
614 CHAPTER 11. ACCOUNT ACTIVATION

3. In Listing 6.35, we saw that email downcasing can be written more simply
as email.downcase! (without any assignment). Make this change to
the downcase_email method in Listing 11.3 and verify by running the
test suite that it works.

11.2 Account activation emails
With the data modeling complete, we’re now ready to add the code needed to
send an account activation email. The method is to add a User mailer using
the Action Mailer library, which we’ll use in the Users controller create ac-
tion to send an email with an activation link. Mailers are structured much like
controller actions, with email templates defined as views. These templates will
include links with the activation token and email address associated with the
account to be activated.

11.2.1 Mailer templates
As with models and controllers, we can generate a mailer using rails gen-

erate, as shown in Listing 11.6.

Listing 11.6: Generating the User mailer.
$ rails generate mailer UserMailer account_activation password_reset

In addition to the necessary account_activation method, Listing 11.6 gen-
erates the password_reset method we’ll need in Chapter 12.

The command in Listing 11.6 also generates two view templates for each
mailer, one for plain-text email and one for HTML email. For the account
activation mailer method, they appear as in Listing 11.7 and Listing 11.8. (We’ll
take care of the corresponding password reset templates in Chapter 12.)

11.2. ACCOUNT ACTIVATION EMAILS 615

Listing 11.7: The generated account activation text view.
app/views/user_mailer/account_activation.text.erb

UserMailer#account_activation

<%= @greeting %>, find me in app/views/user_mailer/account_activation.text.erb

Listing 11.8: The generated account activation HTML view.
app/views/user_mailer/account_activation.html.erb

<h1>UserMailer#account_activation</h1>

<p>

<%= @greeting %>, find me in app/views/user_mailer/account_activation.html.erb

</p>

Let’s take a look at the generated mailers to get a sense of how they work
(Listing 11.9 and Listing 11.10). We see in Listing 11.9 that there is a de-
fault from address common to all mailers in the application, and each method
in Listing 11.10 has a recipient’s address as well. (Listing 11.9 also uses a
mailer layout corresponding to the email format; although it won’t ever matter
in this tutorial, the resulting HTML and plain-text mailer layouts can be found
in app/views/layouts.) The generated code also includes an instance vari-
able (@greeting), which is available in the mailer views in much the same
way that instance variables in controllers are available in ordinary views.

Listing 11.9: The generated application mailer.
app/mailers/application_mailer.rb

class ApplicationMailer < ActionMailer::Base

default from: "from@example.com"

layout 'mailer'

end

616 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.10: The generated User mailer.
app/mailers/user_mailer.rb

class UserMailer < ApplicationMailer

Subject can be set in your I18n file at config/locales/en.yml

with the following lookup:

#

en.user_mailer.account_activation.subject

#

def account_activation

@greeting = "Hi"

mail to: "to@example.org"

end

Subject can be set in your I18n file at config/locales/en.yml

with the following lookup:

#

en.user_mailer.password_reset.subject

#

def password_reset

@greeting = "Hi"

mail to: "to@example.org"

end

end

To make a working activation email, we’ll first customize the generated
template as shown in Listing 11.11. Next, we’ll create an instance variable con-
taining the user (for use in the view), and then mail the result to user.email

(Listing 11.12). As seen in Listing 11.12, the mail method also takes a sub-
ject key, whose value is used as the email’s subject line.

Listing 11.11: The application mailer with a new default from address.
app/mailers/application_mailer.rb

class ApplicationMailer < ActionMailer::Base

default from: "noreply@example.com"

layout 'mailer'

end

11.2. ACCOUNT ACTIVATION EMAILS 617

Listing 11.12: Mailing the account activation link. red
app/mailers/user_mailer.rb

class UserMailer < ApplicationMailer

def account_activation(user)

@user = user

mail to: user.email, subject: "Account activation"

end

def password_reset

@greeting = "Hi"

mail to: "to@example.org"

end

end

As indicated in the Listing 11.12 caption, the tests are currently red (due to
our changing account_activation to take an argument); we’ll get them to
green in Section 11.2.3.

As with ordinary views, we can use embedded Ruby to customize the tem-
plate views, in this case greeting the user by name and including a link to a
custom activation link. Our plan is to find the user by email address and then
authenticate the activation token, so the link needs to include both the email and
the token. Because we’re modeling activations using an Account Activations
resource, the token itself can appear as the argument of the named route defined
in Listing 11.1:

edit_account_activation_url(@user.activation_token, ...)

Recalling that

edit_user_url(user)

produces a URL of the form

618 CHAPTER 11. ACCOUNT ACTIVATION

http://www.example.com/users/1/edit

the corresponding account activation link’s base URL will look like this:

http://www.example.com/account_activations/q5lt38hQDc_959PVoo6b7A/edit

Here q5lt38hQDc_959PVoo6b7A is a URL-safe base64 string generated by
the new_token method (Listing 9.2), and it plays the same role as the user id in
/users/1/edit. In particular, in the Activations controller edit action, the token
will be available in the params hash as params[:id].

In order to include the email as well, we need to use a query parameter,
which in a URL appears as a key-value pair located after a question mark:6

account_activations/q5lt38hQDc_959PVoo6b7A/edit?email=foo%40example.com

Notice that the ‘@’ in the email address appears as %40, i.e., it’s “escaped out”
to guarantee a valid URL. The way to set a query parameter in Rails is to include
a hash in the named route:

edit_account_activation_url(@user.activation_token, email: @user.email)

When using named routes in this way to define query parameters, Rails au-
tomatically escapes out any special characters. The resulting email address
will also be unescaped automatically in the controller, and will be available
via params[:email].

With the @user instance variable as defined in Listing 11.12, we can create
the necessary links using the named edit route and embedded Ruby, as shown in
Listing 11.13 and Listing 11.14. Note that the HTML template in Listing 11.14
uses the link_to method to construct a valid link.

6URLs can contain multiple query parameters, consisting of multiple key-value pairs separated by the amper-
sand character &, as in /edit?name=Foo%20Bar&email=foo%40example.com.

11.2. ACCOUNT ACTIVATION EMAILS 619

Listing 11.13: The account activation text view.
app/views/user_mailer/account_activation.text.erb

Hi <%= @user.name %>,

Welcome to the Sample App! Click on the link below to activate your account:

<%= edit_account_activation_url(@user.activation_token, email: @user.email) %>

Listing 11.14: The account activation HTML view.
app/views/user_mailer/account_activation.html.erb

<h1>Sample App</h1>

<p>Hi <%= @user.name %>,</p>

<p>

Welcome to the Sample App! Click on the link below to activate your account:

</p>

<%= link_to "Activate", edit_account_activation_url(@user.activation_token,

email: @user.email) %>

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. At the console, verify that the escapemethod in the CGImodule escapes
out the email address as shown in Listing 11.15. What is the escaped
value of the string "Don't panic!"?

Listing 11.15: Escaping an email with CGI.escape.
>> CGI.escape('foo@example.com')

=> "foo%40example.com"

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

620 CHAPTER 11. ACCOUNT ACTIVATION

11.2.2 Email previews
To see the results of the templates defined in Listing 11.13 and Listing 11.14, we
can use email previews, which are special URLs exposed by Rails to let us see
what our email messages look like. First, we need to add some configuration to
our application’s development environment, as shown in Listing 11.16.

Listing 11.16: Email settings in development.
config/environments/development.rb

Rails.application.configure do

.

.

.

config.action_mailer.raise_delivery_errors = false

host = 'example.com' # Don't use this literally; use your local dev host instead

Use this on the cloud IDE.

config.action_mailer.default_url_options = { host: host, protocol: 'https' }

Use this if developing on localhost.

config.action_mailer.default_url_options = { host: host, protocol: 'http' }

.

.

.

end

Listing 11.16 uses a host name of 'example.com', but as indicated in the
comment you should use the actual host of your development environment. For
example, on the cloud IDE you should use

host = '<hex string>.vfs.cloud9.us-east-2.amazonaws.com' # Cloud IDE

config.action_mailer.default_url_options = { host: host, protocol: 'https' }

where the exact URL is based on what you see in your browser (Figure 11.2).
On a local system, you should use this instead:

host = 'localhost:3000' # Local server

config.action_mailer.default_url_options = { host: host, protocol: 'http' }

11.2. ACCOUNT ACTIVATION EMAILS 621

Figure 11.2: The host URL for the cloud IDE.

Note especially in this second example that https has changed to plain http.
After restarting the development server to activate the configuration in List-

ing 11.16, we next need to update the User mailer preview file, which was au-
tomatically generated in Section 11.2, as shown in Listing 11.17.

Listing 11.17: The generated User mailer previews.
test/mailers/previews/user_mailer_preview.rb

Preview all emails at http://localhost:3000/rails/mailers/user_mailer

class UserMailerPreview < ActionMailer::Preview

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/account_activation

def account_activation

UserMailer.account_activation

end

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/password_reset

def password_reset

UserMailer.password_reset

end

end

Because the account_activation method defined in Listing 11.12 re-
quires a valid user object as an argument, the code in Listing 11.17 won’t work
as written. To fix it, we define a user variable equal to the first user in the devel-
opment database, and then pass it as an argument to UserMailer.account_-
activation (Listing 11.18). Note that Listing 11.18 also assigns a value to
user.activation_token, which is necessary because the account activa-
tion templates in Listing 11.13 and Listing 11.14 need an account activation
token. (Because activation_token is a virtual attribute (Section 11.1), the
user from the database doesn’t have one.)

622 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.18: A working preview method for account activation.
test/mailers/previews/user_mailer_preview.rb

Preview all emails at http://localhost:3000/rails/mailers/user_mailer

class UserMailerPreview < ActionMailer::Preview

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/account_activation

def account_activation

user = User.first

user.activation_token = User.new_token

UserMailer.account_activation(user)

end

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/password_reset

def password_reset

UserMailer.password_reset

end

end

With the preview code as in Listing 11.18, we can visit the suggested URLs
to preview the account activation emails. (If you are using the cloud IDE, you
should replace localhost:3000 with the corresponding base URL.) The re-
sulting HTML and text emails appear as in Figure 11.3 and Figure 11.4.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Preview the email templates in your browser. What do the Date fields
read for your previews?

11.2.3 Email tests
As a final step, we’ll write a couple of tests to double-check the results shown in
the email previews. This isn’t as hard as it sounds, because Rails has generated
useful example tests for us (Listing 11.19).

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

11.2. ACCOUNT ACTIVATION EMAILS 623

Figure 11.3: A preview of the HTML version of the account activation email.

624 CHAPTER 11. ACCOUNT ACTIVATION

Figure 11.4: A preview of the text version of the account activation email.

11.2. ACCOUNT ACTIVATION EMAILS 625

Listing 11.19: The User mailer test generated by Rails. red
test/mailers/user_mailer_test.rb

require 'test_helper'

class UserMailerTest < ActionMailer::TestCase

test "account_activation" do

mail = UserMailer.account_activation

assert_equal "Account activation", mail.subject

assert_equal ["to@example.org"], mail.to

assert_equal ["from@example.com"], mail.from

assert_match "Hi", mail.body.encoded

end

test "password_reset" do

mail = UserMailer.password_reset

assert_equal "Password reset", mail.subject

assert_equal ["to@example.org"], mail.to

assert_equal ["from@example.com"], mail.from

assert_match "Hi", mail.body.encoded

end

end

As mentioned in Section 11.2.1, the tests in Listing 11.19 are currently red.
The tests in Listing 11.19 use the powerful assert_match method, which

can be used either with a string or a regular expression:

assert_match 'foo', 'foobar' # true

assert_match 'baz', 'foobar' # false

assert_match /\w+/, 'foobar' # true

assert_match /\w+/, '$#!*+@' # false

The test in Listing 11.20 uses assert_match to check that the name, activation
token, and escaped email appear in the email’s body. For the last of these, note
the use of

CGI.escape(user.email)

to escape the test user’s email, which we met briefly in Section 11.2.1.7
7When I originally wrote this chapter, I couldn’t recall offhand how to escape URLs in Rails, and figuring it

626 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.20: A test of the current email implementation. red
test/mailers/user_mailer_test.rb

require 'test_helper'

class UserMailerTest < ActionMailer::TestCase

test "account_activation" do

user = users(:michael)

user.activation_token = User.new_token

mail = UserMailer.account_activation(user)

assert_equal "Account activation", mail.subject

assert_equal [user.email], mail.to

assert_equal ["noreply@example.com"], mail.from

assert_match user.name, mail.body.encoded

assert_match user.activation_token, mail.body.encoded

assert_match CGI.escape(user.email), mail.body.encoded

end

end

Note that Listing 11.20 takes care to add an activation token to the fixture user,
which would otherwise be blank. (Listing 11.20 also removes the generated
password reset test, which we’ll add back (in modified form) in Section 12.2.2.)

To get the test in Listing 11.20 to pass, we have to configure our test file
with the proper domain host, as shown in Listing 11.21.

Listing 11.21: Setting the test domain host. green
config/environments/test.rb

Rails.application.configure do

.

.

.

config.action_mailer.delivery_method = :test

config.action_mailer.default_url_options = { host: 'example.com' }

.

.

.

end

out was pure technical sophistication (Box 1.2). What I did was Google “ruby rails escape url”, which led me
to find two main possibilities, URI.encode(str) and CGI.escape(str). Trying them both revealed that the
latter works. (It turns out there’s a third possibility: the ERB::Util library supplies a url_encode method that has
the same effect.)

https://www.google.com/search?q=ruby+rails+escape+url
https://stackoverflow.com/questions/6714196/ruby-url-encoding-string
http://apidock.com/ruby/ERB/Util/url_encode

11.2. ACCOUNT ACTIVATION EMAILS 627

With the code as above, the mailer test should be green:

Listing 11.22: green
$ rails test:mailers

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that the full test suite is still green.

2. Confirm that the test goes red if you remove the call to CGI.escape in
Listing 11.20.

11.2.4 Updating the Users create action
To use the mailer in our application, we just need to add a couple of lines to
the create action used to sign users up, as shown in Listing 11.23. Note that
Listing 11.23 has changed the redirect behavior upon signing up. Before, we
redirected to the user’s profile page (Section 7.4), but that doesn’t make sense
now that we’re requiring account activation. Instead, we now redirect to the
root URL.

Listing 11.23: Adding account activation to user signup. red
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

UserMailer.account_activation(@user).deliver_now

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

628 CHAPTER 11. ACCOUNT ACTIVATION

flash[:info] = "Please check your email to activate your account."

redirect_to root_url

else

render 'new'

end

end

.

.

.

end

Because Listing 11.23 redirects to the root URL instead of to the profile
page and doesn’t log the user in as before, the test suite is currently red, even
though the application is working as designed. We’ll fix this by temporarily
commenting out the failing lines, as shown in Listing 11.24. We’ll uncomment
these lines and write passing tests for account activation in Section 11.3.3.

Listing 11.24: Temporarily commenting out failing tests. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

assert_select 'div#error_explanation'

assert_select 'div.field_with_errors'

end

test "valid signup information" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

follow_redirect!

11.2. ACCOUNT ACTIVATION EMAILS 629

assert_template 'users/show'

assert is_logged_in?

end

end

If you now try signing up as a new user, you should be redirected as shown
in Figure 11.5, and an email like the one shown in Listing 11.25 should be
generated. Note that you will not receive an actual email in a development
environment, but it will show up in your server logs. (You may have to scroll up
a bit to see it.) Section 11.4 discusses how to send email for real in a production
environment.

Listing 11.25: A sample account activation email from the server log.
UserMailer#account_activation: processed outbound mail in 5.1ms

Delivered mail 5d606e97b7a44_28872b106582df988776a@ip-172-31-25-202.mail (3.2ms)

Date: Fri, 23 Aug 2019 22:54:15 +0000

From: noreply@example.com

To: michael@michaelhartl.com

Message-ID: <5d606e97b7a44_28872b106582df988776a@ip-172-31-25-202.mail>

Subject: Account activation

Mime-Version: 1.0

Content-Type: multipart/alternative;

boundary="--==_mimepart_5d606e97b6f16_28872b106582df98876dd";

charset=UTF-8

Content-Transfer-Encoding: 7bit

----==_mimepart_5d606e97b6f16_28872b106582df98876dd

Content-Type: text/plain;

charset=UTF-8

Content-Transfer-Encoding: 7bit

Hi Michael Hartl,

Welcome to the Sample App! Click on the link below to activate your account:

https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/account_activations/zdqs6sF7BMiDfXBaC7-6vA/

edit?email=michael%40michaelhartl.com

----==_mimepart_5d606e97b6f16_28872b106582df98876dd

Content-Type: text/html;

charset=UTF-8

Content-Transfer-Encoding: 7bit

630 CHAPTER 11. ACCOUNT ACTIVATION

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<style>

/* Email styles need to be inline */

</style>

</head>

<body>

<h1>Sample App</h1>

<p>Hi Michael Hartl,</p>

<p>

Welcome to the Sample App! Click on the link below to activate your account:

</p>

<a href="https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/account_activations/zdqs6sF7BMiDfXBaC7-6vA/

edit?email=michael%40michaelhartl.com">Activate

</body>

</html>

----==_mimepart_5d606e97b6f16_28872b106582df98876dd--

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Sign up as a new user and verify that you’re properly redirected. What is
the content of the generated email in the server log? What is the value of
the activation token?

2. Verify at the console that the new user has been created but that it is not
yet activated.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

11.2. ACCOUNT ACTIVATION EMAILS 631

Figure 11.5: The Home page with an activation message after signup.

