
12.3. RESETTING THE PASSWORD 679

user = users(:michael)

user.reset_token = User.new_token

mail = UserMailer.password_reset(user)

assert_equal "Password reset", mail.subject

assert_equal [user.email], mail.to

assert_equal ["noreply@example.com"], mail.from

assert_match user.reset_token, mail.body.encoded

assert_match CGI.escape(user.email), mail.body.encoded

end

end

At this point, the test suite should be green:

Listing 12.13: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Run just the mailer tests. Are they green?

2. Confirm that the test goes red if you remove the second call to CGI.es-
cape in Listing 12.12.

12.3 Resetting the password
Now that we have a correctly generated email as in Listing 12.11, we need to
write the edit action in the Password Resets controller that actually resets the
user’s password. As in Section 11.3.3, we’ll write a thorough integration test
as well.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

680 CHAPTER 12. PASSWORD RESET

12.3.1 Reset edit action
Password reset emails such as that shown in Listing 12.11 contain links of the
following form:

https://example.com/password_resets/3BdBrXeQZSWqFIDRN8cxHA/edit?email=fu%40bar.com

To get these links to work, we need a form for resetting passwords. The task is
similar to updating users via the user edit view (Listing 10.2), but in this case
with only password and confirmation fields.

There’s an additional complication, though: we expect to find the user by
email address, which means we need its value in both the edit and update

actions. The email will automatically be available in the edit action because
of its presence in the link above, but after we submit the form its value will be
lost. The solution is to use a hidden field to place (but not display) the email on
the page, and then submit it along with the rest of the form’s information. The
result appears in Listing 12.14.

Listing 12.14: The form to reset a password.
app/views/password_resets/edit.html.erb

<% provide(:title, 'Reset password') %>

<h1>Reset password</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, url: password_reset_path(params[:id]),

local: true) do |f| %>

<%= render 'shared/error_messages' %>

<%= hidden_field_tag :email, @user.email %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Update password", class: "btn btn-primary" %>

<% end %>

</div>

</div>

12.3. RESETTING THE PASSWORD 681

Note that Listing 12.14 uses the form tag helper

hidden_field_tag :email, @user.email

instead of

f.hidden_field :email, @user.email

because the reset link puts the email in params[:email], whereas the latter
would put it in params[:user][:email].

To get the form to render, we need to define an @user variable in the
Password Resets controller’s edit action. As with account activation (List-
ing 11.31), this involves finding the user corresponding to the email address
in params[:email]. We then need to verify that the user is valid, i.e., that
it exists, is activated, and is authenticated according to the reset token from
params[:id] (using the generalized authenticated? method defined in
Listing 11.26). Because the existence of a valid @user is needed in both the
edit and update actions, we’ll put the code to find and validate it in a couple
of before filters, as shown in Listing 12.15.

Listing 12.15: The edit action for password reset.
app/controllers/password_resets_controller.rb

class PasswordResetsController < ApplicationController

before_action :get_user, only: [:edit, :update]

before_action :valid_user, only: [:edit, :update]

.

.

.

def edit

end

private

def get_user

@user = User.find_by(email: params[:email])

end

682 CHAPTER 12. PASSWORD RESET

Confirms a valid user.

def valid_user

unless (@user && @user.activated? &&

@user.authenticated?(:reset, params[:id]))

redirect_to root_url

end

end

end

In Listing 12.15, compare the use of

authenticated?(:reset, params[:id])

to

authenticated?(:remember, cookies[:remember_token])

in Listing 11.28 and

authenticated?(:activation, params[:id])

in Listing 11.31. Together, these three uses complete the authentication methods
shown in Table 11.1.

With the code as above, following the link from Listing 12.11 should render
a password reset form. The result of pasting the link from the log (Listing 12.11)
appears in Figure 12.11.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Follow the link in the email from the server log in Section 12.2.1. Does
it properly render the form as shown in Figure 12.11?

2. What happens if you submit the form from the previous exercise?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.3. RESETTING THE PASSWORD 683

Figure 12.11: The password reset form.

684 CHAPTER 12. PASSWORD RESET

12.3.2 Updating the reset
Unlike the Account Activations edit method, which simply toggles the user
from “inactive” to “active”, the edit method for Password Resets is a form,
which must therefore submit to a corresponding update action. To define this
update action, we need to consider four cases:

1. An expired password reset

2. A failed update due to an invalid password

3. A failed update (which initially looks “successful”) due to an empty pass-
word and confirmation

4. A successful update
Cases (1), (2), and (4) are fairly straightforward, but Case (3) is non-obvious
and is explained in more detail below.

Case (1) applies to both the edit and update actions, and so logically
belongs in a before filter:

before_action :check_expiration, only: [:edit, :update] # Case (1)

This requires defining a private check_expiration method:

Checks expiration of reset token.

def check_expiration

if @user.password_reset_expired?

flash[:danger] = "Password reset has expired."

redirect_to new_password_reset_url

end

end

In the check_expirationmethod, we’ve deferred the expiration check to the
instance method password_reset_expired?, which is a little tricky and will
be defined in a moment.

Listing 12.16 shows the implementation of these filters, together with the
update action that implements Cases (2)–(4). Case (2) gets handled by a failed

12.3. RESETTING THE PASSWORD 685

update, with the error messages from the shared partial in Listing 12.14 display-
ing automatically when the edit form is re-rendered. Case (4) corresponds to a
successful change, and the result is similar to a successful login (Listing 8.29).

The only failure case not handled by Case (2) is when the password is empty,
which is currently allowed by our User model (Listing 10.13) and so needs
to be caught and handled explicitly.3 This is Case (3) above. Our method in
this case is to add an error directly to the @user object’s error messages using
errors.add:

@user.errors.add(:password, :blank)

This arranges to use the default message for blank content when the password
is empty.4

The result of putting Cases (1)–(4) together is the update action shown in
Listing 12.16.

Listing 12.16: The update action for password reset.
app/controllers/password_resets_controller.rb

class PasswordResetsController < ApplicationController

before_action :get_user, only: [:edit, :update]

before_action :valid_user, only: [:edit, :update]

before_action :check_expiration, only: [:edit, :update] # Case (1)

def new

end

def create

@user = User.find_by(email: params[:password_reset][:email].downcase)

if @user

@user.create_reset_digest

@user.send_password_reset_email

flash[:info] = "Email sent with password reset instructions"

redirect_to root_url

3We need only handle the case where the password is empty because if the confirmation is empty, the confir-
mation validation (which is skipped if the password is empty) will catch the problem and supply a relevant error
message.

4Alert reader Khaled Teilab has noted that one advantage of using errors.add(:password, :blank) is
that the resulting message is automatically rendered in the correct language when using the rails-i18n gem.

686 CHAPTER 12. PASSWORD RESET

else

flash.now[:danger] = "Email address not found"

render 'new'

end

end

def edit

end

def update

if params[:user][:password].empty? # Case (3)

@user.errors.add(:password, "can't be empty")

render 'edit'

elsif @user.update(user_params) # Case (4)

log_in @user

flash[:success] = "Password has been reset."

redirect_to @user

else

render 'edit' # Case (2)

end

end

private

def user_params

params.require(:user).permit(:password, :password_confirmation)

end

Before filters

def get_user

@user = User.find_by(email: params[:email])

end

Confirms a valid user.

def valid_user

unless (@user && @user.activated? &&

@user.authenticated?(:reset, params[:id]))

redirect_to root_url

end

end

Checks expiration of reset token.

def check_expiration

if @user.password_reset_expired?

flash[:danger] = "Password reset has expired."

redirect_to new_password_reset_url

end

end

end

12.3. RESETTING THE PASSWORD 687

Note that we’ve added a user_params method permitting both the password
and password confirmation attributes (Section 7.3.2).

As noted above, the implementation in Listing 12.16 delegates the boolean
test for password reset expiration to the User model via the code

@user.password_reset_expired?

To get this to work, we need to define the password_reset_expired? meth-
od. As indicated in the email templates from Section 12.2.1, we’ll consider a
password reset to be expired if it was sent more than two hours ago, which we
can express in Ruby as follows:

reset_sent_at < 2.hours.ago

This can be confusing if you read < as “less than”, because then it sounds like
“Password reset sent less than two hours ago”, which is the opposite of what
we want. In this context, it’s better to read < as “earlier than”, which gives
something like “Password reset sent earlier than two hours ago.” That is what
we want, and it leads to the password_reset_expired? method in List-
ing 12.17. (For a formal demonstration that the comparison is correct, see the
proof in Section 12.6.)

Listing 12.17: Adding password reset methods to the User model.
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns true if a password reset has expired.

def password_reset_expired?

reset_sent_at < 2.hours.ago

end

private

.

.

.

end

688 CHAPTER 12. PASSWORD RESET

Figure 12.12: A failed password reset.

With the code in Listing 12.17, the update action in Listing 12.16 should
be working. The results for invalid and valid submissions are shown in Fig-
ure 12.12 and Figure 12.13, respectively. (Lacking the patience to wait two
hours, we’ll cover the third branch in a test, which is left as an exercise (Sec-
tion 12.3.3).)

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.3. RESETTING THE PASSWORD 689

Figure 12.13: A successful password reset.

690 CHAPTER 12. PASSWORD RESET

1. Follow the email link from Section 12.2.1 again and submit mismatched
passwords to the form. What is the error message?

2. In the console, find the user belonging to the email link, and retrieve the
value of the password_digest attribute. Now submit valid matching
passwords to the form shown in Figure 12.12. Did the submission appear
to work? How did it affect the value of password_digest? Hint: Use
user.reload to retrieve the new value.

12.3.3 Password reset test
In this section, we’ll write an integration test covering two of the three branches
in Listing 12.16, invalid and valid submission. (As noted above, testing the third
branch is left as an exercise (Section 12.3.3).) We’ll get started by generating a
test file for password resets:

$ rails generate integration_test password_resets

invoke test_unit

create test/integration/password_resets_test.rb

The steps to test password resets broadly parallel the test for account activa-
tion from Listing 11.33, though there is a difference at the outset: we first visit
the “forgot password” form and submit invalid and then valid email addresses,
the latter of which creates a password reset token and sends the reset email. We
then visit the link from the email and again submit invalid and valid informa-
tion, verifying the correct behavior in each case. The resulting test, shown in
Listing 12.18, is an excellent exercise in reading code.

Listing 12.18: An integration test for password resets.
test/integration/password_resets_test.rb

require 'test_helper'

class PasswordResetsTest < ActionDispatch::IntegrationTest

def setup

12.3. RESETTING THE PASSWORD 691

ActionMailer::Base.deliveries.clear

@user = users(:michael)

end

test "password resets" do

get new_password_reset_path

assert_template 'password_resets/new'

assert_select 'input[name=?]', 'password_reset[email]'

Invalid email

post password_resets_path, params: { password_reset: { email: "" } }

assert_not flash.empty?

assert_template 'password_resets/new'

Valid email

post password_resets_path,

params: { password_reset: { email: @user.email } }

assert_not_equal @user.reset_digest, @user.reload.reset_digest

assert_equal 1, ActionMailer::Base.deliveries.size

assert_not flash.empty?

assert_redirected_to root_url

Password reset form

user = assigns(:user)

Wrong email

get edit_password_reset_path(user.reset_token, email: "")

assert_redirected_to root_url

Inactive user

user.toggle!(:activated)

get edit_password_reset_path(user.reset_token, email: user.email)

assert_redirected_to root_url

user.toggle!(:activated)

Right email, wrong token

get edit_password_reset_path('wrong token', email: user.email)

assert_redirected_to root_url

Right email, right token

get edit_password_reset_path(user.reset_token, email: user.email)

assert_template 'password_resets/edit'

assert_select "input[name=email][type=hidden][value=?]", user.email

Invalid password & confirmation

patch password_reset_path(user.reset_token),

params: { email: user.email,

user: { password: "foobaz",

password_confirmation: "barquux" } }

assert_select 'div#error_explanation'

Empty password

patch password_reset_path(user.reset_token),

params: { email: user.email,

user: { password: "",

password_confirmation: "" } }

assert_select 'div#error_explanation'

Valid password & confirmation

patch password_reset_path(user.reset_token),

params: { email: user.email,

692 CHAPTER 12. PASSWORD RESET

user: { password: "foobaz",

password_confirmation: "foobaz" } }

assert is_logged_in?

assert_not flash.empty?

assert_redirected_to user

end

end

Most of the ideas in Listing 12.18 have appeared previously in this tutorial; the
only really novel element is the test of the input tag:

assert_select "input[name=email][type=hidden][value=?]", user.email

This makes sure that there is an input tag with the right name, (hidden) type,
and email address:

<input id="email" name="email" type="hidden" value="michael@example.com" />

With the code as in Listing 12.18, our test suite should be green:

Listing 12.19: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. In Listing 12.6, the create_reset_digest method makes two calls
to update_attribute, each of which requires a separate database op-
eration. By filling in the template shown in Listing 12.20, replace the
two update_attribute calls with a single call to update_columns,

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.3. RESETTING THE PASSWORD 693

which hits the database only once. After making the changes, verify that
the test suite is still green. (For convenience, Listing 12.20 includes the
results of solving the exercise in Listing 11.39.)

2. Write an integration test for the expired password reset branch in List-
ing 12.16 by filling in the template shown in Listing 12.21. (This code
introduces response.body, which returns the full HTML body of the
page.) There are many ways to test for the result of an expiration, but the
method suggested by Listing 12.21 is to (case-insensitively) check that
the response body includes the word “expired”.

3. Expiring password resets after a couple of hours is a nice security precau-
tion, but there is an even more secure solution for cases where a public
computer is used. The reason is that the password reset link remains ac-
tive for 2 hours and can be used even if logged out. If a user reset their
password from a public machine, anyone could press the back button and
change the password (and get logged in to the site). To fix this, add the
code shown in Listing 12.22 to clear the reset digest on successful pass-
word update.5

4. Add a line to Listing 12.18 to test for the clearing of the reset digest in
the previous exercise. Hint: Combine assert_nil (first seen in List-
ing 9.25) with user.reload (Listing 11.33) to test the reset_digest
attribute directly.

Listing 12.20: A template for using update_columns.
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token, :activation_token, :reset_token

before_save :downcase_email

before_create :create_activation_digest

.

.

.

5Thanks to reader Tristan Ludowyk for suggesting this feature and for providing both a detailed description
and a suggested implementation.

694 CHAPTER 12. PASSWORD RESET

Activates an account.

def activate

update_columns(activated: true, activated_at: Time.zone.now)

end

Sends activation email.

def send_activation_email

UserMailer.account_activation(self).deliver_now

end

Sets the password reset attributes.

def create_reset_digest

self.reset_token = User.new_token

update_columns(reset_digest: FILL_IN, reset_sent_at: FILL_IN)

end

Sends password reset email.

def send_password_reset_email

UserMailer.password_reset(self).deliver_now

end

private

Converts email to all lower-case.

def downcase_email

self.email = email.downcase

end

Creates and assigns the activation token and digest.

def create_activation_digest

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

end

end

Listing 12.21: A test for an expired password reset. green
test/integration/password_resets_test.rb

require 'test_helper'

class PasswordResetsTest < ActionDispatch::IntegrationTest

def setup

ActionMailer::Base.deliveries.clear

@user = users(:michael)

end

.

.

.

12.3. RESETTING THE PASSWORD 695

test "expired token" do

get new_password_reset_path

post password_resets_path,

params: { password_reset: { email: @user.email } }

@user = assigns(:user)

@user.update_attribute(:reset_sent_at, 3.hours.ago)

patch password_reset_path(@user.reset_token),

params: { email: @user.email,

user: { password: "foobar",

password_confirmation: "foobar" } }

assert_response :redirect

follow_redirect!

assert_match /FILL_IN/i, response.body

end

end

Listing 12.22: Clearing the reset digest on successful password reset.
app/controllers/password_resets_controller.rb

class PasswordResetsController < ApplicationController

.

.

.

def update

if params[:user][:password].empty?

@user.errors.add(:password, "can't be empty")

render 'edit'

elsif @user.update(user_params)

log_in @user

@user.update_attribute(:reset_digest, nil)

flash[:success] = "Password has been reset."

redirect_to @user

else

render 'edit'

end

end

.

.

.

end

