
632 CHAPTER 11. ACCOUNT ACTIVATION

11.3 Activating the account
Now that we have a correctly generated email as in Listing 11.25, we need
to write the edit action in the Account Activations controller that actually
activates the user. As usual, we’ll write a test for this action, and once the
code is tested we’ll refactor it to move some functionality out of the Account
Activations controller and into the User model.

11.3.1 Generalizing the authenticated? method
Recall from the discussion in Section 11.2.1 that the activation token and email
are available as params[:id] and params[:email], respectively. Follow-
ing the model of passwords (Listing 8.7) and remember tokens (Listing 9.9),
we plan to find and authenticate the user with code something like this:

user = User.find_by(email: params[:email])

if user && user.authenticated?(:activation, params[:id])

(As we’ll see in a moment, there will be one extra boolean in the expression
above. See if you can guess what it will be.)

The above code uses the authenticated?method to test if the account ac-
tivation digest matches the given token, but at present this won’t work because
that method is specialized to the remember token (Listing 9.6):

Returns true if the given token matches the digest.

def authenticated?(remember_token)

return false if remember_digest.nil?

BCrypt::Password.new(remember_digest).is_password?(remember_token)

end

Here remember_digest is an attribute on the User model, and inside the
model we can rewrite it as follows:

11.3. ACTIVATING THE ACCOUNT 633

self.remember_digest

Somehow, we want to be able to make this variable, so we can call

self.activation_digest

instead by passing in the appropriate parameter to the authenticated? meth-
od.

The solution involves our first example of metaprogramming, which is es-
sentially a program that writes a program. (Metaprogramming is one of Ruby’s
strongest suits, and many of the “magic” features of Rails are due to its use of
Ruby metaprogramming.) The key in this case is the powerful send method,
which lets us call a method with a name of our choice by “sending a message”
to a given object. For example, in this console session we use send on a native
Ruby object to find the length of an array:

$ rails console

>> a = [1, 2, 3]

>> a.length

=> 3

>> a.send(:length)

=> 3

>> a.send("length")

=> 3

Here we see that passing the symbol :length or string "length" to send

is equivalent to calling the length method on the given object. As a second
example, we’ll access the activation_digest attribute of the first user in
the database:

>> user = User.first

>> user.activation_digest

=> "$2a$10$4e6TFzEJAVNyjLv8Q5u22ensMt28qEkx0roaZvtRcp6UZKRM6N9Ae"

>> user.send(:activation_digest)

=> "$2a$10$4e6TFzEJAVNyjLv8Q5u22ensMt28qEkx0roaZvtRcp6UZKRM6N9Ae"

>> user.send("activation_digest")

634 CHAPTER 11. ACCOUNT ACTIVATION

=> "$2a$10$4e6TFzEJAVNyjLv8Q5u22ensMt28qEkx0roaZvtRcp6UZKRM6N9Ae"

>> attribute = :activation

>> user.send("#{attribute}_digest")

=> "$2a$10$4e6TFzEJAVNyjLv8Q5u22ensMt28qEkx0roaZvtRcp6UZKRM6N9Ae"

Note in the last example that we’ve defined an attribute variable equal to
the symbol :activation and used string interpolation to build up the proper
argument to send. This would work also with the string 'activation', but
using a symbol is more conventional, and in either case

"#{attribute}_digest"

becomes

"activation_digest"

once the string is interpolated. (We saw how symbols are interpolated as strings
in Section 7.4.2.)

Based on this discussion of send, we can rewrite the current authenti-
cated? method as follows:

def authenticated?(remember_token)

digest = self.send("remember_digest")

return false if digest.nil?

BCrypt::Password.new(digest).is_password?(remember_token)

end

With this template in place, we can generalize the method by adding a function
argument with the name of the digest, and then use string interpolation as above:

def authenticated?(attribute, token)

digest = self.send("#{attribute}_digest")

return false if digest.nil?

BCrypt::Password.new(digest).is_password?(token)

end

11.3. ACTIVATING THE ACCOUNT 635

(Here we have renamed the second argument token to emphasize that it’s now
generic.) Because we’re inside the user model, we can also omit self, yielding
the most idiomatically correct version:

def authenticated?(attribute, token)

digest = send("#{attribute}_digest")

return false if digest.nil?

BCrypt::Password.new(digest).is_password?(token)

end

We can now reproduce the previous behavior of authenticated? by invoking
it like this:

user.authenticated?(:remember, remember_token)

Applying this discussion to the User model yields the generalized authen-
ticated? method shown in Listing 11.26.

Listing 11.26: A generalized authenticated? method. red
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns true if the given token matches the digest.

def authenticated?(attribute, token)

digest = send("#{attribute}_digest")

return false if digest.nil?

BCrypt::Password.new(digest).is_password?(token)

end

.

.

.

end

The caption to Listing 11.26 indicates a red test suite:

636 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.27: red
$ rails test

The reason for the failure is that the current_user method (Listing 9.9) and
the test for nil digests (Listing 9.17) both use the old version of authenti-
cated?, which expects one argument instead of two. Note that this is exactly
the kind of error a test suite is supposed to catch.

To fix the issue, we simply update the two cases to use the generalized
method, as shown in Listing 11.28 and Listing 11.29.

Listing 11.28: Using the generalized authenticated? method in cur-

rent_user. red
app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

Returns the current logged-in user (if any).

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.signed[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(:remember, cookies[:remember_token])

log_in user

@current_user = user

end

end

end

.

.

.

end

Listing 11.29: Using the generalized authenticated? method in the User
test. green
test/models/user_test.rb

11.3. ACTIVATING THE ACCOUNT 637

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

test "authenticated? should return false for a user with nil digest" do

assert_not @user.authenticated?(:remember, '')

end

end

At this point, the tests should be green:

Listing 11.30: green
$ rails test

Refactoring the code as above is incredibly more error-prone without a solid test
suite, which is why we went to such trouble to write good tests in Section 9.1.2
and Section 9.3.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Create and remember new user at the console. What are the user’s re-
member and activation tokens? What are the corresponding digests?

2. Using the generalized authenticated? method from Listing 11.26,
verify that the user is authenticated according to both the remember token
and the activation token.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

638 CHAPTER 11. ACCOUNT ACTIVATION

11.3.2 Activation edit action
With the authenticated? method as in Listing 11.26, we’re now ready to
write an edit action that authenticates the user corresponding to the email ad-
dress in the params hash. Our test for validity will look like this:

if user && !user.activated? && user.authenticated?(:activation, params[:id])

Note the presence of !user.activated?, which is the extra boolean alluded
to above. This prevents our code from activating users who have already been
activated, which is important because we’ll be logging in users upon confirma-
tion, and we don’t want to allow attackers who manage to obtain the activation
link to log in as the user.

If the user is authenticated according to the booleans above, we need to
activate the user and update the activated_at timestamp:8

user.update_attribute(:activated, true)

user.update_attribute(:activated_at, Time.zone.now)

This leads to the edit action shown in Listing 11.31. Note also that List-
ing 11.31 handles the case of an invalid activation token; this should rarely
happen, but it’s easy enough to redirect in this case to the root URL.

Listing 11.31: An edit action to activate accounts.
app/controllers/account_activations_controller.rb

class AccountActivationsController < ApplicationController

def edit

user = User.find_by(email: params[:email])

if user && !user.activated? && user.authenticated?(:activation, params[:id])

user.update_attribute(:activated, true)

user.update_attribute(:activated_at, Time.zone.now)

8Here we use two calls to update_attribute rather than a single call to update_attributes because
(per Section 6.1.5) the latter would run the validations. Lacking in this case the user password, these validations
would fail.

11.3. ACTIVATING THE ACCOUNT 639

log_in user

flash[:success] = "Account activated!"

redirect_to user

else

flash[:danger] = "Invalid activation link"

redirect_to root_url

end

end

end

With the code in Listing 11.31, you should now be able to paste in the URL
from Listing 11.25 to activate the relevant user. For example, on my system I
visited the URL

https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/account_activations/zdqs6sF7BMiDfXBaC7-6vA/

edit?email=michael%40michaelhartl.com

and got the result shown in Figure 11.6.
Of course, currently user activation doesn’t actually do anything, because

we haven’t changed how users log in. In order to have account activation
mean something, we need to allow users to log in only if they are activated.
As shown in Listing 11.32, the way to do this is to log the user in as usual
if user.activated? is true; otherwise, we redirect to the root URL with a
warning message (Figure 11.7).

Listing 11.32: Preventing unactivated users from logging in.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

if user.activated?

log_in user

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

redirect_back_or user

640 CHAPTER 11. ACCOUNT ACTIVATION

Figure 11.6: The profile page after a successful activation.

11.3. ACTIVATING THE ACCOUNT 641

else

message = "Account not activated. "

message += "Check your email for the activation link."

flash[:warning] = message

redirect_to root_url

end

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

log_out if logged_in?

redirect_to root_url

end

end

With that, apart from one refinement, the basic functionality of user activa-
tion is done. (That refinement is preventing unactivated users from being dis-
played, which is left as an exercise (Section 11.3.3).) In Section 11.3.3, we’ll
complete the process by adding some tests and then doing a little refactoring.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Paste in the URL from the email generated in Section 11.2.4. What is the
activation token?

2. Verify at the console that the User is authenticated according to the ac-
tivation token in the URL from the previous exercise. Is the user now
activated?

11.3.3 Activation test and refactoring
In this section, we’ll add an integration test for account activation. Because we
already have a test for signing up with valid information, we’ll add the steps to

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

642 CHAPTER 11. ACCOUNT ACTIVATION

Figure 11.7: The warning message for a not-yet-activated user.

11.3. ACTIVATING THE ACCOUNT 643

the test developed in Section 7.4.4 (Listing 7.31). There are quite a few steps,
but they are mostly straightforward; see if you can follow along in Listing 11.33.
(The highlights in Listing 11.33 indicate lines that are especially important or
easy to miss, but there are other new lines as well, so take care to add them all.)

Listing 11.33: Adding account activation to the user signup test. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

def setup

ActionMailer::Base.deliveries.clear

end

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

assert_select 'div#error_explanation'

assert_select 'div.field_with_errors'

end

test "valid signup information with account activation" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

assert_equal 1, ActionMailer::Base.deliveries.size

user = assigns(:user)

assert_not user.activated?

Try to log in before activation.

log_in_as(user)

assert_not is_logged_in?

Invalid activation token

get edit_account_activation_path("invalid token", email: user.email)

assert_not is_logged_in?

Valid token, wrong email

get edit_account_activation_path(user.activation_token, email: 'wrong')

644 CHAPTER 11. ACCOUNT ACTIVATION

assert_not is_logged_in?

Valid activation token

get edit_account_activation_path(user.activation_token, email: user.email)

assert user.reload.activated?

follow_redirect!

assert_template 'users/show'

assert is_logged_in?

end

end

There’s a lot of code in Listing 11.33, but the only completely novel code
is in the line

assert_equal 1, ActionMailer::Base.deliveries.size

This code verifies that exactly 1 message was delivered. Because the deliver-
ies array is global, we have to reset it in the setup method to prevent our code
from breaking if any other tests deliver email (as will be the case in Chapter 12).

Listing 11.33 also uses the assigns method for the first time in the main
tutorial; as explained in a Chapter 9 exercise (Section 9.3.1), assigns lets us
access instance variables in the corresponding action. For example, the Users
controller’s create action defines an @user variable (Listing 11.23), so we
can access it in the test using assigns(:user). The assigns method is
deprecated in default Rails tests as of Rails 5, but I still find it useful in many
contexts, and it’s available via the rails-controller-testing gem we
included in Listing 3.2.

Finally, note that Listing 11.33 restores the lines we commented out in List-
ing 11.24.

At this point, the test suite should be green:

Listing 11.34: green
$ rails test

With the test in Listing 11.33, we’re ready to refactor a little by moving some
of the user manipulation out of the controller and into the model. In particular,

11.3. ACTIVATING THE ACCOUNT 645

we’ll make an activate method to update the user’s activation attributes and
a send_activation_email to send the activation email. The extra methods
appear in Listing 11.35, and the refactored application code appears in List-
ing 11.36 and Listing 11.37.

Listing 11.35: Adding user activation methods to the User model.
app/models/user.rb

class User < ApplicationRecord

.

.

.

Activates an account.

def activate

update_attribute(:activated, true)

update_attribute(:activated_at, Time.zone.now)

end

Sends activation email.

def send_activation_email

UserMailer.account_activation(self).deliver_now

end

private

.

.

.

end

Listing 11.36: Sending email via the user model object.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

@user.send_activation_email

flash[:info] = "Please check your email to activate your account."

redirect_to root_url

else

render 'new'

end

646 CHAPTER 11. ACCOUNT ACTIVATION

end

.

.

.

end

Listing 11.37: Account activation via the user model object.
app/controllers/account_activations_controller.rb

class AccountActivationsController < ApplicationController

def edit

user = User.find_by(email: params[:email])

if user && !user.activated? && user.authenticated?(:activation, params[:id])

user.activate

log_in user

flash[:success] = "Account activated!"

redirect_to user

else

flash[:danger] = "Invalid activation link"

redirect_to root_url

end

end

end

Note that Listing 11.35 eliminates the use of user., which would break
inside the User model because there is no such variable:

-user.update_attribute(:activated, true)

-user.update_attribute(:activated_at, Time.zone.now)

+update_attribute(:activated, true)

+update_attribute(:activated_at, Time.zone.now)

(We could have switched from user to self, but recall from Section 6.2.5 that
self is optional inside the model.) It also changes @user to self in the call
to the User mailer:

-UserMailer.account_activation(@user).deliver_now

+UserMailer.account_activation(self).deliver_now

11.3. ACTIVATING THE ACCOUNT 647

These are exactly the kinds of details that are easy to miss during even a simple
refactoring but will be caught by a good test suite. Speaking of which, the test
suite should still be green:

Listing 11.38: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. In Listing 11.35, the activatemethod makes two calls to the update_-
attribute, each of which requires a separate database transaction. By
filling in the template shown in Listing 11.39, replace the two update_-
attribute calls with a single call to update_columns, which hits the
database only once. (Note that, like update_attribute, update_-
columns doesn’t run the model callbacks or validations.) After making
the changes, verify that the test suite is still green.

2. Right now all users are displayed on the user index page at /users and
are visible via the URL /users/:id, but it makes sense to show users only
if they are activated. Arrange for this behavior by filling in the template
shown in Listing 11.40.9 (This uses the Active Record where method,
which we’ll learn more about in Section 13.3.3.)

3. To test the code in the previous exercise, write integration tests for both
/users and /users/:id.

9Note that Listing 11.40 uses and in place of &&. The two are nearly identical, but the latter operator has
a higher precedence, which binds too tightly to root_url in this case. We could fix the problem by putting
root_url in parentheses, but the idiomatically correct way to do it is to use and instead.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Order_of_operations#Programming_languages

648 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.39: A template for using update_columns.
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token, :activation_token

before_save :downcase_email

before_create :create_activation_digest

.

.

.

Activates an account.

def activate

update_columns(activated: FILL_IN, activated_at: FILL_IN)

end

Sends activation email.

def send_activation_email

UserMailer.account_activation(self).deliver_now

end

private

Converts email to all lower-case.

def downcase_email

self.email = email.downcase

end

Creates and assigns the activation token and digest.

def create_activation_digest

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

end

end

Listing 11.40: A template for code to show only active users.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def index

@users = User.where(activated: FILL_IN).paginate(page: params[:page])

end

def show

@user = User.find(params[:id])

11.4. EMAIL IN PRODUCTION 649

redirect_to root_url and return unless FILL_IN

end

.

.

.

end

11.4 Email in production
Now that we’ve got account activations working in development, in this section
we’ll configure our application so that it can actually send email in production.
We’ll first get set up with a free service to send email, and then configure and
deploy our application.

To send email in production, we’ll use SendGrid, which is available as an
add-on at Heroku for verified accounts. (This requires adding credit card in-
formation to your Heroku account, but there is no charge when verifying an
account.) For our purposes, the “starter” tier (which as of this writing is limited
to 400 emails a day but costs nothing) is the best fit. We can add it to our app
as follows:

$ heroku addons:create sendgrid:starter

(This might fail on systems with an older version of Heroku’s command-line
interface. In this case, either upgrade to the latest Heroku toolbelt or try the
older syntax heroku addons:add sendgrid:starter.)

To configure our application to use SendGrid, we need to fill out the SMTP
settings for our production environment. As shown in Listing 11.41, you will
also have to define a host variable with the address of your production website.

Listing 11.41: Configuring Rails to use SendGrid in production.
config/environments/production.rb

Rails.application.configure do

.

https://toolbelt.heroku.com/
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

