
660 CHAPTER 12. PASSWORD RESET

12.1.1 Password resets controller
Our first step is to generate a controller for the Password Resets resource, in
this case making both new and edit actions per the discussion above:

$ rails generate controller PasswordResets new edit --no-test-framework

Note that we’ve included a flag to skip generating tests. This is because we
don’t need the controller tests, preferring instead to build on the integration test
from Section 11.3.3.

Because we’ll need forms both for creating new password resets (Figure
12.2) and for updating them by changing the password in the User model (Fig-
ure 12.3), we need routes for new, create, edit, and update. We can arrange
this with the resources line shown in Listing 12.1.

Listing 12.1: Adding a resource for password resets.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

get '/login', to: 'sessions#new'

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users

resources :account_activations, only: [:edit]

resources :password_resets, only: [:new, :create, :edit, :update]

end

The code in Listing 12.1 arranges for the RESTful routes shown in Table 12.1.
In particular, the first route in Table 12.1 gives a link to the “forgot password”
form via

12.1. PASSWORD RESETS RESOURCE 661

HTTP request URL Action Named route
GET /password_resets/new new new_password_reset_path

POST /password_resets create password_resets_path

GET /password_resets/<token>/edit edit edit_password_reset_url(token)

PATCH /password_resets/<token> update password_reset_path(token)

Table 12.1: RESTful routes provided by the Password Resets resource in List-
ing 12.1.

new_password_reset_path

as seen in Listing 12.2 and Figure 12.4.

Listing 12.2: Adding a link to password resets.
app/views/sessions/new.html.erb

<% provide(:title, "Log in") %>

<h1>Log in</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: login_path, scope: :session, local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= link_to "(forgot password)", new_password_reset_path %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :remember_me, class: "checkbox inline" do %>

<%= f.check_box :remember_me %>

Remember me on this computer

<% end %>

<%= f.submit "Log in", class: "btn btn-primary" %>

<% end %>

<p>New user? <%= link_to "Sign up now!", signup_path %></p>

</div>

</div>

662 CHAPTER 12. PASSWORD RESET

Figure 12.4: The login page with a “forgot password” link.

12.1. PASSWORD RESETS RESOURCE 663

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that the test suite is still green.

2. Why does Table 12.1 list the _url form of the edit named route instead
of the _path form? Hint: The answer is the same as for the similar
account activations exercise (Section 11.1.1).

12.1.2 New password resets
To create new password resets, we first need to define the data model, which is
similar to the one used for account activation (Figure 11.1). Following the pat-
tern set by remember tokens (Chapter 9) and account activation tokens (Chap-
ter 11), password resets will pair a virtual reset token for use in the reset email
with a corresponding reset digest for retrieving the user. If we instead stored
an unhashed token, an attacker with access to the database could send a reset
request to the user’s email address and then use the token and email to visit
the corresponding password reset link, thereby gaining control of the account.
Using a digest for password resets is thus essential. As an additional secu-
rity precaution, we’ll also plan to expire the reset link after a couple of hours,
which requires recording the time when the reset gets sent. The resulting re-

set_digest and reset_sent_at attributes appear in Figure 12.5.
The migration to add the attributes from Figure 12.5 appears as follows:

$ rails generate migration add_reset_to_users reset_digest:string \

> reset_sent_at:datetime

(As in Section 11.1.2, the > on the second line is a “line continuation” character
inserted automatically by the shell, and should not be typed literally.) We then
migrate as usual:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

664 CHAPTER 12. PASSWORD RESET

updated_at datetime
datetimecreated_at

admin boolean

datetimeactivated_at
booleanactivated
stringactivation_digest

reset_sent_at datetime
stringreset_digest

remember_digest string
stringpassword_digest

email string

id
name string

integer
users

Figure 12.5: The User model with added password reset attributes.

12.1. PASSWORD RESETS RESOURCE 665

$ rails db:migrate

To make the view for new password resets, we’ll work in analogy with the
previous form for making a new non–Active Record resource, namely, the login
form (Listing 8.4) for creating a new session, shown again in Listing 12.3 for
reference.

Listing 12.3: Reviewing the code for the login form.
app/views/sessions/new.html.erb

<% provide(:title, "Log in") %>

<h1>Log in</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: login_path, scope: :session, local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= link_to "(forgot password)", new_password_reset_path %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :remember_me, class: "checkbox inline" do %>

<%= f.check_box :remember_me %>

Remember me on this computer

<% end %>

<%= f.submit "Log in", class: "btn btn-primary" %>

<% end %>

<p>New user? <%= link_to "Sign up now!", signup_path %></p>

</div>

</div>

The new password resets form has a lot in common with Listing 12.3; the
most important differences are the use of a different resource and URL in the call
to form_with and the omission of the password attribute. The result appears
in Listing 12.4 and Figure 12.6.

666 CHAPTER 12. PASSWORD RESET

Listing 12.4: A new password reset view.
app/views/password_resets/new.html.erb

<% provide(:title, "Forgot password") %>

<h1>Forgot password</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: password_resets_path, scope: :password_reset,

local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.submit "Submit", class: "btn btn-primary" %>

<% end %>

</div>

</div>

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Why does the form_with in Listing 12.4 use :password_reset in-
stead of @password_reset?

12.1.3 Password reset create action
Upon submitting the form in Figure 12.6, we need to find the user by email ad-
dress and update its attributes with the password reset token and sent-at times-
tamp. We then redirect to the root URL with an informative flash message. As
with login (Listing 8.11), in the case of an invalid submission we re-render the
new page with a flash.now message.2 The results appear in Listing 12.5.

2Security concerns about revealing the absence of the given email address are commonly misplaced. The
reason is that this property is already present in every website that won’t let you sign up with an email address
that’s already in use, which is practically all of them. Thus, indicating that a given email address isn’t available
for password resets gives potential attackers no additional information.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.1. PASSWORD RESETS RESOURCE 667

Figure 12.6: The “forgot password” form.

668 CHAPTER 12. PASSWORD RESET

Listing 12.5: A create action for password resets.
app/controllers/password_resets_controller.rb

class PasswordResetsController < ApplicationController

def new

end

def create

@user = User.find_by(email: params[:password_reset][:email].downcase)

if @user

@user.create_reset_digest

@user.send_password_reset_email

flash[:info] = "Email sent with password reset instructions"

redirect_to root_url

else

flash.now[:danger] = "Email address not found"

render 'new'

end

end

def edit

end

end

The code in the User model parallels the create_activation_digest
method used in the before_create callback (Listing 11.3), as seen in List-
ing 12.6.

Listing 12.6: Adding password reset methods to the User model.
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token, :activation_token, :reset_token

before_save :downcase_email

before_create :create_activation_digest

.

.

.

Activates an account.

def activate

update_attribute(:activated, true)

update_attribute(:activated_at, Time.zone.now)

end

Sends activation email.

12.1. PASSWORD RESETS RESOURCE 669

def send_activation_email

UserMailer.account_activation(self).deliver_now

end

Sets the password reset attributes.

def create_reset_digest

self.reset_token = User.new_token

update_attribute(:reset_digest, User.digest(reset_token))

update_attribute(:reset_sent_at, Time.zone.now)

end

Sends password reset email.

def send_password_reset_email

UserMailer.password_reset(self).deliver_now

end

private

Converts email to all lower-case.

def downcase_email

self.email = email.downcase

end

Creates and assigns the activation token and digest.

def create_activation_digest

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

end

end

As shown in Figure 12.7, at this point the application’s behavior for invalid
email addresses is already working. To get the application working upon sub-
mission of a valid email address as well, we need to define a password reset
mailer method.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Submit a valid email address to the form shown in Figure 12.6. What
error message do you get?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

670 CHAPTER 12. PASSWORD RESET

Figure 12.7: The “forgot password” form for an invalid email address.

12.2. PASSWORD RESET EMAILS 671

2. Confirm at the console that the user in the previous exercise has valid
reset_digest and reset_sent_at attributes, despite the error. What
are the attribute values?

12.2 Password reset emails
We left Section 12.1 with a nearly working create action in the Password Re-
sets controller. The only thing missing is the method to deliver valid password
reset emails.

If you followed Section 11.1, you already have a default password_reset
method in app/mailers/user_mailer.rb as a result of the User mailer
generation in Listing 11.6. If you skipped Chapter 11, you can just copy the
code below (omitting the account_activation and related methods) and
create the missing files as necessary.

12.2.1 Password reset mailer and templates
In Listing 12.6, we applied the design pattern implemented as a refactoring in
Section 11.3.3 by putting the User mailer directly in the model (Listing 12.6):

UserMailer.password_reset(self).deliver_now

The password reset mailer method needed to get this working is nearly iden-
tical to the mailer for account activation developed in Section 11.2. We first
create a password_reset method in the user mailer (Listing 12.7), and then
define view templates for plain-text email (Listing 12.8) and HTML email (List-
ing 12.9).

Listing 12.7: Mailing the password reset link.
app/mailers/user_mailer.rb

class UserMailer < ApplicationMailer

672 CHAPTER 12. PASSWORD RESET

def account_activation(user)

@user = user

mail to: user.email, subject: "Account activation"

end

def password_reset(user)

@user = user

mail to: user.email, subject: "Password reset"

end

end

Listing 12.8: The password reset plain-text email template.
app/views/user_mailer/password_reset.text.erb

To reset your password click the link below:

<%= edit_password_reset_url(@user.reset_token, email: @user.email) %>

This link will expire in two hours.

If you did not request your password to be reset, please ignore this email and

your password will stay as it is.

Listing 12.9: The password reset HTML email template.
app/views/user_mailer/password_reset.html.erb

<h1>Password reset</h1>

<p>To reset your password click the link below:</p>

<%= link_to "Reset password", edit_password_reset_url(@user.reset_token,

email: @user.email) %>

<p>This link will expire in two hours.</p>

<p>

If you did not request your password to be reset, please ignore this email and

your password will stay as it is.

</p>

As with account activation emails (Section 11.2), we can preview password
reset emails using the Rails email previewer. The code is exactly analogous to
Listing 11.18, as shown in Listing 12.10.

12.2. PASSWORD RESET EMAILS 673

Listing 12.10: A working preview method for password reset.
test/mailers/previews/user_mailer_preview.rb

Preview all emails at http://localhost:3000/rails/mailers/user_mailer

class UserMailerPreview < ActionMailer::Preview

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/account_activation

def account_activation

user = User.first

user.activation_token = User.new_token

UserMailer.account_activation(user)

end

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/password_reset

def password_reset

user = User.first

user.reset_token = User.new_token

UserMailer.password_reset(user)

end

end

With the code in Listing 12.10, the HTML and text email previews appear as in
Figure 12.8 and Figure 12.9.

With the code in Listing 12.7, Listing 12.8, and Listing 12.9, submission
of a valid email address appears as shown in Figure 12.10. The corresponding
email appears in the server log and should look something like Listing 12.11.

Listing 12.11: A sample password reset email from the server log.
UserMailer#password_reset: processed outbound mail in 6.0ms

Delivered mail 5d609328d5d29_28872b106582ddf4886d8@ip-172-31-25-202.mail (2.8ms)

Date: Sat, 24 Aug 2019 01:30:16 +0000

From: noreply@example.com

To: michael@michaelhartl.com

Message-ID: <5d609328d5d29_28872b106582ddf4886d8@ip-172-31-25-202.mail>

Subject: Password reset

Mime-Version: 1.0

Content-Type: multipart/alternative;

boundary="--==_mimepart_5d609328d5404_28872b106582ddf488531";

charset=UTF-8

Content-Transfer-Encoding: 7bit

674 CHAPTER 12. PASSWORD RESET

Figure 12.8: A preview of the HTML version of the password reset email.

12.2. PASSWORD RESET EMAILS 675

Figure 12.9: A preview of the text version of the password reset email.

676 CHAPTER 12. PASSWORD RESET

Figure 12.10: The result of submitting a valid email address.

12.2. PASSWORD RESET EMAILS 677

----==_mimepart_5d609328d5404_28872b106582ddf488531

Content-Type: text/plain;

charset=UTF-8

Content-Transfer-Encoding: 7bit

To reset your password click the link below:

https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/password_resets/cT3mB4pwu7o-hrg6qEDfKg/

edit?email=michael%40michaelhartl.com

This link will expire in two hours.

If you did not request your password to be reset, please ignore this email and

your password will stay as it is.

----==_mimepart_5d609328d5404_28872b106582ddf488531

Content-Type: text/html;

charset=UTF-8

Content-Transfer-Encoding: 7bit

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<style>

/* Email styles need to be inline */

</style>

</head>

<body>

<h1>Password reset</h1>

<p>To reset your password click the link below:</p>

<a href="https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/password_resets/cT3mB4pwu7o-hrg6qEDfKg/

edit?email=michael%40michaelhartl.com">Reset password

<p>This link will expire in two hours.</p>

<p>

If you did not request your password to be reset, please ignore this email and

your password will stay as it is.

</p>

</body>

</html>

----==_mimepart_5d609328d5404_28872b106582ddf488531--

678 CHAPTER 12. PASSWORD RESET

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Preview the email templates in your browser. What do the Date fields
read for your previews?

2. Submit a valid email address to the new password reset form. What is the
content of the generated email in the server log?

3. At the console, find the user object corresponding to the email address
from the previous exercise and verify that it has valid reset_digest

and reset_sent_at attributes.

12.2.2 Email tests
In analogy with the account activation mailer method test (Listing 11.20), we’ll
write a test of the password reset mailer method, as shown in Listing 12.12.

Listing 12.12: Adding a test of the password reset mailer method. green
test/mailers/user_mailer_test.rb

require 'test_helper'

class UserMailerTest < ActionMailer::TestCase

test "account_activation" do

user = users(:michael)

user.activation_token = User.new_token

mail = UserMailer.account_activation(user)

assert_equal "Account activation", mail.subject

assert_equal [user.email], mail.to

assert_equal ["noreply@example.com"], mail.from

assert_match user.name, mail.body.encoded

assert_match user.activation_token, mail.body.encoded

assert_match CGI.escape(user.email), mail.body.encoded

end

test "password_reset" do

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.3. RESETTING THE PASSWORD 679

user = users(:michael)

user.reset_token = User.new_token

mail = UserMailer.password_reset(user)

assert_equal "Password reset", mail.subject

assert_equal [user.email], mail.to

assert_equal ["noreply@example.com"], mail.from

assert_match user.reset_token, mail.body.encoded

assert_match CGI.escape(user.email), mail.body.encoded

end

end

At this point, the test suite should be green:

Listing 12.13: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Run just the mailer tests. Are they green?

2. Confirm that the test goes red if you remove the second call to CGI.es-
cape in Listing 12.12.

12.3 Resetting the password
Now that we have a correctly generated email as in Listing 12.11, we need to
write the edit action in the Password Resets controller that actually resets the
user’s password. As in Section 11.3.3, we’ll write a thorough integration test
as well.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

