { name: @user.name,

email: @user.email } }

assert flash.empty?

assert_redirected_to root_url

end

end

To redirect users trying to edit another user’s profile, we’ll add a second
method called correct_user, together with a before filter to call it (List-
ing 10.25). Note that the correct_user before filter defines the @user vari-
able, so Listing 10.25 also shows that we can eliminate the @user assignments
in the edit and update actions.

Listing 10.25: A before filter to protect the edit/update pages. green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

before_action :correct_user, only: [:edit, :update]

.

.

.

def edit

end

def update

if @user.update(user_params)

flash[:success] = "Profile updated"

redirect_to @user

else

render 'edit'

end

end

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

10.2. AUTHORIZATION 559

end

Before filters

Confirms a logged-in user.

def logged_in_user

unless logged_in?

flash[:danger] = "Please log in."

redirect_to login_url

end

end

Confirms the correct user.

def correct_user

@user = User.find(params[:id])

redirect_to(root_url) unless @user == current_user

end

end

At this point, our test suite should be green:

Listing 10.26: green
$ rails test

As a final refactoring, we’ll adopt a common convention and define a cur-
rent_user? boolean method for use in the correct_user before filter. We’ll
use this method to replace code like

unless @user == current_user

with the more expressive

unless current_user?(@user)

The result appears in Listing 10.27. Note that by writing user && user ==

current_user, we also catch the edge case where user is nil.5
5Thanks to reader Andrew Moor for pointing this out. Andrew also noted that we can use the safe navigation

operator introduced in Section 8.2.4 to write this as user&. == current_user.

560 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.27: The current_user? method.
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

Remembers a user in a persistent session.

def remember(user)

user.remember

cookies.permanent.signed[:user_id] = user.id

cookies.permanent[:remember_token] = user.remember_token

end

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.signed[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

Returns true if the given user is the current user.

def current_user?(user)

user && user == current_user

end

.

.

.

end

Replacing the direct comparison with the boolean method gives the code shown
in Listing 10.28.

Listing 10.28: The final correct_user before filter. green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

10.2. AUTHORIZATION 561

before_action :correct_user, only: [:edit, :update]

.

.

.

def edit

end

def update

if @user.update(user_params)

flash[:success] = "Profile updated"

redirect_to @user

else

render 'edit'

end

end

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Before filters

Confirms a logged-in user.

def logged_in_user

unless logged_in?

flash[:danger] = "Please log in."

redirect_to login_url

end

end

Confirms the correct user.

def correct_user

@user = User.find(params[:id])

redirect_to(root_url) unless current_user?(@user)

end

end

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

562 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

1. Why is it important to protect both the edit and update actions?

2. Which action could you more easily test in a browser?

10.2.3 Friendly forwarding
Our site authorization is complete as written, but there is one minor blemish:
when users try to access a protected page, they are currently redirected to their
profile pages regardless of where they were trying to go. In other words, if a
non-logged-in user tries to visit the edit page, after logging in the user will be
redirected to /users/1 instead of /users/1/edit. It would be much friendlier to
redirect them to their intended destination instead.

The application code will turn out to be relatively complicated, but we can
write a ridiculously simple test for friendly forwarding just by reversing the
order of logging in and visiting the edit page in Listing 10.17. As seen in List-
ing 10.29, the resulting test tries to visit the edit page, then logs in, and then
checks that the user is redirected to the edit page instead of the default profile
page. (Listing 10.29 also removes the test for rendering the edit template since
that’s no longer the expected behavior.)

Listing 10.29: A test for friendly forwarding. red
test/integration/users_edit_test.rb

require 'test_helper'

class UsersEditTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "successful edit with friendly forwarding" do

get edit_user_path(@user)

log_in_as(@user)

assert_redirected_to edit_user_url(@user)

name = "Foo Bar"

email = "foo@bar.com"

patch user_path(@user), params: { user: { name: name,

10.2. AUTHORIZATION 563

email: email,

password: "",

password_confirmation: "" } }

assert_not flash.empty?

assert_redirected_to @user

@user.reload

assert_equal name, @user.name

assert_equal email, @user.email

end

end

Now that we have a failing test, we’re ready to implement friendly for-
warding.6 In order to forward users to their intended destination, we need to
store the location of the requested page somewhere, and then redirect to that
location instead of to the default. We accomplish this with a pair of meth-
ods, store_location and redirect_back_or, both defined in the Sessions
helper (Listing 10.30).

Listing 10.30: Code to implement friendly forwarding. red
app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

Redirects to stored location (or to the default).

def redirect_back_or(default)

redirect_to(session[:forwarding_url] || default)

session.delete(:forwarding_url)

end

Stores the URL trying to be accessed.

def store_location

session[:forwarding_url] = request.original_url if request.get?

end

end

Here the storage mechanism for the forwarding URL is the same session fa-
cility we used in Section 8.2.1 to log the user in. Listing 10.30 also uses the re-
quest object (via request.original_url) to get the URL of the requested
page.

6The code in this section is adapted from the Clearance gem by thoughtbot.

https://github.com/thoughtbot/clearance
https://thoughtbot.com/

564 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

The store_location method in Listing 10.30 puts the requested URL in
the session variable under the key :forwarding_url, but only for a GET

request. This prevents storing the forwarding URL if a user, say, submits a
form when not logged in (which is an edge case but could happen if, e.g., a
user deleted the session cookies by hand before submitting the form). In such a
case, the resulting redirect would issue a GET request to a URL expecting POST,
PATCH, or DELETE, thereby causing an error. Including if request.get?

prevents this from happening.7
To make use of store_location, we need to add it to the logged_in_-

user before filter, as shown in Listing 10.31.

Listing 10.31: Adding store_location to the logged-in user before filter.
red
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

before_action :correct_user, only: [:edit, :update]

.

.

.

def edit

end

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Before filters

Confirms a logged-in user.

def logged_in_user

unless logged_in?

store_location

flash[:danger] = "Please log in."

redirect_to login_url

end

7Thanks to reader Yoel Adler for pointing out this subtle issue, and for discovering the solution.

10.2. AUTHORIZATION 565

end

Confirms the correct user.

def correct_user

@user = User.find(params[:id])

redirect_to(root_url) unless current_user?(@user)

end

end

To implement the forwarding itself, we use the redirect_back_or

method to redirect to the requested URL if it exists, or some default URL oth-
erwise, which we add to the Sessions controller create action to redirect after
successful login (Listing 10.32). The redirect_back_or method uses the or
operator || through

session[:forwarding_url] || default

This evaluates to session[:forwarding_url] unless it’s nil, in which
case it evaluates to the given default URL. Note that Listing 10.30 is care-
ful to remove the forwarding URL (via session.delete(:forwarding-

_url)); otherwise, subsequent login attempts would forward to the protected
page until the user closed their browser. (Testing for this is left as an exercise
(Section 10.2.3).) Also note that the session deletion occurs even though the
line with the redirect appears first; redirects don’t happen until an explicit re-
turn or the end of the method, so any code appearing after the redirect is still
executed.

Listing 10.32: The Sessions create action with friendly forwarding. green
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

.

.

.

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

log_in user

566 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

redirect_back_or user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

.

.

.

end

With that, the friendly forwarding integration test in Listing 10.29 should
pass, and the basic user authentication and page protection implementation is
complete. As usual, it’s a good idea to verify that the test suite is green before
proceeding:

Listing 10.33: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Write a test to make sure that friendly forwarding only forwards to the
given URL the first time. On subsequent login attempts, the forwarding
URL should revert to the default (i.e., the profile page). Hint: Add to
the test in Listing 10.29 by checking for the right value of session-
[:forwarding_url].

2. Put a debugger (Section 7.1.3) in the Sessions controller’s new action,
then log out and try to visit /users/1/edit. Confirm in the debugger that the
value of session[:forwarding_url] is correct. What is the value of
request.get? for the new action? (Sometimes the terminal can freeze

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 567

up or act strangely when you’re using the debugger; use your technical
sophistication (Box 1.2) to resolve any issues.)

10.3 Showing all users
In this section, we’ll add the penultimate user action, the index action, which is
designed to display all the users instead of just one. Along the way, we’ll learn
how to seed the database with sample users and how to paginate the user out-
put so that the index page can scale up to display a potentially large number of
users. A mockup of the result—users, pagination links, and a “Users” naviga-
tion link—appears in Figure 10.8.8 In Section 10.4, we’ll add an administrative
interface to the users index so that users can also be destroyed.

10.3.1 Users index
To get started with the users index, we’ll first implement a security model. Al-
though we’ll keep individual user show pages visible to all site visitors, the user
index will be restricted to logged-in users so that there’s a limit to how much
unregistered users can see by default.9

To protect the index page from unauthorized access, we’ll first add a short
test to verify that the index action is redirected properly (Listing 10.34).

Listing 10.34: Testing the index action redirect. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

8Image retrieved from https://www.flickr.com/photos/glasgows/338937124/ on 2014-08-25. Copyright © 2008
by M&R Glasgow and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic license.

9This is the same authorization model used by Twitter.

https://en.wiktionary.org/wiki/penultimate#English
https://creativecommons.org/licenses/by/2.0/

568 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.8: A mockup of the users index page.

10.3. SHOWING ALL USERS 569

test "should get new" do

get signup_path

assert_response :success

end

test "should redirect index when not logged in" do

get users_path

assert_redirected_to login_url

end

.

.

.

end

Then we just need to add an index action and include it in the list of actions
protected by the logged_in_user before filter (Listing 10.35).

Listing 10.35: Requiring a logged-in user for the index action. green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update]

before_action :correct_user, only: [:edit, :update]

def index

end

def show

@user = User.find(params[:id])

end

.

.

.

end

To display the users themselves, we need to make a variable containing
all the site’s users and then render each one by iterating through them in the
index view. As you may recall from the corresponding action in the toy app
(Listing 2.9), we can use User.all to pull all the users out of the database,
assigning them to an @users instance variable for use in the view, as seen in
Listing 10.36. (If displaying all the users at once seems like a bad idea, you’re
right, and we’ll remove this blemish in Section 10.3.3.)

570 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.36: The user index action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update]

.

.

.

def index

@users = User.all

end

.

.

.

end

To make the actual index page, we’ll make a view (which you’ll have to
create) that iterates through the users and wraps each one in an li tag. We do
this with the each method, displaying each user’s Gravatar and name, while
wrapping the whole thing in a ul tag (Listing 10.37).

Listing 10.37: The users index view.
app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<ul class="users">

<% @users.each do |user| %>

<%= gravatar_for user, size: 50 %>

<%= link_to user.name, user %>

<% end %>

The code in Listing 10.37 uses the result of Listing 10.38 from Section 7.1.4,
which allows us to pass an option to the Gravatar helper specifying a size other
than the default. If you didn’t do that exercise, update your Users helper file
with the contents of Listing 10.38 before proceeding. (You are also welcome
to use the Ruby 2.0–style version from Listing 7.13 instead.)

10.3. SHOWING ALL USERS 571

Listing 10.38: Adding an options hash in the gravatar_for helper.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.

def gravatar_for(user, options = { size: 80 })

size = options[:size]

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)

gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}?s=#{size}"

image_tag(gravatar_url, alt: user.name, class: "gravatar")

end

end

Let’s also add a little CSS (or, rather, SCSS) for style (Listing 10.39).

Listing 10.39: CSS for the users index.
app/assets/stylesheets/custom.scss

.

.

.

/* Users index */

.users {

list-style: none;

margin: 0;

li {

overflow: auto;

padding: 10px 0;

border-bottom: 1px solid $gray-lighter;

}

}

Finally, we’ll add the URL to the users link in the site’s navigation header
using users_path, thereby using the last of the unused named routes in Ta-
ble 7.1. The result appears in Listing 10.40.

Listing 10.40: Adding the URL to the users link.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

572 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<%= link_to "sample app", root_path, id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", root_path %>

<%= link_to "Help", help_path %>

<% if logged_in? %>

<%= link_to "Users", users_path %>

<li class="dropdown">

Account <b class="caret">

<ul class="dropdown-menu">

<%= link_to "Profile", current_user %>

<%= link_to "Settings", edit_user_path(current_user) %>

<li class="divider">

<%= link_to "Log out", logout_path, method: :delete %>

<% else %>

<%= link_to "Log in", login_path %>

<% end %>

</nav>

</div>

</header>

With that, the users index is fully functional, with all tests green:

Listing 10.41: green
$ rails test

On the other hand, as seen in Figure 10.9, it is a bit… lonely. Let’s remedy this
sad situation.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 573

Figure 10.9: The users index page with only one user.

574 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

1. We’ve now filled in all the links in the site layout. Write an integration
test for all the layout links, including the proper behavior for logged-in
and non-logged-in users. Hint: Use the log_in_as helper and add to
the steps shown in Listing 5.32.

10.3.2 Sample users
In this section, we’ll give our lonely sample user some company. Of course,
to create enough users to make a decent users index, we could use our web
browser to visit the signup page and make the new users one by one, but a far
better solution is to use Ruby to make the users for us.

First, we’ll add the Faker gem to the Gemfile, which will allow us to make
sample users with semi-realistic names and email addresses (Listing 10.42).10

(Ordinarily, you’d probably want to restrict the faker gem to a development
environment, but in the case of the sample app we’ll be using it on our produc-
tion site as well (Section 10.5).)

Listing 10.42: Adding the Faker gem to the Gemfile.
source 'https://rubygems.org'

gem 'rails', '6.0.1'

gem 'bcrypt', '3.1.13'

gem 'faker', '2.1.2'

gem 'bootstrap-sass', '3.4.1'

.

.

.

Then install as usual:

$ bundle install

Next, we’ll add a Ruby program to seed the database with sample users,
for which Rails uses the standard file db/seeds.rb. The result appears in

10As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://gemfiles-6th-ed.railstutorial.org/

10.3. SHOWING ALL USERS 575

Listing 10.43. (The code in Listing 10.43 is a bit advanced, so don’t worry too
much about the details.)

Listing 10.43: A program for seeding the database with sample users.
db/seeds.rb

Create a main sample user.

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password_confirmation: "foobar")

Generate a bunch of additional users.

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

email: email,

password: password,

password_confirmation: password)

end

The code in Listing 10.43 creates an example user with name and email address
replicating our previous one, and then makes 99 more. The create! method
is just like the create method, except it raises an exception (Section 6.1.4) for
an invalid user rather than returning false. This behavior makes debugging
easier by avoiding silent errors.

With the code as in Listing 10.43, we can reset the database and then invoke
the Rake task using db:seed:11

$ rails db:migrate:reset

$ rails db:seed

Seeding the database can be slow, and on some systems could take up to a few
minutes. Also, some readers have reported that they are unable to run the reset
command if the Rails server is running, so you may have to stop the server first
before proceeding (Box 1.2).

11In principle, these two tasks can be combined in rails db:reset, but as of this writing this command
doesn’t work with the latest version of Rails.

576 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.10: The users index page with 100 sample users.

After running the db:seedRake task, our application should have 100 sam-
ple users. As seen in Figure 10.10, I’ve taken the liberty of associating the first
few sample addresses with Gravatars so that they’re not all the default Gravatar
image.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 577

1. Verify that trying to visit the edit page of another user results in a redirect
as required by Section 10.2.2.

10.3.3 Pagination
Our original user doesn’t suffer from loneliness any more, but now we have the
opposite problem: our user has too many companions, and they all appear on the
same page. Right now there are a hundred, which is already a reasonably large
number, and on a real site it could be thousands. The solution is to paginate the
users, so that (for example) only 30 show up on a page at any one time.

There are several pagination methods available in Rails; we’ll use one of
the simplest and most robust, called will_paginate. To use it, we need to in-
clude both the will_paginate gem and bootstrap-will_paginate,
which configures will_paginate to use Bootstrap’s pagination styles. The up-
dated Gemfile appears in Listing 10.44.12

Listing 10.44: Including will_paginate in the Gemfile.
source 'https://rubygems.org'

gem 'rails', '6.0.1'

gem 'bcrypt', '3.1.13'

gem 'faker', '2.1.2'

gem 'will_paginate', '3.1.8'

gem 'bootstrap-will_paginate', '1.0.0'

.

.

.

Then run bundle install:

$ bundle install

You should also restart the webserver to ensure that the new gems are loaded
properly.

12As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://github.com/mislav/will_paginate/wiki
https://gemfiles-6th-ed.railstutorial.org/

578 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

To get pagination working, we need to add some code to the index view
telling Rails to paginate the users, and we need to replace User.all in the
index action with an object that knows about pagination. We’ll start by adding
the special will_paginate method in the view (Listing 10.45); we’ll see in a
moment why the code appears both above and below the user list.

Listing 10.45: The users index with pagination.
app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<%= will_paginate %>

<ul class="users">

<% @users.each do |user| %>

<%= gravatar_for user, size: 50 %>

<%= link_to user.name, user %>

<% end %>

<%= will_paginate %>

The will_paginate method is a little magical; inside a users view, it
automatically looks for an @users object, and then displays pagination links
to access other pages. The view in Listing 10.45 doesn’t work yet, though,
because currently @users contains the results of User.all (Listing 10.36),
whereas will_paginate requires that we paginate the results explicitly using
the paginate method:

$ rails console

>> User.paginate(page: 1)

User Load (1.5ms) SELECT "users".* FROM "users" LIMIT 11 OFFSET 0

(1.7ms) SELECT COUNT(*) FROM "users"

=> #<ActiveRecord::Relation [#<User id: 1,...

>> User.paginate(page: 1).length

User Load (3.0ms) SELECT "users".* FROM "users" LIMIT ? OFFSET ? [["LIMIT", 30],

["OFFSET", 0]]

=> 30

10.3. SHOWING ALL USERS 579

Note that paginate takes a hash argument with key :page and value equal to
the page requested. User.paginate pulls the users out of the database one
chunk at a time (30 by default), based on the :page parameter. So, for example,
page 1 is users 1–30, page 2 is users 31–60, etc. If page is nil, paginate
simply returns the first page. (The console result above shows 11 results rather
than 30 due to a console limit in Active Record itself, but calling the length
method bypasses this restriction.)

Using the paginatemethod, we can paginate the users in the sample appli-
cation by using paginate in place of all in the index action (Listing 10.46).
Here the page parameter comes from params[:page], which is generated
automatically by will_paginate.

Listing 10.46: Paginating the users in the index action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update]

.

.

.

def index

@users = User.paginate(page: params[:page])

end

.

.

.

end

The users index page should now be working, appearing as in Figure 10.11.
(On some systems, you may have to restart the Rails server at this point.) Be-
cause we included will_paginate both above and below the user list, the
pagination links appear in both places.

If you now click on either the 2 link or Next link, you’ll get the second page
of results, as shown in Figure 10.12.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://stackoverflow.com/questions/53059021/rails-model-querying-returns-11-records-but-no-limit-is-set
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

580 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.11: The users index page with pagination.

10.3. SHOWING ALL USERS 581

Figure 10.12: Page 2 of the users index.

582 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm at the console that setting the page to nil pulls out the first page
of users.

2. What is the Ruby class of the pagination object? How does it compare to
the class of User.all?

10.3.4 Users index test
Now that our users index page is working, we’ll write a lightweight test for it,
including a minimal test for the pagination from Section 10.3.3. The idea is to
log in, visit the index path, verify the first page of users is present, and then
confirm that pagination is present on the page. For these last two steps to work,
we need to have enough users in the test database to invoke pagination, i.e.,
more than 30.

We created a second user in the fixtures in Listing 10.23, but 30 or so
more users is a lot to create by hand. Luckily, as we’ve seen with the user
fixture’s password_digest attribute, fixture files support embedded Ruby,
which
means we can create 30 additional users as shown in Listing 10.47. (List-
ing 10.47 also creates a couple of other named users for future reference.)

Listing 10.47: Adding 30 extra users to the fixture.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

archer:

name: Sterling Archer

email: duchess@example.gov

password_digest: <%= User.digest('password') %>

lana:

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 583

name: Lana Kane

email: hands@example.gov

password_digest: <%= User.digest('password') %>

malory:

name: Malory Archer

email: boss@example.gov

password_digest: <%= User.digest('password') %>

<% 30.times do |n| %>

user_<%= n %>:

name: <%= "User #{n}" %>

email: <%= "user-#{n}@example.com" %>

password_digest: <%= User.digest('password') %>

<% end %>

With the fixtures defined in Listing 10.47, we’re ready to write a test of the
users index. First we generate the relevant test:

$ rails generate integration_test users_index

invoke test_unit

create test/integration/users_index_test.rb

The test itself involves checking for a div with the required pagination class
and verifying that the first page of users is present. The result appears in List-
ing 10.48.

Listing 10.48: A test of the users index, including pagination. green
test/integration/users_index_test.rb

require 'test_helper'

class UsersIndexTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "index including pagination" do

log_in_as(@user)

get users_path

assert_template 'users/index'

assert_select 'div.pagination'

584 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

User.paginate(page: 1).each do |user|

assert_select 'a[href=?]', user_path(user), text: user.name

end

end

end

The result should be a green test suite:

Listing 10.49: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By commenting out the pagination links in Listing 10.45, confirm that the
test in Listing 10.48 goes red.

2. Confirm that commenting out only one of the calls to will_paginate
leaves the tests green. How would you test for the presence of both sets
of will_paginate links? Hint: Use a count from Table 5.2.

10.3.5 Partial refactoring
The paginated users index is now complete, but there’s one improvement I
can’t resist including: Rails has some incredibly slick tools for making compact
views, and in this section we’ll refactor the index page to use them. Because
our code is well-tested, we can refactor with confidence, assured that we are
unlikely to break our site’s functionality.

The first step in our refactoring is to replace the user li from Listing 10.45
with a render call (Listing 10.50).

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 585

Listing 10.50: The first refactoring attempt in the index view. red
app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<%= will_paginate %>

<ul class="users">

<% @users.each do |user| %>

<%= render user %>

<% end %>

<%= will_paginate %>

Here we call render not on a string with the name of a partial, but rather on a
user variable of class User;13 in this context, Rails automatically looks for a
partial called _user.html.erb, which we must create (Listing 10.51).

Listing 10.51: A partial to render a single user. green
app/views/users/_user.html.erb

<%= gravatar_for user, size: 50 %>

<%= link_to user.name, user %>

This is a definite improvement, but we can do even better: we can call ren-
der directly on the @users variable (Listing 10.52).

Listing 10.52: The fully refactored users index. green
app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

13The name user is immaterial—we could have written @users.each do |foobar| and then used render
foobar. The key is the class of the object—in this case, User.

586 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<%= will_paginate %>

<ul class="users">

<%= render @users %>

<%= will_paginate %>

Here Rails infers that @users is a list of User objects; moreover, when called
with a collection of users, Rails automatically iterates through them and renders
each one with the _user.html.erb partial (inferring the name of the partial
from the name of the class). The result is the impressively compact code in
Listing 10.52.

As with any refactoring, you should verify that the test suite is still green
after changing the application code:

Listing 10.53: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Comment out the render line in Listing 10.52 and confirm that the re-
sulting tests are red.

10.4 Deleting users
Now that the users index is complete, there’s only one canonical REST action
left: destroy. In this section, we’ll add links to delete users, as mocked up
in Figure 10.13, and define the destroy action necessary to accomplish the

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.4. DELETING USERS 587

deletion. But first, we’ll create the class of administrative users, or admins, au-
thorized to do so. In the context of authorization, such a set of special privileges
is known as a role.

10.4.1 Administrative users
We will identify privileged administrative users with a boolean admin attribute
in the User model, which will lead automatically to an admin? boolean method
to test for admin status. The resulting data model appears in Figure 10.14.

As usual, we add the admin attribute with a migration, indicating the
boolean type on the command line:

$ rails generate migration add_admin_to_users admin:boolean

The migration adds the admin column to the users table, as shown in List-
ing 10.54. Note that we’ve added the argument default: false to add_-

column in Listing 10.54, which means that users will not be administrators
by default. (Without the default: false argument, admin will be nil by
default, which is still false, so this step is not strictly necessary. It is more
explicit, though, and communicates our intentions more clearly both to Rails
and to readers of our code.)

Listing 10.54: The migration to add a boolean admin attribute to users.
db/migrate/[timestamp]_add_admin_to_users.rb

class AddAdminToUsers < ActiveRecord::Migration[6.0]

def change

add_column :users, :admin, :boolean, default: false

end

end

Next, we migrate as usual:

https://en.wikipedia.org/wiki/Role-based_access_control

588 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.13: A mockup of the users index with delete links.

10.4. DELETING USERS 589

updated_at datetime
created_at datetime

admin boolean
remember_digest string

stringpassword_digest

email string

id
name string

integer
users

Figure 10.14: The User model with an added admin boolean attribute.

$ rails db:migrate

As expected, Rails figures out the boolean nature of the admin attribute and
automatically adds the question-mark method admin?:

$ rails console --sandbox

>> user = User.first

>> user.admin?

=> false

>> user.toggle!(:admin)

=> true

>> user.admin?

=> true

Here we’ve used the toggle! method to flip the admin attribute from false

to true.
As a final step, let’s update our seed data to make the first user an admin by

default (Listing 10.55).

590 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.55: The seed data code with an admin user.
db/seeds.rb

Create a main sample user.

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password_confirmation: "foobar",

admin: true)

Generate a bunch of additional users.

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

email: email,

password: password,

password_confirmation: password)

end

Then reset and reseed the database:

$ rails db:migrate:reset

$ rails db:seed

Revisiting strong parameters
You might have noticed that Listing 10.55 makes the user an admin by including
admin: true in the initialization hash. This underscores the danger of expos-
ing our objects to the wild Web—if we simply passed an initialization hash in
from an arbitrary web request, a malicious user could send a PATCH request as
follows:14

patch /users/17?admin=1

This request would make user 17 an admin, which would be a potentially serious
security breach.

14Command-line tools such as curl can issue PATCH requests of this form.

10.4. DELETING USERS 591

Because of this danger, it is essential that we only update attributes that are
safe to edit through the web. As noted in Section 7.3.2, this is accomplished
using strong parameters by calling require and permit on the params hash:

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Note in particular that admin is not in the list of permitted attributes. This is
what prevents arbitrary users from granting themselves administrative access
to our application. Because of its importance, it’s a good idea to write a test for
any attribute that isn’t editable, and writing such a test for the admin attribute
is left as an exercise (Section 10.4.1).

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By issuing a PATCH request directly to the user path as shown in List-
ing 10.56, verify that the admin attribute isn’t editable through the web.
To be sure your test is covering the right thing, your first step should be to
add admin to the list of permitted parameters in user_params so that
the initial test is red. For the final line, make sure to load the updated user
information from the database (Section 6.1.5).

Listing 10.56: Testing that the admin attribute is forbidden.
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

592 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

@other_user = users(:archer)

end

.

.

.

test "should redirect update when not logged in" do

patch user_path(@user), params: { user: { name: @user.name,

email: @user.email } }

assert_not flash.empty?

assert_redirected_to login_url

end

test "should not allow the admin attribute to be edited via the web" do

log_in_as(@other_user)

assert_not @other_user.admin?

patch user_path(@other_user), params: {

user: { password: "password",

password_confirmation: "password",

admin: FILL_IN } }

assert_not @other_user.FILL_IN.admin?

end

.

.

.

end

10.4.2 The destroy action
The final step needed to complete the Users resource is to add delete links and
a destroy action. We’ll start by adding a delete link for each user on the users
index page, restricting access to administrative users. The resulting "delete"
links will be displayed only if the current user is an admin (Listing 10.57).

Listing 10.57: User delete links (viewable only by admins).
app/views/users/_user.html.erb

<%= gravatar_for user, size: 50 %>

<%= link_to user.name, user %>

<% if current_user.admin? && !current_user?(user) %>

| <%= link_to "delete", user, method: :delete,

data: { confirm: "You sure?" } %>

<% end %>

10.4. DELETING USERS 593

Figure 10.15: The users index with delete links.

Note the method: :delete argument, which arranges for the link to issue
the necessary DELETE request. We’ve also wrapped each link inside an if

statement so that only admins can see them. The result for our admin user
appears in Figure 10.15.

Web browsers can’t send DELETE requests natively, so Rails fakes them
with JavaScript. This means that the delete links won’t work if the user has
JavaScript disabled. If you must support non-JavaScript-enabled browsers you
can fake a DELETE request using a form and a POST request, which works
even without JavaScript.15

15See the RailsCast on “Destroy Without JavaScript” for details.

http://railscasts.com/episodes/77-destroy-without-javascript

594 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

To get the delete links to work, we need to add a destroy action (Table 7.1),
which finds the corresponding user and destroys it with the Active Record de-
stroy method, finally redirecting to the users index, as seen in Listing 10.58.
Because users have to be logged in to delete users, Listing 10.58 also adds :de-
stroy to the logged_in_user before filter.

Listing 10.58: Adding a working destroy action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update, :destroy]

before_action :correct_user, only: [:edit, :update]

.

.

.

def destroy

User.find(params[:id]).destroy

flash[:success] = "User deleted"

redirect_to users_url

end

private

.

.

.

end

As constructed, only admins can destroy users through the web since only
they can see the delete links, but there’s still a terrible security hole: any suf-
ficiently sophisticated attacker could simply issue a DELETE request directly
from the command line to delete any user on the site. To secure the site prop-
erly, we also need access control on the destroy action, so that only admins
can delete users.

As in Section 10.2.1 and Section 10.2.2, we’ll enforce access control using
a before filter, this time to restrict access to the destroy action to admins. The
resulting admin_user before filter appears in Listing 10.59.

Listing 10.59: A before filter restricting the destroy action to admins.
app/controllers/users_controller.rb

10.4. DELETING USERS 595

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update, :destroy]

before_action :correct_user, only: [:edit, :update]

before_action :admin_user, only: :destroy

.

.

.

private

.

.

.

Confirms an admin user.

def admin_user

redirect_to(root_url) unless current_user.admin?

end

end

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. As the admin user, destroy a few sample users through the web interface.
What are the corresponding entries in the server log?

10.4.3 User destroy tests
With something as dangerous as destroying users, it’s important to have good
tests for the expected behavior. We start by arranging for one of our fixture
users to be an admin, as shown in Listing 10.60.

Listing 10.60: Making one of the fixture users an admin.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

admin: true

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

596 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

archer:

name: Sterling Archer

email: duchess@example.gov

password_digest: <%= User.digest('password') %>

lana:

name: Lana Kane

email: hands@example.gov

password_digest: <%= User.digest('password') %>

malory:

name: Malory Archer

email: boss@example.gov

password_digest: <%= User.digest('password') %>

<% 30.times do |n| %>

user_<%= n %>:

name: <%= "User #{n}" %>

email: <%= "user-#{n}@example.com" %>

password_digest: <%= User.digest('password') %>

<% end %>

Following the practice from Section 10.2.1, we’ll put action-level tests of
access control in the Users controller test file. As with the logout test in List-
ing 8.35, we’ll use delete to issue a DELETE request directly to the destroy
action. We need to check two cases: first, users who aren’t logged in should
be redirected to the login page; second, users who are logged in but who aren’t
admins should be redirected to the Home page. The result appears in List-
ing 10.61.

Listing 10.61: Action-level tests for admin access control. green
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

.

.

.

10.4. DELETING USERS 597

test "should redirect destroy when not logged in" do

assert_no_difference 'User.count' do

delete user_path(@user)

end

assert_redirected_to login_url

end

test "should redirect destroy when logged in as a non-admin" do

log_in_as(@other_user)

assert_no_difference 'User.count' do

delete user_path(@user)

end

assert_redirected_to root_url

end

end

Note that Listing 10.61 also makes sure that the user count doesn’t change using
the assert_no_difference method (seen before in Listing 7.23).

The tests in Listing 10.61 verify the behavior in the case of an unauthorized
(non-admin) user, but we also want to check that an admin can use a delete link
to successfully destroy a user. Since the delete links appear on the users index,
we’ll add these tests to the users index test from Listing 10.48. The only really
tricky part is verifying that a user gets deleted when an admin clicks on a delete
link, which we’ll accomplish as follows:

assert_difference 'User.count', -1 do

delete user_path(@other_user)

end

This uses the assert_difference method first seen in Listing 7.31 when
creating a user, this time verifying that a user is destroyed by checking that
User.count changes by−1when issuing a delete request to the correspond-
ing user path.

Putting everything together gives the pagination and delete test in List-
ing 10.62, which includes tests for both admins and non-admins.

Listing 10.62: An integration test for delete links and destroying users. green
test/integration/users_index_test.rb

598 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

require 'test_helper'

class UsersIndexTest < ActionDispatch::IntegrationTest

def setup

@admin = users(:michael)

@non_admin = users(:archer)

end

test "index as admin including pagination and delete links" do

log_in_as(@admin)

get users_path

assert_template 'users/index'

assert_select 'div.pagination'

first_page_of_users = User.paginate(page: 1)

first_page_of_users.each do |user|

assert_select 'a[href=?]', user_path(user), text: user.name

unless user == @admin

assert_select 'a[href=?]', user_path(user), text: 'delete'

end

end

assert_difference 'User.count', -1 do

delete user_path(@non_admin)

end

end

test "index as non-admin" do

log_in_as(@non_admin)

get users_path

assert_select 'a', text: 'delete', count: 0

end

end

Note that Listing 10.62 checks for the right delete links, including skipping
the test if the user happens to be the admin (which lacks a delete link due to
Listing 10.57).

At this point, our deletion code is well-tested, and the test suite should be
green:

Listing 10.63: green
$ rails test

10.5. CONCLUSION 599

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By commenting out the admin user before filter in Listing 10.59, confirm
that the tests go red.

10.5 Conclusion
We’ve come a long way since introducing the Users controller way back in
Section 5.4. Those users couldn’t even sign up; now users can sign up, log in,
log out, view their profiles, edit their settings, and see an index of all users—and
some can even destroy other users.

As it presently stands, the sample application forms a solid foundation for
any website requiring users with authentication and authorization. In Chap-
ter 11 and Chapter 12, we’ll add two additional refinements: an account acti-
vation link for newly registered users (verifying a valid email address in the
process) and password resets to help users who forget their passwords.

Before moving on, be sure to merge all the changes into the master branch:

$ git add -A

$ git commit -m "Finish user edit, update, index, and destroy actions"

$ git checkout master

$ git merge updating-users

$ git push

You can also deploy the application and even populate the production database
with sample users (using the pg:reset task to reset the production database):

$ rails test

$ git push heroku

$ heroku pg:reset DATABASE

$ heroku run rails db:migrate

$ heroku run rails db:seed

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

600 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.16: The sample users in production.

Of course, on a real site you probably wouldn’t want to seed it with sample data,
but I include it here for purposes of illustration (Figure 10.16). Incidentally, the
order of the sample users in Figure 10.16 may vary, and on my system doesn’t
match the local version from Figure 10.11; this is because we haven’t specified
a default ordering for users when retrieved from the database, so the current
order is database-dependent. This doesn’t matter much for users, but it will for
microposts, and we’ll address this issue further in Section 13.1.4.

10.5. CONCLUSION 601

10.5.1 What we learned in this chapter
• Users can be updated using an edit form, which sends a PATCH request

to the update action.

• Safe updating through the web is enforced using strong parameters.

• Before filters give a standard way to run methods before particular con-
troller actions.

• We implement an authorization using before filters.

• Authorization tests use both low-level commands to submit particular
HTTP requests directly to controller actions and high-level integration
tests.

• Friendly forwarding redirects users where they wanted to go after logging
in.

• The users index page shows all users, one page at a time.

• Rails uses the standard file db/seeds.rb to seed the database with sam-
ple data using rails db:seed.

• Running render @users automatically calls the _user.html.erb

partial on each user in the collection.

• A boolean attribute called admin on the User model automatically creates
an admin? boolean method on user objects.

• Admins can delete users through the web by clicking on delete links that
issue DELETE requests to the Users controller destroy action.

• We can create a large number of test users using embedded Ruby inside
fixtures.

