
Chapter 11

Account activation
At present, newly registered users immediately have full access to their accounts
(Chapter 7); in this chapter, we’ll implement an account activation step to verify
that the user controls the email address they used to sign up.1 This will involve
associating an activation token and digest with a user, sending the user an email
with a link including the token, and activating the user upon clicking the link.
In Chapter 12, we’ll apply similar ideas to allow users to reset their passwords
if they forget them. Each of these two features will involve creating a new
resource, thereby giving us a chance to see further examples of controllers,
routing, and database migrations. In the process, we’ll also have a chance to
learn how to send email in Rails, both in development and in production.

Our strategy for handling account activation parallels user login
(Section 8.2) and especially remembering users (Section 9.1). The basic se-
quence appears as follows:2

1. Start users in an “unactivated” state.

2. When a user signs up, generate an activation token and corresponding
1This chapter is independent of the others, apart from the mailer generation in Listing 11.6, which is used in

Chapter 12. Readers can skip to Chapter 12 or to Chapter 13 with minimal discontinuity, although the former will
be substantially more challenging due to substantial overlap with this chapter.

2In addition to this basic sequence, another nice feature to have is the ability to resend account activation
emails in case the initial confirmation gets lost, marked as spam, etc. Adding such a feature should be within your
capabilities by the time you finish this tutorial. You might also consider using a solution such as Devise, already
includes the ability to resend confirmation emails.

603

https://github.com/plataformatec/devise

604 CHAPTER 11. ACCOUNT ACTIVATION

find by string digest authentication
email password password_digest authenticate(password)

id remember_token remember_digest authenticated?(:remember, token)

email activation_token activation_digest authenticated?(:activation, token)

email reset_token reset_digest authenticated?(:reset, token)

Table 11.1: The analogy between login, remembering, account activation, and
password reset.

activation digest.

3. Save the activation digest to the database, and then send an email to the
user with a link containing the activation token and user’s email address.3

4. When the user clicks the link, find the user by email address, and then
authenticate the token by comparing with the activation digest.

5. If the user is authenticated, change the status from “unactivated” to “ac-
tivated”.

Because of the similarity with passwords and remember tokens, we will be able
to reuse many of the same ideas for account activation (as well as password re-
set), including the User.digest and User.new_token methods and a modi-
fied version of the user.authenticated? method. Table 11.1 illustrates the
analogy (including the password reset from Chapter 12).

In Section 11.1, we’ll make a resource and data model for account activa-
tions (Section 11.1), and in Section 11.2 we’ll add a mailer for sending account
activation emails (Section 11.2). We’ll implement the actual account activa-
tion, including a generalized version of the authenticated? method from
Table 11.1, in Section 11.3.

3We could use the user’s id instead, since it’s already exposed in the URLs of our application, but using email
addresses is more future-proof in case we want to obfuscate user ids for any reason (such as to prevent competitors
from knowing how many users our application has, for example).

11.1. ACCOUNT ACTIVATIONS RESOURCE 605

11.1 Account activations resource
As with sessions (Section 8.1), we’ll model account activations as a resource
even though they won’t be associated with an Active Record model. Instead,
we’ll include the relevant data (including the activation token and activation
status) in the User model itself.

Because we’ll be treating account activations as a resource, we’ll interact
with them via a standard REST URL. The activation link will be modifying
the user’s activation status, and for such modifications the standard REST prac-
tice is to issue a PATCH request to the update action (Table 7.1). The activa-
tion link needs to be sent in an email, though, and hence will involve a regular
browser click, which issues a GET request instead of PATCH. This design con-
straint means that we can’t use the update action, but we’ll do the next-best
thing and use the edit action instead, which does respond to GET requests.

As usual, we’ll make a topic branch for the new feature:

$ git checkout -b account-activation

11.1.1 Account activations controller
As with Users and Sessions, the actions (or, in this case, the sole action) for
the Account Activations resource will live inside an Account Activations con-
troller, which we can generate as follows:4

$ rails generate controller AccountActivations

As we’ll see in Section 11.2.1, the activation email will involve a URL of
the form

4Because we’ll be using an edit action, we could include edit on the command line, but this would also
generate both an edit view and a test, neither of which we’ll turn out to need.

606 CHAPTER 11. ACCOUNT ACTIVATION

HTTP request URL Action Named route
GET /account_activation/<token>/edit edit edit_account_activation_url(token)

Table 11.2: RESTful route provided by the Account Activations resource in
Listing 11.1.

edit_account_activation_url(activation_token, ...)

which means we’ll need a named route for the edit action. We can arrange for
this with the resources line shown in Listing 11.1, which gives the RESTful
route shown in Table 11.2.

Listing 11.1: Adding a route for the Account Activations edit action.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

get '/login', to: 'sessions#new'

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users

resources :account_activations, only: [:edit]

end

We’ll define the edit action itself in Section 11.3.2, after we’ve finished
the Account Activations data model and mailers.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that the test suite is still green.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

11.1. ACCOUNT ACTIVATIONS RESOURCE 607

2. Why does Table 11.2 list the _url form of the named route instead of the
_path form? Hint: We’re going to use it in an email.

11.1.2 Account activation data model
As discussed in the introduction, we need a unique activation token for use in
the activation email. One possibility would be to use a string that’s stored both
in the database and included in the activation URL, but this raises security con-
cerns if our database is compromised. For example, an attacker with access to
the database could immediately activate newly created accounts (thereby log-
ging in as the user), and could then change the password to gain control.5

To prevent such scenarios, we’ll follow the example of passwords (Chap-
ter 6) and remember tokens (Chapter 9) by pairing a publicly exposed virtual
attribute with a secure hash digest saved to the database. This way we can ac-
cess the activation token using

user.activation_token

and authenticate the user with code like

user.authenticated?(:activation, token)

(This will require a modification of the authenticated? method defined in
Listing 9.6.)

We’ll also add a boolean attribute called activated to the User model,
which will allow us to test if a user is activated using the same kind of auto-
generated boolean method we saw in Section 10.4.1:

if user.activated? ...

5It’s mainly for this reason that we won’t be using the (perhaps slightly misnamed) has_secure_token
facility added in Rails 5, which stores the corresponding token in the database as unhashed cleartext.

https://en.wikipedia.org/wiki/Cleartext

608 CHAPTER 11. ACCOUNT ACTIVATION

password_digest string

created_at datetime

admin boolean

datetimeactivated_at
booleanactivated
stringactivation_digest

remember_digest string

datetimeupdated_at

email string

id
name string

integer
users

Figure 11.1: The User model with added account activation attributes.

Finally, although we won’t use it in this tutorial, we’ll record the time and date
of the activation in case we want it for future reference. The full data model
appears in Figure 11.1.

The migration to add the data model from Figure 11.1 adds all three at-
tributes at the command line:

$ rails generate migration add_activation_to_users \

> activation_digest:string activated:boolean activated_at:datetime

(Here the > on the second line is a “line continuation” character inserted auto-
matically by the shell, and should not be typed literally.) As with the admin

attribute (Listing 10.54), we’ll add a default boolean value of false to the
activated attribute, as shown in Listing 11.2.

11.1. ACCOUNT ACTIVATIONS RESOURCE 609

Listing 11.2: A migration for account activation (with added index).
db/migrate/[timestamp]_add_activation_to_users.rb

class AddActivationToUsers < ActiveRecord::Migration[6.0]

def change

add_column :users, :activation_digest, :string

add_column :users, :activated, :boolean, default: false

add_column :users, :activated_at, :datetime

end

end

We then apply the migration as usual:

$ rails db:migrate

Activation token callback

Because every newly signed-up user will require activation, we should assign
an activation token and digest to each user object before it’s created. We saw
a similar idea in Section 6.2.5, where we needed to convert an email address
to lower-case before saving a user to the database. In that case, we used a
before_save callback combined with the downcase method (Listing 6.32).
A before_save callback is automatically called before the object is saved,
which includes both object creation and updates, but in the case of the activation
digest we only want the callback to fire when the user is created. This requires
a before_create callback, which we’ll define as follows:

before_create :create_activation_digest

This code, called a method reference, arranges for Rails to look for a method
called create_activation_digest and run it before creating the user. (In
Listing 6.32, we passed before_save an explicit block, but the method refer-
ence technique is generally preferred.) Because the create_activation_-
digest method itself is only used internally by the User model, there’s no

610 CHAPTER 11. ACCOUNT ACTIVATION

need to expose it to outside users; as we saw in Section 7.3.2, the Ruby way to
accomplish this is to use the private keyword:

private

def create_activation_digest

Create the token and digest.

end

All methods defined in a class after private are automatically hidden, as seen
in this console session:

$ rails console

>> User.first.create_activation_digest

NoMethodError: private method `create_activation_digest' called for #<User>

The purpose of the before_create callback is to assign the token and
corresponding digest, which we can accomplish as follows:

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

This code simply reuses the token and digest methods used for the remember
token, as we can see by comparing it with the remember method from List-
ing 9.3:

Remembers a user in the database for use in persistent sessions.

def remember

self.remember_token = User.new_token

update_attribute(:remember_digest, User.digest(remember_token))

end

The main difference is the use of update_attribute in the latter case. The
reason for the difference is that remember tokens and digests are created for
users that already exist in the database, whereas the before_create callback
happens before the user has been created, so there’s not yet any attribute to

11.1. ACCOUNT ACTIVATIONS RESOURCE 611

update. As a result of the callback, when a new user is defined with User.new
(as in user signup, Listing 7.19), it will automatically get both activation_-
token and activation_digest attributes; because the latter is associated
with a column in the database (Figure 11.1), it will be written to the database
automatically when the user is saved.

Putting together the discussion above yields the User model shown in List-
ing 11.3. As required by the virtual nature of the activation token, we’ve added
a second attr_accessor to our model. Note that we’ve taken the opportu-
nity to replace the email downcasing callback from Listing 6.32 with a method
reference.

Listing 11.3: Adding account activation code to the User model. green
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token, :activation_token

before_save :downcase_email

before_create :create_activation_digest

validates :name, presence: true, length: { maximum: 50 }

.

.

.

private

Converts email to all lower-case.

def downcase_email

self.email = email.downcase

end

Creates and assigns the activation token and digest.

def create_activation_digest

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

end

end

Seed and fixture users

Before moving on, we should also update our seed data and fixtures so that our
sample and test users are initially activated, as shown in Listing 11.4 and List-
ing 11.5. (The Time.zone.now method is a built-in Rails helper that returns

612 CHAPTER 11. ACCOUNT ACTIVATION

the current timestamp, taking into account the time zone on the server.)

Listing 11.4: Activating seed users by default.
db/seeds.rb

Create a main sample user.

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password_confirmation: "foobar",

admin: true,

activated: true,

activated_at: Time.zone.now)

Generate a bunch of additional users.

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

email: email,

password: password,

password_confirmation: password,

activated: true,

activated_at: Time.zone.now)

end

Listing 11.5: Activating fixture users.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

admin: true

activated: true

activated_at: <%= Time.zone.now %>

archer:

name: Sterling Archer

email: duchess@example.gov

password_digest: <%= User.digest('password') %>

activated: true

activated_at: <%= Time.zone.now %>

lana:

name: Lana Kane

11.1. ACCOUNT ACTIVATIONS RESOURCE 613

email: hands@example.gov

password_digest: <%= User.digest('password') %>

activated: true

activated_at: <%= Time.zone.now %>

malory:

name: Malory Archer

email: boss@example.gov

password_digest: <%= User.digest('password') %>

activated: true

activated_at: <%= Time.zone.now %>

<% 30.times do |n| %>

user_<%= n %>:

name: <%= "User #{n}" %>

email: <%= "user-#{n}@example.com" %>

password_digest: <%= User.digest('password') %>

activated: true

activated_at: <%= Time.zone.now %>

<% end %>

To apply the changes in Listing 11.4, reset the database to reseed the data
as usual:

$ rails db:migrate:reset

$ rails db:seed

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that the test suite is still green after the changes made in this sec-
tion.

2. By instantiating a User object in the console, confirm that calling the
create_activation_digest method raises a NoMethodError due
to its being a private method. What is the value of the user’s activation
digest?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

614 CHAPTER 11. ACCOUNT ACTIVATION

3. In Listing 6.35, we saw that email downcasing can be written more simply
as email.downcase! (without any assignment). Make this change to
the downcase_email method in Listing 11.3 and verify by running the
test suite that it works.

11.2 Account activation emails
With the data modeling complete, we’re now ready to add the code needed to
send an account activation email. The method is to add a User mailer using
the Action Mailer library, which we’ll use in the Users controller create ac-
tion to send an email with an activation link. Mailers are structured much like
controller actions, with email templates defined as views. These templates will
include links with the activation token and email address associated with the
account to be activated.

11.2.1 Mailer templates
As with models and controllers, we can generate a mailer using rails gen-

erate, as shown in Listing 11.6.

Listing 11.6: Generating the User mailer.
$ rails generate mailer UserMailer account_activation password_reset

In addition to the necessary account_activation method, Listing 11.6 gen-
erates the password_reset method we’ll need in Chapter 12.

The command in Listing 11.6 also generates two view templates for each
mailer, one for plain-text email and one for HTML email. For the account
activation mailer method, they appear as in Listing 11.7 and Listing 11.8. (We’ll
take care of the corresponding password reset templates in Chapter 12.)

11.2. ACCOUNT ACTIVATION EMAILS 615

Listing 11.7: The generated account activation text view.
app/views/user_mailer/account_activation.text.erb

UserMailer#account_activation

<%= @greeting %>, find me in app/views/user_mailer/account_activation.text.erb

Listing 11.8: The generated account activation HTML view.
app/views/user_mailer/account_activation.html.erb

<h1>UserMailer#account_activation</h1>

<p>

<%= @greeting %>, find me in app/views/user_mailer/account_activation.html.erb

</p>

Let’s take a look at the generated mailers to get a sense of how they work
(Listing 11.9 and Listing 11.10). We see in Listing 11.9 that there is a de-
fault from address common to all mailers in the application, and each method
in Listing 11.10 has a recipient’s address as well. (Listing 11.9 also uses a
mailer layout corresponding to the email format; although it won’t ever matter
in this tutorial, the resulting HTML and plain-text mailer layouts can be found
in app/views/layouts.) The generated code also includes an instance vari-
able (@greeting), which is available in the mailer views in much the same
way that instance variables in controllers are available in ordinary views.

Listing 11.9: The generated application mailer.
app/mailers/application_mailer.rb

class ApplicationMailer < ActionMailer::Base

default from: "from@example.com"

layout 'mailer'

end

616 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.10: The generated User mailer.
app/mailers/user_mailer.rb

class UserMailer < ApplicationMailer

Subject can be set in your I18n file at config/locales/en.yml

with the following lookup:

#

en.user_mailer.account_activation.subject

#

def account_activation

@greeting = "Hi"

mail to: "to@example.org"

end

Subject can be set in your I18n file at config/locales/en.yml

with the following lookup:

#

en.user_mailer.password_reset.subject

#

def password_reset

@greeting = "Hi"

mail to: "to@example.org"

end

end

To make a working activation email, we’ll first customize the generated
template as shown in Listing 11.11. Next, we’ll create an instance variable con-
taining the user (for use in the view), and then mail the result to user.email

(Listing 11.12). As seen in Listing 11.12, the mail method also takes a sub-
ject key, whose value is used as the email’s subject line.

Listing 11.11: The application mailer with a new default from address.
app/mailers/application_mailer.rb

class ApplicationMailer < ActionMailer::Base

default from: "noreply@example.com"

layout 'mailer'

end

11.2. ACCOUNT ACTIVATION EMAILS 617

Listing 11.12: Mailing the account activation link. red
app/mailers/user_mailer.rb

class UserMailer < ApplicationMailer

def account_activation(user)

@user = user

mail to: user.email, subject: "Account activation"

end

def password_reset

@greeting = "Hi"

mail to: "to@example.org"

end

end

As indicated in the Listing 11.12 caption, the tests are currently red (due to
our changing account_activation to take an argument); we’ll get them to
green in Section 11.2.3.

As with ordinary views, we can use embedded Ruby to customize the tem-
plate views, in this case greeting the user by name and including a link to a
custom activation link. Our plan is to find the user by email address and then
authenticate the activation token, so the link needs to include both the email and
the token. Because we’re modeling activations using an Account Activations
resource, the token itself can appear as the argument of the named route defined
in Listing 11.1:

edit_account_activation_url(@user.activation_token, ...)

Recalling that

edit_user_url(user)

produces a URL of the form

618 CHAPTER 11. ACCOUNT ACTIVATION

http://www.example.com/users/1/edit

the corresponding account activation link’s base URL will look like this:

http://www.example.com/account_activations/q5lt38hQDc_959PVoo6b7A/edit

Here q5lt38hQDc_959PVoo6b7A is a URL-safe base64 string generated by
the new_token method (Listing 9.2), and it plays the same role as the user id in
/users/1/edit. In particular, in the Activations controller edit action, the token
will be available in the params hash as params[:id].

In order to include the email as well, we need to use a query parameter,
which in a URL appears as a key-value pair located after a question mark:6

account_activations/q5lt38hQDc_959PVoo6b7A/edit?email=foo%40example.com

Notice that the ‘@’ in the email address appears as %40, i.e., it’s “escaped out”
to guarantee a valid URL. The way to set a query parameter in Rails is to include
a hash in the named route:

edit_account_activation_url(@user.activation_token, email: @user.email)

When using named routes in this way to define query parameters, Rails au-
tomatically escapes out any special characters. The resulting email address
will also be unescaped automatically in the controller, and will be available
via params[:email].

With the @user instance variable as defined in Listing 11.12, we can create
the necessary links using the named edit route and embedded Ruby, as shown in
Listing 11.13 and Listing 11.14. Note that the HTML template in Listing 11.14
uses the link_to method to construct a valid link.

6URLs can contain multiple query parameters, consisting of multiple key-value pairs separated by the amper-
sand character &, as in /edit?name=Foo%20Bar&email=foo%40example.com.

11.2. ACCOUNT ACTIVATION EMAILS 619

Listing 11.13: The account activation text view.
app/views/user_mailer/account_activation.text.erb

Hi <%= @user.name %>,

Welcome to the Sample App! Click on the link below to activate your account:

<%= edit_account_activation_url(@user.activation_token, email: @user.email) %>

Listing 11.14: The account activation HTML view.
app/views/user_mailer/account_activation.html.erb

<h1>Sample App</h1>

<p>Hi <%= @user.name %>,</p>

<p>

Welcome to the Sample App! Click on the link below to activate your account:

</p>

<%= link_to "Activate", edit_account_activation_url(@user.activation_token,

email: @user.email) %>

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. At the console, verify that the escapemethod in the CGImodule escapes
out the email address as shown in Listing 11.15. What is the escaped
value of the string "Don't panic!"?

Listing 11.15: Escaping an email with CGI.escape.
>> CGI.escape('foo@example.com')

=> "foo%40example.com"

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

620 CHAPTER 11. ACCOUNT ACTIVATION

11.2.2 Email previews
To see the results of the templates defined in Listing 11.13 and Listing 11.14, we
can use email previews, which are special URLs exposed by Rails to let us see
what our email messages look like. First, we need to add some configuration to
our application’s development environment, as shown in Listing 11.16.

Listing 11.16: Email settings in development.
config/environments/development.rb

Rails.application.configure do

.

.

.

config.action_mailer.raise_delivery_errors = false

host = 'example.com' # Don't use this literally; use your local dev host instead

Use this on the cloud IDE.

config.action_mailer.default_url_options = { host: host, protocol: 'https' }

Use this if developing on localhost.

config.action_mailer.default_url_options = { host: host, protocol: 'http' }

.

.

.

end

Listing 11.16 uses a host name of 'example.com', but as indicated in the
comment you should use the actual host of your development environment. For
example, on the cloud IDE you should use

host = '<hex string>.vfs.cloud9.us-east-2.amazonaws.com' # Cloud IDE

config.action_mailer.default_url_options = { host: host, protocol: 'https' }

where the exact URL is based on what you see in your browser (Figure 11.2).
On a local system, you should use this instead:

host = 'localhost:3000' # Local server

config.action_mailer.default_url_options = { host: host, protocol: 'http' }

11.2. ACCOUNT ACTIVATION EMAILS 621

Figure 11.2: The host URL for the cloud IDE.

Note especially in this second example that https has changed to plain http.
After restarting the development server to activate the configuration in List-

ing 11.16, we next need to update the User mailer preview file, which was au-
tomatically generated in Section 11.2, as shown in Listing 11.17.

Listing 11.17: The generated User mailer previews.
test/mailers/previews/user_mailer_preview.rb

Preview all emails at http://localhost:3000/rails/mailers/user_mailer

class UserMailerPreview < ActionMailer::Preview

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/account_activation

def account_activation

UserMailer.account_activation

end

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/password_reset

def password_reset

UserMailer.password_reset

end

end

Because the account_activation method defined in Listing 11.12 re-
quires a valid user object as an argument, the code in Listing 11.17 won’t work
as written. To fix it, we define a user variable equal to the first user in the devel-
opment database, and then pass it as an argument to UserMailer.account_-
activation (Listing 11.18). Note that Listing 11.18 also assigns a value to
user.activation_token, which is necessary because the account activa-
tion templates in Listing 11.13 and Listing 11.14 need an account activation
token. (Because activation_token is a virtual attribute (Section 11.1), the
user from the database doesn’t have one.)

622 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.18: A working preview method for account activation.
test/mailers/previews/user_mailer_preview.rb

Preview all emails at http://localhost:3000/rails/mailers/user_mailer

class UserMailerPreview < ActionMailer::Preview

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/account_activation

def account_activation

user = User.first

user.activation_token = User.new_token

UserMailer.account_activation(user)

end

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/password_reset

def password_reset

UserMailer.password_reset

end

end

With the preview code as in Listing 11.18, we can visit the suggested URLs
to preview the account activation emails. (If you are using the cloud IDE, you
should replace localhost:3000 with the corresponding base URL.) The re-
sulting HTML and text emails appear as in Figure 11.3 and Figure 11.4.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Preview the email templates in your browser. What do the Date fields
read for your previews?

11.2.3 Email tests
As a final step, we’ll write a couple of tests to double-check the results shown in
the email previews. This isn’t as hard as it sounds, because Rails has generated
useful example tests for us (Listing 11.19).

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

11.2. ACCOUNT ACTIVATION EMAILS 623

Figure 11.3: A preview of the HTML version of the account activation email.

624 CHAPTER 11. ACCOUNT ACTIVATION

Figure 11.4: A preview of the text version of the account activation email.

11.2. ACCOUNT ACTIVATION EMAILS 625

Listing 11.19: The User mailer test generated by Rails. red
test/mailers/user_mailer_test.rb

require 'test_helper'

class UserMailerTest < ActionMailer::TestCase

test "account_activation" do

mail = UserMailer.account_activation

assert_equal "Account activation", mail.subject

assert_equal ["to@example.org"], mail.to

assert_equal ["from@example.com"], mail.from

assert_match "Hi", mail.body.encoded

end

test "password_reset" do

mail = UserMailer.password_reset

assert_equal "Password reset", mail.subject

assert_equal ["to@example.org"], mail.to

assert_equal ["from@example.com"], mail.from

assert_match "Hi", mail.body.encoded

end

end

As mentioned in Section 11.2.1, the tests in Listing 11.19 are currently red.
The tests in Listing 11.19 use the powerful assert_match method, which

can be used either with a string or a regular expression:

assert_match 'foo', 'foobar' # true

assert_match 'baz', 'foobar' # false

assert_match /\w+/, 'foobar' # true

assert_match /\w+/, '$#!*+@' # false

The test in Listing 11.20 uses assert_match to check that the name, activation
token, and escaped email appear in the email’s body. For the last of these, note
the use of

CGI.escape(user.email)

to escape the test user’s email, which we met briefly in Section 11.2.1.7
7When I originally wrote this chapter, I couldn’t recall offhand how to escape URLs in Rails, and figuring it

626 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.20: A test of the current email implementation. red
test/mailers/user_mailer_test.rb

require 'test_helper'

class UserMailerTest < ActionMailer::TestCase

test "account_activation" do

user = users(:michael)

user.activation_token = User.new_token

mail = UserMailer.account_activation(user)

assert_equal "Account activation", mail.subject

assert_equal [user.email], mail.to

assert_equal ["noreply@example.com"], mail.from

assert_match user.name, mail.body.encoded

assert_match user.activation_token, mail.body.encoded

assert_match CGI.escape(user.email), mail.body.encoded

end

end

Note that Listing 11.20 takes care to add an activation token to the fixture user,
which would otherwise be blank. (Listing 11.20 also removes the generated
password reset test, which we’ll add back (in modified form) in Section 12.2.2.)

To get the test in Listing 11.20 to pass, we have to configure our test file
with the proper domain host, as shown in Listing 11.21.

Listing 11.21: Setting the test domain host. green
config/environments/test.rb

Rails.application.configure do

.

.

.

config.action_mailer.delivery_method = :test

config.action_mailer.default_url_options = { host: 'example.com' }

.

.

.

end

out was pure technical sophistication (Box 1.2). What I did was Google “ruby rails escape url”, which led me
to find two main possibilities, URI.encode(str) and CGI.escape(str). Trying them both revealed that the
latter works. (It turns out there’s a third possibility: the ERB::Util library supplies a url_encode method that has
the same effect.)

https://www.google.com/search?q=ruby+rails+escape+url
https://stackoverflow.com/questions/6714196/ruby-url-encoding-string
http://apidock.com/ruby/ERB/Util/url_encode

11.2. ACCOUNT ACTIVATION EMAILS 627

With the code as above, the mailer test should be green:

Listing 11.22: green
$ rails test:mailers

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that the full test suite is still green.

2. Confirm that the test goes red if you remove the call to CGI.escape in
Listing 11.20.

11.2.4 Updating the Users create action
To use the mailer in our application, we just need to add a couple of lines to
the create action used to sign users up, as shown in Listing 11.23. Note that
Listing 11.23 has changed the redirect behavior upon signing up. Before, we
redirected to the user’s profile page (Section 7.4), but that doesn’t make sense
now that we’re requiring account activation. Instead, we now redirect to the
root URL.

Listing 11.23: Adding account activation to user signup. red
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

UserMailer.account_activation(@user).deliver_now

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

628 CHAPTER 11. ACCOUNT ACTIVATION

flash[:info] = "Please check your email to activate your account."

redirect_to root_url

else

render 'new'

end

end

.

.

.

end

Because Listing 11.23 redirects to the root URL instead of to the profile
page and doesn’t log the user in as before, the test suite is currently red, even
though the application is working as designed. We’ll fix this by temporarily
commenting out the failing lines, as shown in Listing 11.24. We’ll uncomment
these lines and write passing tests for account activation in Section 11.3.3.

Listing 11.24: Temporarily commenting out failing tests. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

assert_select 'div#error_explanation'

assert_select 'div.field_with_errors'

end

test "valid signup information" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

follow_redirect!

11.2. ACCOUNT ACTIVATION EMAILS 629

assert_template 'users/show'

assert is_logged_in?

end

end

If you now try signing up as a new user, you should be redirected as shown
in Figure 11.5, and an email like the one shown in Listing 11.25 should be
generated. Note that you will not receive an actual email in a development
environment, but it will show up in your server logs. (You may have to scroll up
a bit to see it.) Section 11.4 discusses how to send email for real in a production
environment.

Listing 11.25: A sample account activation email from the server log.
UserMailer#account_activation: processed outbound mail in 5.1ms

Delivered mail 5d606e97b7a44_28872b106582df988776a@ip-172-31-25-202.mail (3.2ms)

Date: Fri, 23 Aug 2019 22:54:15 +0000

From: noreply@example.com

To: michael@michaelhartl.com

Message-ID: <5d606e97b7a44_28872b106582df988776a@ip-172-31-25-202.mail>

Subject: Account activation

Mime-Version: 1.0

Content-Type: multipart/alternative;

boundary="--==_mimepart_5d606e97b6f16_28872b106582df98876dd";

charset=UTF-8

Content-Transfer-Encoding: 7bit

----==_mimepart_5d606e97b6f16_28872b106582df98876dd

Content-Type: text/plain;

charset=UTF-8

Content-Transfer-Encoding: 7bit

Hi Michael Hartl,

Welcome to the Sample App! Click on the link below to activate your account:

https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/account_activations/zdqs6sF7BMiDfXBaC7-6vA/

edit?email=michael%40michaelhartl.com

----==_mimepart_5d606e97b6f16_28872b106582df98876dd

Content-Type: text/html;

charset=UTF-8

Content-Transfer-Encoding: 7bit

630 CHAPTER 11. ACCOUNT ACTIVATION

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<style>

/* Email styles need to be inline */

</style>

</head>

<body>

<h1>Sample App</h1>

<p>Hi Michael Hartl,</p>

<p>

Welcome to the Sample App! Click on the link below to activate your account:

</p>

<a href="https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/account_activations/zdqs6sF7BMiDfXBaC7-6vA/

edit?email=michael%40michaelhartl.com">Activate

</body>

</html>

----==_mimepart_5d606e97b6f16_28872b106582df98876dd--

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Sign up as a new user and verify that you’re properly redirected. What is
the content of the generated email in the server log? What is the value of
the activation token?

2. Verify at the console that the new user has been created but that it is not
yet activated.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

11.2. ACCOUNT ACTIVATION EMAILS 631

Figure 11.5: The Home page with an activation message after signup.

632 CHAPTER 11. ACCOUNT ACTIVATION

11.3 Activating the account
Now that we have a correctly generated email as in Listing 11.25, we need
to write the edit action in the Account Activations controller that actually
activates the user. As usual, we’ll write a test for this action, and once the
code is tested we’ll refactor it to move some functionality out of the Account
Activations controller and into the User model.

11.3.1 Generalizing the authenticated? method
Recall from the discussion in Section 11.2.1 that the activation token and email
are available as params[:id] and params[:email], respectively. Follow-
ing the model of passwords (Listing 8.7) and remember tokens (Listing 9.9),
we plan to find and authenticate the user with code something like this:

user = User.find_by(email: params[:email])

if user && user.authenticated?(:activation, params[:id])

(As we’ll see in a moment, there will be one extra boolean in the expression
above. See if you can guess what it will be.)

The above code uses the authenticated?method to test if the account ac-
tivation digest matches the given token, but at present this won’t work because
that method is specialized to the remember token (Listing 9.6):

Returns true if the given token matches the digest.

def authenticated?(remember_token)

return false if remember_digest.nil?

BCrypt::Password.new(remember_digest).is_password?(remember_token)

end

Here remember_digest is an attribute on the User model, and inside the
model we can rewrite it as follows:

11.3. ACTIVATING THE ACCOUNT 633

self.remember_digest

Somehow, we want to be able to make this variable, so we can call

self.activation_digest

instead by passing in the appropriate parameter to the authenticated? meth-
od.

The solution involves our first example of metaprogramming, which is es-
sentially a program that writes a program. (Metaprogramming is one of Ruby’s
strongest suits, and many of the “magic” features of Rails are due to its use of
Ruby metaprogramming.) The key in this case is the powerful send method,
which lets us call a method with a name of our choice by “sending a message”
to a given object. For example, in this console session we use send on a native
Ruby object to find the length of an array:

$ rails console

>> a = [1, 2, 3]

>> a.length

=> 3

>> a.send(:length)

=> 3

>> a.send("length")

=> 3

Here we see that passing the symbol :length or string "length" to send

is equivalent to calling the length method on the given object. As a second
example, we’ll access the activation_digest attribute of the first user in
the database:

>> user = User.first

>> user.activation_digest

=> "$2a$10$4e6TFzEJAVNyjLv8Q5u22ensMt28qEkx0roaZvtRcp6UZKRM6N9Ae"

>> user.send(:activation_digest)

=> "$2a$10$4e6TFzEJAVNyjLv8Q5u22ensMt28qEkx0roaZvtRcp6UZKRM6N9Ae"

>> user.send("activation_digest")

634 CHAPTER 11. ACCOUNT ACTIVATION

=> "$2a$10$4e6TFzEJAVNyjLv8Q5u22ensMt28qEkx0roaZvtRcp6UZKRM6N9Ae"

>> attribute = :activation

>> user.send("#{attribute}_digest")

=> "$2a$10$4e6TFzEJAVNyjLv8Q5u22ensMt28qEkx0roaZvtRcp6UZKRM6N9Ae"

Note in the last example that we’ve defined an attribute variable equal to
the symbol :activation and used string interpolation to build up the proper
argument to send. This would work also with the string 'activation', but
using a symbol is more conventional, and in either case

"#{attribute}_digest"

becomes

"activation_digest"

once the string is interpolated. (We saw how symbols are interpolated as strings
in Section 7.4.2.)

Based on this discussion of send, we can rewrite the current authenti-
cated? method as follows:

def authenticated?(remember_token)

digest = self.send("remember_digest")

return false if digest.nil?

BCrypt::Password.new(digest).is_password?(remember_token)

end

With this template in place, we can generalize the method by adding a function
argument with the name of the digest, and then use string interpolation as above:

def authenticated?(attribute, token)

digest = self.send("#{attribute}_digest")

return false if digest.nil?

BCrypt::Password.new(digest).is_password?(token)

end

11.3. ACTIVATING THE ACCOUNT 635

(Here we have renamed the second argument token to emphasize that it’s now
generic.) Because we’re inside the user model, we can also omit self, yielding
the most idiomatically correct version:

def authenticated?(attribute, token)

digest = send("#{attribute}_digest")

return false if digest.nil?

BCrypt::Password.new(digest).is_password?(token)

end

We can now reproduce the previous behavior of authenticated? by invoking
it like this:

user.authenticated?(:remember, remember_token)

Applying this discussion to the User model yields the generalized authen-
ticated? method shown in Listing 11.26.

Listing 11.26: A generalized authenticated? method. red
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns true if the given token matches the digest.

def authenticated?(attribute, token)

digest = send("#{attribute}_digest")

return false if digest.nil?

BCrypt::Password.new(digest).is_password?(token)

end

.

.

.

end

The caption to Listing 11.26 indicates a red test suite:

636 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.27: red
$ rails test

The reason for the failure is that the current_user method (Listing 9.9) and
the test for nil digests (Listing 9.17) both use the old version of authenti-
cated?, which expects one argument instead of two. Note that this is exactly
the kind of error a test suite is supposed to catch.

To fix the issue, we simply update the two cases to use the generalized
method, as shown in Listing 11.28 and Listing 11.29.

Listing 11.28: Using the generalized authenticated? method in cur-

rent_user. red
app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

Returns the current logged-in user (if any).

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.signed[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(:remember, cookies[:remember_token])

log_in user

@current_user = user

end

end

end

.

.

.

end

Listing 11.29: Using the generalized authenticated? method in the User
test. green
test/models/user_test.rb

11.3. ACTIVATING THE ACCOUNT 637

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

test "authenticated? should return false for a user with nil digest" do

assert_not @user.authenticated?(:remember, '')

end

end

At this point, the tests should be green:

Listing 11.30: green
$ rails test

Refactoring the code as above is incredibly more error-prone without a solid test
suite, which is why we went to such trouble to write good tests in Section 9.1.2
and Section 9.3.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Create and remember new user at the console. What are the user’s re-
member and activation tokens? What are the corresponding digests?

2. Using the generalized authenticated? method from Listing 11.26,
verify that the user is authenticated according to both the remember token
and the activation token.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

638 CHAPTER 11. ACCOUNT ACTIVATION

11.3.2 Activation edit action
With the authenticated? method as in Listing 11.26, we’re now ready to
write an edit action that authenticates the user corresponding to the email ad-
dress in the params hash. Our test for validity will look like this:

if user && !user.activated? && user.authenticated?(:activation, params[:id])

Note the presence of !user.activated?, which is the extra boolean alluded
to above. This prevents our code from activating users who have already been
activated, which is important because we’ll be logging in users upon confirma-
tion, and we don’t want to allow attackers who manage to obtain the activation
link to log in as the user.

If the user is authenticated according to the booleans above, we need to
activate the user and update the activated_at timestamp:8

user.update_attribute(:activated, true)

user.update_attribute(:activated_at, Time.zone.now)

This leads to the edit action shown in Listing 11.31. Note also that List-
ing 11.31 handles the case of an invalid activation token; this should rarely
happen, but it’s easy enough to redirect in this case to the root URL.

Listing 11.31: An edit action to activate accounts.
app/controllers/account_activations_controller.rb

class AccountActivationsController < ApplicationController

def edit

user = User.find_by(email: params[:email])

if user && !user.activated? && user.authenticated?(:activation, params[:id])

user.update_attribute(:activated, true)

user.update_attribute(:activated_at, Time.zone.now)

8Here we use two calls to update_attribute rather than a single call to update_attributes because
(per Section 6.1.5) the latter would run the validations. Lacking in this case the user password, these validations
would fail.

11.3. ACTIVATING THE ACCOUNT 639

log_in user

flash[:success] = "Account activated!"

redirect_to user

else

flash[:danger] = "Invalid activation link"

redirect_to root_url

end

end

end

With the code in Listing 11.31, you should now be able to paste in the URL
from Listing 11.25 to activate the relevant user. For example, on my system I
visited the URL

https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/account_activations/zdqs6sF7BMiDfXBaC7-6vA/

edit?email=michael%40michaelhartl.com

and got the result shown in Figure 11.6.
Of course, currently user activation doesn’t actually do anything, because

we haven’t changed how users log in. In order to have account activation
mean something, we need to allow users to log in only if they are activated.
As shown in Listing 11.32, the way to do this is to log the user in as usual
if user.activated? is true; otherwise, we redirect to the root URL with a
warning message (Figure 11.7).

Listing 11.32: Preventing unactivated users from logging in.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

if user.activated?

log_in user

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

redirect_back_or user

640 CHAPTER 11. ACCOUNT ACTIVATION

Figure 11.6: The profile page after a successful activation.

11.3. ACTIVATING THE ACCOUNT 641

else

message = "Account not activated. "

message += "Check your email for the activation link."

flash[:warning] = message

redirect_to root_url

end

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

log_out if logged_in?

redirect_to root_url

end

end

With that, apart from one refinement, the basic functionality of user activa-
tion is done. (That refinement is preventing unactivated users from being dis-
played, which is left as an exercise (Section 11.3.3).) In Section 11.3.3, we’ll
complete the process by adding some tests and then doing a little refactoring.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Paste in the URL from the email generated in Section 11.2.4. What is the
activation token?

2. Verify at the console that the User is authenticated according to the ac-
tivation token in the URL from the previous exercise. Is the user now
activated?

11.3.3 Activation test and refactoring
In this section, we’ll add an integration test for account activation. Because we
already have a test for signing up with valid information, we’ll add the steps to

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

642 CHAPTER 11. ACCOUNT ACTIVATION

Figure 11.7: The warning message for a not-yet-activated user.

11.3. ACTIVATING THE ACCOUNT 643

the test developed in Section 7.4.4 (Listing 7.31). There are quite a few steps,
but they are mostly straightforward; see if you can follow along in Listing 11.33.
(The highlights in Listing 11.33 indicate lines that are especially important or
easy to miss, but there are other new lines as well, so take care to add them all.)

Listing 11.33: Adding account activation to the user signup test. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

def setup

ActionMailer::Base.deliveries.clear

end

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

assert_select 'div#error_explanation'

assert_select 'div.field_with_errors'

end

test "valid signup information with account activation" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

assert_equal 1, ActionMailer::Base.deliveries.size

user = assigns(:user)

assert_not user.activated?

Try to log in before activation.

log_in_as(user)

assert_not is_logged_in?

Invalid activation token

get edit_account_activation_path("invalid token", email: user.email)

assert_not is_logged_in?

Valid token, wrong email

get edit_account_activation_path(user.activation_token, email: 'wrong')

644 CHAPTER 11. ACCOUNT ACTIVATION

assert_not is_logged_in?

Valid activation token

get edit_account_activation_path(user.activation_token, email: user.email)

assert user.reload.activated?

follow_redirect!

assert_template 'users/show'

assert is_logged_in?

end

end

There’s a lot of code in Listing 11.33, but the only completely novel code
is in the line

assert_equal 1, ActionMailer::Base.deliveries.size

This code verifies that exactly 1 message was delivered. Because the deliver-
ies array is global, we have to reset it in the setup method to prevent our code
from breaking if any other tests deliver email (as will be the case in Chapter 12).

Listing 11.33 also uses the assigns method for the first time in the main
tutorial; as explained in a Chapter 9 exercise (Section 9.3.1), assigns lets us
access instance variables in the corresponding action. For example, the Users
controller’s create action defines an @user variable (Listing 11.23), so we
can access it in the test using assigns(:user). The assigns method is
deprecated in default Rails tests as of Rails 5, but I still find it useful in many
contexts, and it’s available via the rails-controller-testing gem we
included in Listing 3.2.

Finally, note that Listing 11.33 restores the lines we commented out in List-
ing 11.24.

At this point, the test suite should be green:

Listing 11.34: green
$ rails test

With the test in Listing 11.33, we’re ready to refactor a little by moving some
of the user manipulation out of the controller and into the model. In particular,

11.3. ACTIVATING THE ACCOUNT 645

we’ll make an activate method to update the user’s activation attributes and
a send_activation_email to send the activation email. The extra methods
appear in Listing 11.35, and the refactored application code appears in List-
ing 11.36 and Listing 11.37.

Listing 11.35: Adding user activation methods to the User model.
app/models/user.rb

class User < ApplicationRecord

.

.

.

Activates an account.

def activate

update_attribute(:activated, true)

update_attribute(:activated_at, Time.zone.now)

end

Sends activation email.

def send_activation_email

UserMailer.account_activation(self).deliver_now

end

private

.

.

.

end

Listing 11.36: Sending email via the user model object.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

@user.send_activation_email

flash[:info] = "Please check your email to activate your account."

redirect_to root_url

else

render 'new'

end

646 CHAPTER 11. ACCOUNT ACTIVATION

end

.

.

.

end

Listing 11.37: Account activation via the user model object.
app/controllers/account_activations_controller.rb

class AccountActivationsController < ApplicationController

def edit

user = User.find_by(email: params[:email])

if user && !user.activated? && user.authenticated?(:activation, params[:id])

user.activate

log_in user

flash[:success] = "Account activated!"

redirect_to user

else

flash[:danger] = "Invalid activation link"

redirect_to root_url

end

end

end

Note that Listing 11.35 eliminates the use of user., which would break
inside the User model because there is no such variable:

-user.update_attribute(:activated, true)

-user.update_attribute(:activated_at, Time.zone.now)

+update_attribute(:activated, true)

+update_attribute(:activated_at, Time.zone.now)

(We could have switched from user to self, but recall from Section 6.2.5 that
self is optional inside the model.) It also changes @user to self in the call
to the User mailer:

-UserMailer.account_activation(@user).deliver_now

+UserMailer.account_activation(self).deliver_now

11.3. ACTIVATING THE ACCOUNT 647

These are exactly the kinds of details that are easy to miss during even a simple
refactoring but will be caught by a good test suite. Speaking of which, the test
suite should still be green:

Listing 11.38: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. In Listing 11.35, the activatemethod makes two calls to the update_-
attribute, each of which requires a separate database transaction. By
filling in the template shown in Listing 11.39, replace the two update_-
attribute calls with a single call to update_columns, which hits the
database only once. (Note that, like update_attribute, update_-
columns doesn’t run the model callbacks or validations.) After making
the changes, verify that the test suite is still green.

2. Right now all users are displayed on the user index page at /users and
are visible via the URL /users/:id, but it makes sense to show users only
if they are activated. Arrange for this behavior by filling in the template
shown in Listing 11.40.9 (This uses the Active Record where method,
which we’ll learn more about in Section 13.3.3.)

3. To test the code in the previous exercise, write integration tests for both
/users and /users/:id.

9Note that Listing 11.40 uses and in place of &&. The two are nearly identical, but the latter operator has
a higher precedence, which binds too tightly to root_url in this case. We could fix the problem by putting
root_url in parentheses, but the idiomatically correct way to do it is to use and instead.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Order_of_operations#Programming_languages

648 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.39: A template for using update_columns.
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token, :activation_token

before_save :downcase_email

before_create :create_activation_digest

.

.

.

Activates an account.

def activate

update_columns(activated: FILL_IN, activated_at: FILL_IN)

end

Sends activation email.

def send_activation_email

UserMailer.account_activation(self).deliver_now

end

private

Converts email to all lower-case.

def downcase_email

self.email = email.downcase

end

Creates and assigns the activation token and digest.

def create_activation_digest

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

end

end

Listing 11.40: A template for code to show only active users.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def index

@users = User.where(activated: FILL_IN).paginate(page: params[:page])

end

def show

@user = User.find(params[:id])

11.4. EMAIL IN PRODUCTION 649

redirect_to root_url and return unless FILL_IN

end

.

.

.

end

11.4 Email in production
Now that we’ve got account activations working in development, in this section
we’ll configure our application so that it can actually send email in production.
We’ll first get set up with a free service to send email, and then configure and
deploy our application.

To send email in production, we’ll use SendGrid, which is available as an
add-on at Heroku for verified accounts. (This requires adding credit card in-
formation to your Heroku account, but there is no charge when verifying an
account.) For our purposes, the “starter” tier (which as of this writing is limited
to 400 emails a day but costs nothing) is the best fit. We can add it to our app
as follows:

$ heroku addons:create sendgrid:starter

(This might fail on systems with an older version of Heroku’s command-line
interface. In this case, either upgrade to the latest Heroku toolbelt or try the
older syntax heroku addons:add sendgrid:starter.)

To configure our application to use SendGrid, we need to fill out the SMTP
settings for our production environment. As shown in Listing 11.41, you will
also have to define a host variable with the address of your production website.

Listing 11.41: Configuring Rails to use SendGrid in production.
config/environments/production.rb

Rails.application.configure do

.

https://toolbelt.heroku.com/
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

650 CHAPTER 11. ACCOUNT ACTIVATION

.

.

config.action_mailer.raise_delivery_errors = true

config.action_mailer.delivery_method = :smtp

host = '<your heroku app>.herokuapp.com'

config.action_mailer.default_url_options = { host: host }

ActionMailer::Base.smtp_settings = {

:address => 'smtp.sendgrid.net',

:port => '587',

:authentication => :plain,

:user_name => ENV['SENDGRID_USERNAME'],

:password => ENV['SENDGRID_PASSWORD'],

:domain => 'heroku.com',

:enable_starttls_auto => true

}

.

.

.

end

The email configuration in Listing 11.41 includes the user_name and
password of the SendGrid account, but note that they are accessed via the ENV
environment variable instead of being hard-coded. This is a best practice for
production applications, which for security reasons should never expose sen-
sitive information such as raw passwords in source code. In the present case,
these variables are configured automatically via the SendGrid add-on, but we’ll
see an example in Section 13.4.4 where we’ll have to define them ourselves.
In case you’re curious, you can view the environment variables used in List-
ing 11.41 as follows:

$ heroku config:get SENDGRID_USERNAME

$ heroku config:get SENDGRID_PASSWORD

At this point, you should merge the topic branch into master:

$ rails test

$ git add -A

$ git commit -m "Add account activation"

$ git checkout master

$ git merge account-activation

11.4. EMAIL IN PRODUCTION 651

Figure 11.8: An account activation email sent in production.

Then push up to the remote repository and deploy to Heroku:

$ rails test

$ git push && git push heroku

$ heroku run rails db:migrate

Once the Heroku deploy has finished, try signing up for the sample applica-
tion in production using an email address you control. You should get an acti-
vation email as implemented in Section 11.2, as shown in Figure 11.8. Clicking
on the link should activate the account as promised, as shown in Figure 11.9.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Sign up for a new account in production. Did you get the email?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

652 CHAPTER 11. ACCOUNT ACTIVATION

Figure 11.9: Successful account activation in production.

11.5. CONCLUSION 653

2. Click on the link in the activation email to confirm that it works. What is
the corresponding entry in the server log? Hint: Run heroku logs at
the command line.

11.5 Conclusion
With the added account activation, our sample application’s sign up, log in,
and log out machinery is nearly complete. The only significant feature left is
allowing users to reset their passwords if they forget them. As we’ll see in
Chapter 12, password reset shares many features with account activation, which
means that we’ll be able to put the knowledge we’ve gained in this chapter to
good use.

11.5.1 What we learned in this chapter
• Like sessions, account activations can be modeled as a resource despite

not being Active Record objects.

• Rails can generate Action Mailer actions and views to send email.

• Action Mailer supports both plain-text and HTML mail.

• As with ordinary actions and views, instance variables defined in mailer
actions are available in mailer views.

• Account activations use a generated token to create a unique URL for
activating users.

• Account activations use a hashed activation digest to securely identify
valid activation requests.

• Both mailer tests and integration tests are useful for verifying the behavior
of the User mailer.

• We can send email in production using SendGrid.

