
Chapter 12

Password reset
Having completed account activation (and thereby verified the user’s email ad-
dress) in Chapter 11, we’re now in a good position to implement password reset,
and thereby handle the common case of users forgetting their passwords.1 As
we’ll see, many of the steps are similar to those for account activation, and we
will have several opportunities to apply the lessons learned in Chapter 11. The
beginning is different, though; unlike account activation, implementing pass-
word resets requires both a change to one of our views and two new forms (to
handle email and new password submission).

Before writing any code, let’s mock up the expected sequence for resetting
passwords. We’ll start by adding a “forgot password” link to the sample ap-
plication’s login form (Figure 12.1). The “forgot password” link will go to a
page with a form that takes in an email address and sends an email containing a
password reset link (Figure 12.2). The reset link will go to a form for resetting
the user’s password (with confirmation), as shown in Figure 12.3.

If you followed Chapter 11, you already have a mailer for password re-
sets, which was generated in Section 11.2 (Listing 11.6). In this section, we’ll
complete the necessary preliminaries by adding a resource and data model for
password resets (Section 12.1) to go along with the mailer. We’ll implement
the actual password reset in Section 12.3.

In analogy with account activations, our general plan is to make a Pass-
1This chapter is independent of the others apart from using the mailer generation in Listing 11.6, but it closely

parallels Chapter 11, so it’s much easier if you’ve followed that chapter first.

655

656 CHAPTER 12. PASSWORD RESET

Figure 12.1: A mockup of a “forgot password” link.

657

Figure 12.2: A mockup of the “forgot password” form.

658 CHAPTER 12. PASSWORD RESET

Figure 12.3: A mockup of the reset password form.

12.1. PASSWORD RESETS RESOURCE 659

word Resets resource, with each password reset consisting of a reset token and
corresponding reset digest. The primary sequence goes like this:

1. When a user requests a password reset, find the user by the submitted
email address.

2. If the email address exists in the database, generate a reset token and
corresponding reset digest.

3. Save the reset digest to the database, and then send an email to the user
with a link containing the reset token and user’s email address.

4. When the user clicks the link, find the user by email address, and then
authenticate the token by comparing it to the reset digest.

5. If authenticated, present the user with the form for changing the password.

12.1 Password resets resource
As with sessions (Section 8.1) and account activations (Chapter 11), we’ll
model password resets as a resource even though they won’t be associated with
an Active Record model. Instead, we’ll include the relevant data (including the
reset token) in the User model itself.

Because we’ll be treating password resets as a resource, we’ll interact with
them via the standard REST URLs. Unlike the activation link, which required
only an edit action, in this case we’ll be rendering both new and edit forms
for manipulating password resets, as well as creating and updating them, so
we’ll end up using four RESTful routes in total.

As usual, we’ll make a topic branch for the new feature:

$ git checkout -b password-reset

660 CHAPTER 12. PASSWORD RESET

12.1.1 Password resets controller
Our first step is to generate a controller for the Password Resets resource, in
this case making both new and edit actions per the discussion above:

$ rails generate controller PasswordResets new edit --no-test-framework

Note that we’ve included a flag to skip generating tests. This is because we
don’t need the controller tests, preferring instead to build on the integration test
from Section 11.3.3.

Because we’ll need forms both for creating new password resets (Figure
12.2) and for updating them by changing the password in the User model (Fig-
ure 12.3), we need routes for new, create, edit, and update. We can arrange
this with the resources line shown in Listing 12.1.

Listing 12.1: Adding a resource for password resets.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

get '/login', to: 'sessions#new'

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users

resources :account_activations, only: [:edit]

resources :password_resets, only: [:new, :create, :edit, :update]

end

The code in Listing 12.1 arranges for the RESTful routes shown in Table 12.1.
In particular, the first route in Table 12.1 gives a link to the “forgot password”
form via

12.1. PASSWORD RESETS RESOURCE 661

HTTP request URL Action Named route
GET /password_resets/new new new_password_reset_path

POST /password_resets create password_resets_path

GET /password_resets/<token>/edit edit edit_password_reset_url(token)

PATCH /password_resets/<token> update password_reset_path(token)

Table 12.1: RESTful routes provided by the Password Resets resource in List-
ing 12.1.

new_password_reset_path

as seen in Listing 12.2 and Figure 12.4.

Listing 12.2: Adding a link to password resets.
app/views/sessions/new.html.erb

<% provide(:title, "Log in") %>

<h1>Log in</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: login_path, scope: :session, local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= link_to "(forgot password)", new_password_reset_path %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :remember_me, class: "checkbox inline" do %>

<%= f.check_box :remember_me %>

Remember me on this computer

<% end %>

<%= f.submit "Log in", class: "btn btn-primary" %>

<% end %>

<p>New user? <%= link_to "Sign up now!", signup_path %></p>

</div>

</div>

662 CHAPTER 12. PASSWORD RESET

Figure 12.4: The login page with a “forgot password” link.

12.1. PASSWORD RESETS RESOURCE 663

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that the test suite is still green.

2. Why does Table 12.1 list the _url form of the edit named route instead
of the _path form? Hint: The answer is the same as for the similar
account activations exercise (Section 11.1.1).

12.1.2 New password resets
To create new password resets, we first need to define the data model, which is
similar to the one used for account activation (Figure 11.1). Following the pat-
tern set by remember tokens (Chapter 9) and account activation tokens (Chap-
ter 11), password resets will pair a virtual reset token for use in the reset email
with a corresponding reset digest for retrieving the user. If we instead stored
an unhashed token, an attacker with access to the database could send a reset
request to the user’s email address and then use the token and email to visit
the corresponding password reset link, thereby gaining control of the account.
Using a digest for password resets is thus essential. As an additional secu-
rity precaution, we’ll also plan to expire the reset link after a couple of hours,
which requires recording the time when the reset gets sent. The resulting re-

set_digest and reset_sent_at attributes appear in Figure 12.5.
The migration to add the attributes from Figure 12.5 appears as follows:

$ rails generate migration add_reset_to_users reset_digest:string \

> reset_sent_at:datetime

(As in Section 11.1.2, the > on the second line is a “line continuation” character
inserted automatically by the shell, and should not be typed literally.) We then
migrate as usual:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

664 CHAPTER 12. PASSWORD RESET

updated_at datetime
datetimecreated_at

admin boolean

datetimeactivated_at
booleanactivated
stringactivation_digest

reset_sent_at datetime
stringreset_digest

remember_digest string
stringpassword_digest

email string

id
name string

integer
users

Figure 12.5: The User model with added password reset attributes.

12.1. PASSWORD RESETS RESOURCE 665

$ rails db:migrate

To make the view for new password resets, we’ll work in analogy with the
previous form for making a new non–Active Record resource, namely, the login
form (Listing 8.4) for creating a new session, shown again in Listing 12.3 for
reference.

Listing 12.3: Reviewing the code for the login form.
app/views/sessions/new.html.erb

<% provide(:title, "Log in") %>

<h1>Log in</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: login_path, scope: :session, local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= link_to "(forgot password)", new_password_reset_path %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :remember_me, class: "checkbox inline" do %>

<%= f.check_box :remember_me %>

Remember me on this computer

<% end %>

<%= f.submit "Log in", class: "btn btn-primary" %>

<% end %>

<p>New user? <%= link_to "Sign up now!", signup_path %></p>

</div>

</div>

The new password resets form has a lot in common with Listing 12.3; the
most important differences are the use of a different resource and URL in the call
to form_with and the omission of the password attribute. The result appears
in Listing 12.4 and Figure 12.6.

666 CHAPTER 12. PASSWORD RESET

Listing 12.4: A new password reset view.
app/views/password_resets/new.html.erb

<% provide(:title, "Forgot password") %>

<h1>Forgot password</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: password_resets_path, scope: :password_reset,

local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.submit "Submit", class: "btn btn-primary" %>

<% end %>

</div>

</div>

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Why does the form_with in Listing 12.4 use :password_reset in-
stead of @password_reset?

12.1.3 Password reset create action
Upon submitting the form in Figure 12.6, we need to find the user by email ad-
dress and update its attributes with the password reset token and sent-at times-
tamp. We then redirect to the root URL with an informative flash message. As
with login (Listing 8.11), in the case of an invalid submission we re-render the
new page with a flash.now message.2 The results appear in Listing 12.5.

2Security concerns about revealing the absence of the given email address are commonly misplaced. The
reason is that this property is already present in every website that won’t let you sign up with an email address
that’s already in use, which is practically all of them. Thus, indicating that a given email address isn’t available
for password resets gives potential attackers no additional information.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.1. PASSWORD RESETS RESOURCE 667

Figure 12.6: The “forgot password” form.

668 CHAPTER 12. PASSWORD RESET

Listing 12.5: A create action for password resets.
app/controllers/password_resets_controller.rb

class PasswordResetsController < ApplicationController

def new

end

def create

@user = User.find_by(email: params[:password_reset][:email].downcase)

if @user

@user.create_reset_digest

@user.send_password_reset_email

flash[:info] = "Email sent with password reset instructions"

redirect_to root_url

else

flash.now[:danger] = "Email address not found"

render 'new'

end

end

def edit

end

end

The code in the User model parallels the create_activation_digest
method used in the before_create callback (Listing 11.3), as seen in List-
ing 12.6.

Listing 12.6: Adding password reset methods to the User model.
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token, :activation_token, :reset_token

before_save :downcase_email

before_create :create_activation_digest

.

.

.

Activates an account.

def activate

update_attribute(:activated, true)

update_attribute(:activated_at, Time.zone.now)

end

Sends activation email.

12.1. PASSWORD RESETS RESOURCE 669

def send_activation_email

UserMailer.account_activation(self).deliver_now

end

Sets the password reset attributes.

def create_reset_digest

self.reset_token = User.new_token

update_attribute(:reset_digest, User.digest(reset_token))

update_attribute(:reset_sent_at, Time.zone.now)

end

Sends password reset email.

def send_password_reset_email

UserMailer.password_reset(self).deliver_now

end

private

Converts email to all lower-case.

def downcase_email

self.email = email.downcase

end

Creates and assigns the activation token and digest.

def create_activation_digest

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

end

end

As shown in Figure 12.7, at this point the application’s behavior for invalid
email addresses is already working. To get the application working upon sub-
mission of a valid email address as well, we need to define a password reset
mailer method.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Submit a valid email address to the form shown in Figure 12.6. What
error message do you get?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

670 CHAPTER 12. PASSWORD RESET

Figure 12.7: The “forgot password” form for an invalid email address.

12.2. PASSWORD RESET EMAILS 671

2. Confirm at the console that the user in the previous exercise has valid
reset_digest and reset_sent_at attributes, despite the error. What
are the attribute values?

12.2 Password reset emails
We left Section 12.1 with a nearly working create action in the Password Re-
sets controller. The only thing missing is the method to deliver valid password
reset emails.

If you followed Section 11.1, you already have a default password_reset
method in app/mailers/user_mailer.rb as a result of the User mailer
generation in Listing 11.6. If you skipped Chapter 11, you can just copy the
code below (omitting the account_activation and related methods) and
create the missing files as necessary.

12.2.1 Password reset mailer and templates
In Listing 12.6, we applied the design pattern implemented as a refactoring in
Section 11.3.3 by putting the User mailer directly in the model (Listing 12.6):

UserMailer.password_reset(self).deliver_now

The password reset mailer method needed to get this working is nearly iden-
tical to the mailer for account activation developed in Section 11.2. We first
create a password_reset method in the user mailer (Listing 12.7), and then
define view templates for plain-text email (Listing 12.8) and HTML email (List-
ing 12.9).

Listing 12.7: Mailing the password reset link.
app/mailers/user_mailer.rb

class UserMailer < ApplicationMailer

672 CHAPTER 12. PASSWORD RESET

def account_activation(user)

@user = user

mail to: user.email, subject: "Account activation"

end

def password_reset(user)

@user = user

mail to: user.email, subject: "Password reset"

end

end

Listing 12.8: The password reset plain-text email template.
app/views/user_mailer/password_reset.text.erb

To reset your password click the link below:

<%= edit_password_reset_url(@user.reset_token, email: @user.email) %>

This link will expire in two hours.

If you did not request your password to be reset, please ignore this email and

your password will stay as it is.

Listing 12.9: The password reset HTML email template.
app/views/user_mailer/password_reset.html.erb

<h1>Password reset</h1>

<p>To reset your password click the link below:</p>

<%= link_to "Reset password", edit_password_reset_url(@user.reset_token,

email: @user.email) %>

<p>This link will expire in two hours.</p>

<p>

If you did not request your password to be reset, please ignore this email and

your password will stay as it is.

</p>

As with account activation emails (Section 11.2), we can preview password
reset emails using the Rails email previewer. The code is exactly analogous to
Listing 11.18, as shown in Listing 12.10.

12.2. PASSWORD RESET EMAILS 673

Listing 12.10: A working preview method for password reset.
test/mailers/previews/user_mailer_preview.rb

Preview all emails at http://localhost:3000/rails/mailers/user_mailer

class UserMailerPreview < ActionMailer::Preview

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/account_activation

def account_activation

user = User.first

user.activation_token = User.new_token

UserMailer.account_activation(user)

end

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/password_reset

def password_reset

user = User.first

user.reset_token = User.new_token

UserMailer.password_reset(user)

end

end

With the code in Listing 12.10, the HTML and text email previews appear as in
Figure 12.8 and Figure 12.9.

With the code in Listing 12.7, Listing 12.8, and Listing 12.9, submission
of a valid email address appears as shown in Figure 12.10. The corresponding
email appears in the server log and should look something like Listing 12.11.

Listing 12.11: A sample password reset email from the server log.
UserMailer#password_reset: processed outbound mail in 6.0ms

Delivered mail 5d609328d5d29_28872b106582ddf4886d8@ip-172-31-25-202.mail (2.8ms)

Date: Sat, 24 Aug 2019 01:30:16 +0000

From: noreply@example.com

To: michael@michaelhartl.com

Message-ID: <5d609328d5d29_28872b106582ddf4886d8@ip-172-31-25-202.mail>

Subject: Password reset

Mime-Version: 1.0

Content-Type: multipart/alternative;

boundary="--==_mimepart_5d609328d5404_28872b106582ddf488531";

charset=UTF-8

Content-Transfer-Encoding: 7bit

674 CHAPTER 12. PASSWORD RESET

Figure 12.8: A preview of the HTML version of the password reset email.

12.2. PASSWORD RESET EMAILS 675

Figure 12.9: A preview of the text version of the password reset email.

676 CHAPTER 12. PASSWORD RESET

Figure 12.10: The result of submitting a valid email address.

12.2. PASSWORD RESET EMAILS 677

----==_mimepart_5d609328d5404_28872b106582ddf488531

Content-Type: text/plain;

charset=UTF-8

Content-Transfer-Encoding: 7bit

To reset your password click the link below:

https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/password_resets/cT3mB4pwu7o-hrg6qEDfKg/

edit?email=michael%40michaelhartl.com

This link will expire in two hours.

If you did not request your password to be reset, please ignore this email and

your password will stay as it is.

----==_mimepart_5d609328d5404_28872b106582ddf488531

Content-Type: text/html;

charset=UTF-8

Content-Transfer-Encoding: 7bit

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<style>

/* Email styles need to be inline */

</style>

</head>

<body>

<h1>Password reset</h1>

<p>To reset your password click the link below:</p>

<a href="https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/password_resets/cT3mB4pwu7o-hrg6qEDfKg/

edit?email=michael%40michaelhartl.com">Reset password

<p>This link will expire in two hours.</p>

<p>

If you did not request your password to be reset, please ignore this email and

your password will stay as it is.

</p>

</body>

</html>

----==_mimepart_5d609328d5404_28872b106582ddf488531--

678 CHAPTER 12. PASSWORD RESET

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Preview the email templates in your browser. What do the Date fields
read for your previews?

2. Submit a valid email address to the new password reset form. What is the
content of the generated email in the server log?

3. At the console, find the user object corresponding to the email address
from the previous exercise and verify that it has valid reset_digest

and reset_sent_at attributes.

12.2.2 Email tests
In analogy with the account activation mailer method test (Listing 11.20), we’ll
write a test of the password reset mailer method, as shown in Listing 12.12.

Listing 12.12: Adding a test of the password reset mailer method. green
test/mailers/user_mailer_test.rb

require 'test_helper'

class UserMailerTest < ActionMailer::TestCase

test "account_activation" do

user = users(:michael)

user.activation_token = User.new_token

mail = UserMailer.account_activation(user)

assert_equal "Account activation", mail.subject

assert_equal [user.email], mail.to

assert_equal ["noreply@example.com"], mail.from

assert_match user.name, mail.body.encoded

assert_match user.activation_token, mail.body.encoded

assert_match CGI.escape(user.email), mail.body.encoded

end

test "password_reset" do

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.3. RESETTING THE PASSWORD 679

user = users(:michael)

user.reset_token = User.new_token

mail = UserMailer.password_reset(user)

assert_equal "Password reset", mail.subject

assert_equal [user.email], mail.to

assert_equal ["noreply@example.com"], mail.from

assert_match user.reset_token, mail.body.encoded

assert_match CGI.escape(user.email), mail.body.encoded

end

end

At this point, the test suite should be green:

Listing 12.13: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Run just the mailer tests. Are they green?

2. Confirm that the test goes red if you remove the second call to CGI.es-
cape in Listing 12.12.

12.3 Resetting the password
Now that we have a correctly generated email as in Listing 12.11, we need to
write the edit action in the Password Resets controller that actually resets the
user’s password. As in Section 11.3.3, we’ll write a thorough integration test
as well.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

680 CHAPTER 12. PASSWORD RESET

12.3.1 Reset edit action
Password reset emails such as that shown in Listing 12.11 contain links of the
following form:

https://example.com/password_resets/3BdBrXeQZSWqFIDRN8cxHA/edit?email=fu%40bar.com

To get these links to work, we need a form for resetting passwords. The task is
similar to updating users via the user edit view (Listing 10.2), but in this case
with only password and confirmation fields.

There’s an additional complication, though: we expect to find the user by
email address, which means we need its value in both the edit and update

actions. The email will automatically be available in the edit action because
of its presence in the link above, but after we submit the form its value will be
lost. The solution is to use a hidden field to place (but not display) the email on
the page, and then submit it along with the rest of the form’s information. The
result appears in Listing 12.14.

Listing 12.14: The form to reset a password.
app/views/password_resets/edit.html.erb

<% provide(:title, 'Reset password') %>

<h1>Reset password</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, url: password_reset_path(params[:id]),

local: true) do |f| %>

<%= render 'shared/error_messages' %>

<%= hidden_field_tag :email, @user.email %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Update password", class: "btn btn-primary" %>

<% end %>

</div>

</div>

12.3. RESETTING THE PASSWORD 681

Note that Listing 12.14 uses the form tag helper

hidden_field_tag :email, @user.email

instead of

f.hidden_field :email, @user.email

because the reset link puts the email in params[:email], whereas the latter
would put it in params[:user][:email].

To get the form to render, we need to define an @user variable in the
Password Resets controller’s edit action. As with account activation (List-
ing 11.31), this involves finding the user corresponding to the email address
in params[:email]. We then need to verify that the user is valid, i.e., that
it exists, is activated, and is authenticated according to the reset token from
params[:id] (using the generalized authenticated? method defined in
Listing 11.26). Because the existence of a valid @user is needed in both the
edit and update actions, we’ll put the code to find and validate it in a couple
of before filters, as shown in Listing 12.15.

Listing 12.15: The edit action for password reset.
app/controllers/password_resets_controller.rb

class PasswordResetsController < ApplicationController

before_action :get_user, only: [:edit, :update]

before_action :valid_user, only: [:edit, :update]

.

.

.

def edit

end

private

def get_user

@user = User.find_by(email: params[:email])

end

682 CHAPTER 12. PASSWORD RESET

Confirms a valid user.

def valid_user

unless (@user && @user.activated? &&

@user.authenticated?(:reset, params[:id]))

redirect_to root_url

end

end

end

In Listing 12.15, compare the use of

authenticated?(:reset, params[:id])

to

authenticated?(:remember, cookies[:remember_token])

in Listing 11.28 and

authenticated?(:activation, params[:id])

in Listing 11.31. Together, these three uses complete the authentication methods
shown in Table 11.1.

With the code as above, following the link from Listing 12.11 should render
a password reset form. The result of pasting the link from the log (Listing 12.11)
appears in Figure 12.11.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Follow the link in the email from the server log in Section 12.2.1. Does
it properly render the form as shown in Figure 12.11?

2. What happens if you submit the form from the previous exercise?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.3. RESETTING THE PASSWORD 683

Figure 12.11: The password reset form.

684 CHAPTER 12. PASSWORD RESET

12.3.2 Updating the reset
Unlike the Account Activations edit method, which simply toggles the user
from “inactive” to “active”, the edit method for Password Resets is a form,
which must therefore submit to a corresponding update action. To define this
update action, we need to consider four cases:

1. An expired password reset

2. A failed update due to an invalid password

3. A failed update (which initially looks “successful”) due to an empty pass-
word and confirmation

4. A successful update
Cases (1), (2), and (4) are fairly straightforward, but Case (3) is non-obvious
and is explained in more detail below.

Case (1) applies to both the edit and update actions, and so logically
belongs in a before filter:

before_action :check_expiration, only: [:edit, :update] # Case (1)

This requires defining a private check_expiration method:

Checks expiration of reset token.

def check_expiration

if @user.password_reset_expired?

flash[:danger] = "Password reset has expired."

redirect_to new_password_reset_url

end

end

In the check_expirationmethod, we’ve deferred the expiration check to the
instance method password_reset_expired?, which is a little tricky and will
be defined in a moment.

Listing 12.16 shows the implementation of these filters, together with the
update action that implements Cases (2)–(4). Case (2) gets handled by a failed

12.3. RESETTING THE PASSWORD 685

update, with the error messages from the shared partial in Listing 12.14 display-
ing automatically when the edit form is re-rendered. Case (4) corresponds to a
successful change, and the result is similar to a successful login (Listing 8.29).

The only failure case not handled by Case (2) is when the password is empty,
which is currently allowed by our User model (Listing 10.13) and so needs
to be caught and handled explicitly.3 This is Case (3) above. Our method in
this case is to add an error directly to the @user object’s error messages using
errors.add:

@user.errors.add(:password, :blank)

This arranges to use the default message for blank content when the password
is empty.4

The result of putting Cases (1)–(4) together is the update action shown in
Listing 12.16.

Listing 12.16: The update action for password reset.
app/controllers/password_resets_controller.rb

class PasswordResetsController < ApplicationController

before_action :get_user, only: [:edit, :update]

before_action :valid_user, only: [:edit, :update]

before_action :check_expiration, only: [:edit, :update] # Case (1)

def new

end

def create

@user = User.find_by(email: params[:password_reset][:email].downcase)

if @user

@user.create_reset_digest

@user.send_password_reset_email

flash[:info] = "Email sent with password reset instructions"

redirect_to root_url

3We need only handle the case where the password is empty because if the confirmation is empty, the confir-
mation validation (which is skipped if the password is empty) will catch the problem and supply a relevant error
message.

4Alert reader Khaled Teilab has noted that one advantage of using errors.add(:password, :blank) is
that the resulting message is automatically rendered in the correct language when using the rails-i18n gem.

686 CHAPTER 12. PASSWORD RESET

else

flash.now[:danger] = "Email address not found"

render 'new'

end

end

def edit

end

def update

if params[:user][:password].empty? # Case (3)

@user.errors.add(:password, "can't be empty")

render 'edit'

elsif @user.update(user_params) # Case (4)

log_in @user

flash[:success] = "Password has been reset."

redirect_to @user

else

render 'edit' # Case (2)

end

end

private

def user_params

params.require(:user).permit(:password, :password_confirmation)

end

Before filters

def get_user

@user = User.find_by(email: params[:email])

end

Confirms a valid user.

def valid_user

unless (@user && @user.activated? &&

@user.authenticated?(:reset, params[:id]))

redirect_to root_url

end

end

Checks expiration of reset token.

def check_expiration

if @user.password_reset_expired?

flash[:danger] = "Password reset has expired."

redirect_to new_password_reset_url

end

end

end

12.3. RESETTING THE PASSWORD 687

Note that we’ve added a user_params method permitting both the password
and password confirmation attributes (Section 7.3.2).

As noted above, the implementation in Listing 12.16 delegates the boolean
test for password reset expiration to the User model via the code

@user.password_reset_expired?

To get this to work, we need to define the password_reset_expired? meth-
od. As indicated in the email templates from Section 12.2.1, we’ll consider a
password reset to be expired if it was sent more than two hours ago, which we
can express in Ruby as follows:

reset_sent_at < 2.hours.ago

This can be confusing if you read < as “less than”, because then it sounds like
“Password reset sent less than two hours ago”, which is the opposite of what
we want. In this context, it’s better to read < as “earlier than”, which gives
something like “Password reset sent earlier than two hours ago.” That is what
we want, and it leads to the password_reset_expired? method in List-
ing 12.17. (For a formal demonstration that the comparison is correct, see the
proof in Section 12.6.)

Listing 12.17: Adding password reset methods to the User model.
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns true if a password reset has expired.

def password_reset_expired?

reset_sent_at < 2.hours.ago

end

private

.

.

.

end

688 CHAPTER 12. PASSWORD RESET

Figure 12.12: A failed password reset.

With the code in Listing 12.17, the update action in Listing 12.16 should
be working. The results for invalid and valid submissions are shown in Fig-
ure 12.12 and Figure 12.13, respectively. (Lacking the patience to wait two
hours, we’ll cover the third branch in a test, which is left as an exercise (Sec-
tion 12.3.3).)

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.3. RESETTING THE PASSWORD 689

Figure 12.13: A successful password reset.

690 CHAPTER 12. PASSWORD RESET

1. Follow the email link from Section 12.2.1 again and submit mismatched
passwords to the form. What is the error message?

2. In the console, find the user belonging to the email link, and retrieve the
value of the password_digest attribute. Now submit valid matching
passwords to the form shown in Figure 12.12. Did the submission appear
to work? How did it affect the value of password_digest? Hint: Use
user.reload to retrieve the new value.

12.3.3 Password reset test
In this section, we’ll write an integration test covering two of the three branches
in Listing 12.16, invalid and valid submission. (As noted above, testing the third
branch is left as an exercise (Section 12.3.3).) We’ll get started by generating a
test file for password resets:

$ rails generate integration_test password_resets

invoke test_unit

create test/integration/password_resets_test.rb

The steps to test password resets broadly parallel the test for account activa-
tion from Listing 11.33, though there is a difference at the outset: we first visit
the “forgot password” form and submit invalid and then valid email addresses,
the latter of which creates a password reset token and sends the reset email. We
then visit the link from the email and again submit invalid and valid informa-
tion, verifying the correct behavior in each case. The resulting test, shown in
Listing 12.18, is an excellent exercise in reading code.

Listing 12.18: An integration test for password resets.
test/integration/password_resets_test.rb

require 'test_helper'

class PasswordResetsTest < ActionDispatch::IntegrationTest

def setup

12.3. RESETTING THE PASSWORD 691

ActionMailer::Base.deliveries.clear

@user = users(:michael)

end

test "password resets" do

get new_password_reset_path

assert_template 'password_resets/new'

assert_select 'input[name=?]', 'password_reset[email]'

Invalid email

post password_resets_path, params: { password_reset: { email: "" } }

assert_not flash.empty?

assert_template 'password_resets/new'

Valid email

post password_resets_path,

params: { password_reset: { email: @user.email } }

assert_not_equal @user.reset_digest, @user.reload.reset_digest

assert_equal 1, ActionMailer::Base.deliveries.size

assert_not flash.empty?

assert_redirected_to root_url

Password reset form

user = assigns(:user)

Wrong email

get edit_password_reset_path(user.reset_token, email: "")

assert_redirected_to root_url

Inactive user

user.toggle!(:activated)

get edit_password_reset_path(user.reset_token, email: user.email)

assert_redirected_to root_url

user.toggle!(:activated)

Right email, wrong token

get edit_password_reset_path('wrong token', email: user.email)

assert_redirected_to root_url

Right email, right token

get edit_password_reset_path(user.reset_token, email: user.email)

assert_template 'password_resets/edit'

assert_select "input[name=email][type=hidden][value=?]", user.email

Invalid password & confirmation

patch password_reset_path(user.reset_token),

params: { email: user.email,

user: { password: "foobaz",

password_confirmation: "barquux" } }

assert_select 'div#error_explanation'

Empty password

patch password_reset_path(user.reset_token),

params: { email: user.email,

user: { password: "",

password_confirmation: "" } }

assert_select 'div#error_explanation'

Valid password & confirmation

patch password_reset_path(user.reset_token),

params: { email: user.email,

692 CHAPTER 12. PASSWORD RESET

user: { password: "foobaz",

password_confirmation: "foobaz" } }

assert is_logged_in?

assert_not flash.empty?

assert_redirected_to user

end

end

Most of the ideas in Listing 12.18 have appeared previously in this tutorial; the
only really novel element is the test of the input tag:

assert_select "input[name=email][type=hidden][value=?]", user.email

This makes sure that there is an input tag with the right name, (hidden) type,
and email address:

<input id="email" name="email" type="hidden" value="michael@example.com" />

With the code as in Listing 12.18, our test suite should be green:

Listing 12.19: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. In Listing 12.6, the create_reset_digest method makes two calls
to update_attribute, each of which requires a separate database op-
eration. By filling in the template shown in Listing 12.20, replace the
two update_attribute calls with a single call to update_columns,

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.3. RESETTING THE PASSWORD 693

which hits the database only once. After making the changes, verify that
the test suite is still green. (For convenience, Listing 12.20 includes the
results of solving the exercise in Listing 11.39.)

2. Write an integration test for the expired password reset branch in List-
ing 12.16 by filling in the template shown in Listing 12.21. (This code
introduces response.body, which returns the full HTML body of the
page.) There are many ways to test for the result of an expiration, but the
method suggested by Listing 12.21 is to (case-insensitively) check that
the response body includes the word “expired”.

3. Expiring password resets after a couple of hours is a nice security precau-
tion, but there is an even more secure solution for cases where a public
computer is used. The reason is that the password reset link remains ac-
tive for 2 hours and can be used even if logged out. If a user reset their
password from a public machine, anyone could press the back button and
change the password (and get logged in to the site). To fix this, add the
code shown in Listing 12.22 to clear the reset digest on successful pass-
word update.5

4. Add a line to Listing 12.18 to test for the clearing of the reset digest in
the previous exercise. Hint: Combine assert_nil (first seen in List-
ing 9.25) with user.reload (Listing 11.33) to test the reset_digest
attribute directly.

Listing 12.20: A template for using update_columns.
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token, :activation_token, :reset_token

before_save :downcase_email

before_create :create_activation_digest

.

.

.

5Thanks to reader Tristan Ludowyk for suggesting this feature and for providing both a detailed description
and a suggested implementation.

694 CHAPTER 12. PASSWORD RESET

Activates an account.

def activate

update_columns(activated: true, activated_at: Time.zone.now)

end

Sends activation email.

def send_activation_email

UserMailer.account_activation(self).deliver_now

end

Sets the password reset attributes.

def create_reset_digest

self.reset_token = User.new_token

update_columns(reset_digest: FILL_IN, reset_sent_at: FILL_IN)

end

Sends password reset email.

def send_password_reset_email

UserMailer.password_reset(self).deliver_now

end

private

Converts email to all lower-case.

def downcase_email

self.email = email.downcase

end

Creates and assigns the activation token and digest.

def create_activation_digest

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

end

end

Listing 12.21: A test for an expired password reset. green
test/integration/password_resets_test.rb

require 'test_helper'

class PasswordResetsTest < ActionDispatch::IntegrationTest

def setup

ActionMailer::Base.deliveries.clear

@user = users(:michael)

end

.

.

.

12.3. RESETTING THE PASSWORD 695

test "expired token" do

get new_password_reset_path

post password_resets_path,

params: { password_reset: { email: @user.email } }

@user = assigns(:user)

@user.update_attribute(:reset_sent_at, 3.hours.ago)

patch password_reset_path(@user.reset_token),

params: { email: @user.email,

user: { password: "foobar",

password_confirmation: "foobar" } }

assert_response :redirect

follow_redirect!

assert_match /FILL_IN/i, response.body

end

end

Listing 12.22: Clearing the reset digest on successful password reset.
app/controllers/password_resets_controller.rb

class PasswordResetsController < ApplicationController

.

.

.

def update

if params[:user][:password].empty?

@user.errors.add(:password, "can't be empty")

render 'edit'

elsif @user.update(user_params)

log_in @user

@user.update_attribute(:reset_digest, nil)

flash[:success] = "Password has been reset."

redirect_to @user

else

render 'edit'

end

end

.

.

.

end

696 CHAPTER 12. PASSWORD RESET

12.4 Email in production (take two)
Now that we’ve got password resets working in development, in this section
we’ll get them working in production as well. The steps are exactly the same
as for account activations, so if you already followed Section 11.4 you can skip
right to Listing 12.24.

To send email in production, we’ll use SendGrid, which is available as an
add-on at Heroku for verified accounts. (This requires adding credit card in-
formation to your Heroku account, but there is no charge when verifying an
account.) For our purposes, the “starter” tier (which as of this writing is limited
to 400 emails a day but costs nothing) is the best fit. We can add it to our app
as follows:

$ heroku addons:create sendgrid:starter

(This might fail on systems with older version of Heroku’s command-line in-
terface. In this case, either upgrade to the latest Heroku toolbelt or try the older
syntax heroku addons:add sendgrid:starter.)

To configure our application to use SendGrid, we need to fill out the SMTP
settings for our production environment. As shown in Listing 12.23, you will
also have to define a host variable with the address of your production website.

Listing 12.23: Configuring Rails to use SendGrid in production.
config/environments/production.rb

Rails.application.configure do

.

.

.

config.action_mailer.raise_delivery_errors = true

config.action_mailer.delivery_method = :smtp

host = '<your heroku app>.herokuapp.com'

config.action_mailer.default_url_options = { host: host }

ActionMailer::Base.smtp_settings = {

:address => 'smtp.sendgrid.net',

:port => '587',

:authentication => :plain,

:user_name => ENV['SENDGRID_USERNAME'],

https://toolbelt.heroku.com/
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

12.4. EMAIL IN PRODUCTION (TAKE TWO) 697

:password => ENV['SENDGRID_PASSWORD'],

:domain => 'heroku.com',

:enable_starttls_auto => true

}

.

.

.

end

The email configuration in Listing 11.41 includes the user_name and
password of the SendGrid account, but note that they are accessed via the ENV
environment variable instead of being hard-coded. This is a best practice for
production applications, which for security reasons should never expose sen-
sitive information such as raw passwords in source code. In the present case,
these variables are configured automatically via the SendGrid add-on, but we’ll
see an example in Section 13.4.4 where we’ll have to define them ourselves.

At this point, you should merge the topic branch into master (Listing 12.24).

Listing 12.24: Merging the password-reset branch into master.
$ rails test

$ git add -A

$ git commit -m "Add password reset"

$ git checkout master

$ git merge password-reset

Then push up to the remote repository and deploy to Heroku:

$ rails test

$ git push && git push heroku

$ heroku run rails db:migrate

Once the Heroku deploy has finished, you can reset your password by click-
ing the “(forgot password)” link (Figure 12.4). The result should be a reset email
as shown in Figure 12.14. Following the link and making invalid or valid sub-
missions should work as it did in development (Figure 12.12 and Figure 12.13).
Likewise, upon successfully changing the password, the user should be redi-
rected to the profile page (Figure 12.15).

698 CHAPTER 12. PASSWORD RESET

Figure 12.14: A password reset email sent in production.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Sign up for a new account in production. Did you get the email?

2. Click on the link in the activation email to confirm that it works. What is
the corresponding entry in the server log? Hint: Run heroku logs at
the command line.

3. Are you able to successfully update your password?

12.5 Conclusion
With the added password resets, our sample application’s sign up, log in, and
log out machinery is complete and professional-grade. The rest of the Ruby on
Rails Tutorial builds on this foundation to make a site with Twitter-like micro-
posts (Chapter 13) and a status feed of posts from followed users (Chapter 14).

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.5. CONCLUSION 699

Figure 12.15: The result of a successful password reset in production.

700 CHAPTER 12. PASSWORD RESET

In the process, we’ll learn about some of the most powerful features of Rails,
including image upload, custom database queries, and advanced data modeling
with has_many and has_many :through.

12.5.1 What we learned in this chapter
• Like sessions and account activations, password resets can be modeled

as a resource despite not being Active Record objects.

• Rails can generate Action Mailer actions and views to send email.

• Action Mailer supports both plain-text and HTML mail.

• As with ordinary actions and views, instance variables defined in mailer
actions are available in mailer views.

• Password resets use a generated token to create a unique URL for reset-
ting passwords.

• Password resets use a hashed reset digest to securely identify valid reset
requests.

• Both mailer tests and integration tests are useful for verifying the behavior
of the User mailer.

• We can send email in production using SendGrid.

12.6 Proof of expiration comparison
We saw in Section 12.3 that the comparison test for determining when a pass-
word reset has expired is

reset_sent_at < 2.hours.ago

12.6. PROOF OF EXPIRATION COMPARISON 701

as seen in Listing 12.17. This looks likes it might be read as “reset sent less
than two hours ago”, which is the opposite of what we want. In this section,
we’ll prove that the above comparison is correct.6

We start by defining two time intervals. Let ∆tr be the time interval since
sending the password reset and∆te be the expiration time limit (e.g., two hours).
A password reset has expired if the time interval since the reset was sent is
greater than the expiration limit:

∆tr > ∆te. (12.1)
If we write the time now as tN , the password reset sending time as tr, and the
expiration time as te (e.g., two hours ago), then we have

∆tr = tN − tr (12.2)
and

∆te = tN − te. (12.3)
Plugging Eq. (12.2) and Eq. (12.3) into (12.1) then gives

∆tr > ∆te
tN − tr > tN − te

−tr > −te,

which upon multiplying through by −1 yields
tr < te. (12.4)

Converting (12.4) to code with the value te = 2 hours ago gives the pass-

word_reset_expired? method shown in Listing 12.17:

def password_reset_expired?

reset_sent_at < 2.hours.ago

end

As noted in Section 12.3, if we read < as “earlier than” instead of “less than”,
this code makes sense as the English sentence “The password reset was sent
earlier than two hours ago.”

6This proof is the price you pay for reading a web development tutorial written by a Ph.D. physicist. Just be
grateful I couldn’t find a way to work

(
− ℏ2

2m∇2 + V
)
ψ = Eψ or Gµν = 8πTµν(= 4τTµν) into the exposition.

