
11.1. ACCOUNT ACTIVATIONS RESOURCE 605

11.1 Account activations resource
As with sessions (Section 8.1), we’ll model account activations as a resource
even though they won’t be associated with an Active Record model. Instead,
we’ll include the relevant data (including the activation token and activation
status) in the User model itself.

Because we’ll be treating account activations as a resource, we’ll interact
with them via a standard REST URL. The activation link will be modifying
the user’s activation status, and for such modifications the standard REST prac-
tice is to issue a PATCH request to the update action (Table 7.1). The activa-
tion link needs to be sent in an email, though, and hence will involve a regular
browser click, which issues a GET request instead of PATCH. This design con-
straint means that we can’t use the update action, but we’ll do the next-best
thing and use the edit action instead, which does respond to GET requests.

As usual, we’ll make a topic branch for the new feature:

$ git checkout -b account-activation

11.1.1 Account activations controller
As with Users and Sessions, the actions (or, in this case, the sole action) for
the Account Activations resource will live inside an Account Activations con-
troller, which we can generate as follows:4

$ rails generate controller AccountActivations

As we’ll see in Section 11.2.1, the activation email will involve a URL of
the form

4Because we’ll be using an edit action, we could include edit on the command line, but this would also
generate both an edit view and a test, neither of which we’ll turn out to need.

606 CHAPTER 11. ACCOUNT ACTIVATION

HTTP request URL Action Named route
GET /account_activation/<token>/edit edit edit_account_activation_url(token)

Table 11.2: RESTful route provided by the Account Activations resource in
Listing 11.1.

edit_account_activation_url(activation_token, ...)

which means we’ll need a named route for the edit action. We can arrange for
this with the resources line shown in Listing 11.1, which gives the RESTful
route shown in Table 11.2.

Listing 11.1: Adding a route for the Account Activations edit action.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

get '/login', to: 'sessions#new'

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users

resources :account_activations, only: [:edit]

end

We’ll define the edit action itself in Section 11.3.2, after we’ve finished
the Account Activations data model and mailers.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that the test suite is still green.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

11.1. ACCOUNT ACTIVATIONS RESOURCE 607

2. Why does Table 11.2 list the _url form of the named route instead of the
_path form? Hint: We’re going to use it in an email.

11.1.2 Account activation data model
As discussed in the introduction, we need a unique activation token for use in
the activation email. One possibility would be to use a string that’s stored both
in the database and included in the activation URL, but this raises security con-
cerns if our database is compromised. For example, an attacker with access to
the database could immediately activate newly created accounts (thereby log-
ging in as the user), and could then change the password to gain control.5

To prevent such scenarios, we’ll follow the example of passwords (Chap-
ter 6) and remember tokens (Chapter 9) by pairing a publicly exposed virtual
attribute with a secure hash digest saved to the database. This way we can ac-
cess the activation token using

user.activation_token

and authenticate the user with code like

user.authenticated?(:activation, token)

(This will require a modification of the authenticated? method defined in
Listing 9.6.)

We’ll also add a boolean attribute called activated to the User model,
which will allow us to test if a user is activated using the same kind of auto-
generated boolean method we saw in Section 10.4.1:

if user.activated? ...

5It’s mainly for this reason that we won’t be using the (perhaps slightly misnamed) has_secure_token
facility added in Rails 5, which stores the corresponding token in the database as unhashed cleartext.

https://en.wikipedia.org/wiki/Cleartext

608 CHAPTER 11. ACCOUNT ACTIVATION

password_digest string

created_at datetime

admin boolean

datetimeactivated_at
booleanactivated
stringactivation_digest

remember_digest string

datetimeupdated_at

email string

id
name string

integer
users

Figure 11.1: The User model with added account activation attributes.

Finally, although we won’t use it in this tutorial, we’ll record the time and date
of the activation in case we want it for future reference. The full data model
appears in Figure 11.1.

The migration to add the data model from Figure 11.1 adds all three at-
tributes at the command line:

$ rails generate migration add_activation_to_users \

> activation_digest:string activated:boolean activated_at:datetime

(Here the > on the second line is a “line continuation” character inserted auto-
matically by the shell, and should not be typed literally.) As with the admin

attribute (Listing 10.54), we’ll add a default boolean value of false to the
activated attribute, as shown in Listing 11.2.

11.1. ACCOUNT ACTIVATIONS RESOURCE 609

Listing 11.2: A migration for account activation (with added index).
db/migrate/[timestamp]_add_activation_to_users.rb

class AddActivationToUsers < ActiveRecord::Migration[6.0]

def change

add_column :users, :activation_digest, :string

add_column :users, :activated, :boolean, default: false

add_column :users, :activated_at, :datetime

end

end

We then apply the migration as usual:

$ rails db:migrate

Activation token callback

Because every newly signed-up user will require activation, we should assign
an activation token and digest to each user object before it’s created. We saw
a similar idea in Section 6.2.5, where we needed to convert an email address
to lower-case before saving a user to the database. In that case, we used a
before_save callback combined with the downcase method (Listing 6.32).
A before_save callback is automatically called before the object is saved,
which includes both object creation and updates, but in the case of the activation
digest we only want the callback to fire when the user is created. This requires
a before_create callback, which we’ll define as follows:

before_create :create_activation_digest

This code, called a method reference, arranges for Rails to look for a method
called create_activation_digest and run it before creating the user. (In
Listing 6.32, we passed before_save an explicit block, but the method refer-
ence technique is generally preferred.) Because the create_activation_-
digest method itself is only used internally by the User model, there’s no

610 CHAPTER 11. ACCOUNT ACTIVATION

need to expose it to outside users; as we saw in Section 7.3.2, the Ruby way to
accomplish this is to use the private keyword:

private

def create_activation_digest

Create the token and digest.

end

All methods defined in a class after private are automatically hidden, as seen
in this console session:

$ rails console

>> User.first.create_activation_digest

NoMethodError: private method `create_activation_digest' called for #<User>

The purpose of the before_create callback is to assign the token and
corresponding digest, which we can accomplish as follows:

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

This code simply reuses the token and digest methods used for the remember
token, as we can see by comparing it with the remember method from List-
ing 9.3:

Remembers a user in the database for use in persistent sessions.

def remember

self.remember_token = User.new_token

update_attribute(:remember_digest, User.digest(remember_token))

end

The main difference is the use of update_attribute in the latter case. The
reason for the difference is that remember tokens and digests are created for
users that already exist in the database, whereas the before_create callback
happens before the user has been created, so there’s not yet any attribute to

11.1. ACCOUNT ACTIVATIONS RESOURCE 611

update. As a result of the callback, when a new user is defined with User.new
(as in user signup, Listing 7.19), it will automatically get both activation_-
token and activation_digest attributes; because the latter is associated
with a column in the database (Figure 11.1), it will be written to the database
automatically when the user is saved.

Putting together the discussion above yields the User model shown in List-
ing 11.3. As required by the virtual nature of the activation token, we’ve added
a second attr_accessor to our model. Note that we’ve taken the opportu-
nity to replace the email downcasing callback from Listing 6.32 with a method
reference.

Listing 11.3: Adding account activation code to the User model. green
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token, :activation_token

before_save :downcase_email

before_create :create_activation_digest

validates :name, presence: true, length: { maximum: 50 }

.

.

.

private

Converts email to all lower-case.

def downcase_email

self.email = email.downcase

end

Creates and assigns the activation token and digest.

def create_activation_digest

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

end

end

Seed and fixture users

Before moving on, we should also update our seed data and fixtures so that our
sample and test users are initially activated, as shown in Listing 11.4 and List-
ing 11.5. (The Time.zone.now method is a built-in Rails helper that returns

612 CHAPTER 11. ACCOUNT ACTIVATION

the current timestamp, taking into account the time zone on the server.)

Listing 11.4: Activating seed users by default.
db/seeds.rb

Create a main sample user.

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password_confirmation: "foobar",

admin: true,

activated: true,

activated_at: Time.zone.now)

Generate a bunch of additional users.

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

email: email,

password: password,

password_confirmation: password,

activated: true,

activated_at: Time.zone.now)

end

Listing 11.5: Activating fixture users.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

admin: true

activated: true

activated_at: <%= Time.zone.now %>

archer:

name: Sterling Archer

email: duchess@example.gov

password_digest: <%= User.digest('password') %>

activated: true

activated_at: <%= Time.zone.now %>

lana:

name: Lana Kane

11.1. ACCOUNT ACTIVATIONS RESOURCE 613

email: hands@example.gov

password_digest: <%= User.digest('password') %>

activated: true

activated_at: <%= Time.zone.now %>

malory:

name: Malory Archer

email: boss@example.gov

password_digest: <%= User.digest('password') %>

activated: true

activated_at: <%= Time.zone.now %>

<% 30.times do |n| %>

user_<%= n %>:

name: <%= "User #{n}" %>

email: <%= "user-#{n}@example.com" %>

password_digest: <%= User.digest('password') %>

activated: true

activated_at: <%= Time.zone.now %>

<% end %>

To apply the changes in Listing 11.4, reset the database to reseed the data
as usual:

$ rails db:migrate:reset

$ rails db:seed

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that the test suite is still green after the changes made in this sec-
tion.

2. By instantiating a User object in the console, confirm that calling the
create_activation_digest method raises a NoMethodError due
to its being a private method. What is the value of the user’s activation
digest?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

