
802 CHAPTER 13. USER MICROPOSTS

$ rails test

$ git add -A

$ git commit -m "Add user microposts"

Because so many things can go wrong with the configuration, we’ll deploy the
app directly from our current topic branch, making sure it’s working before
merging into master. We can do this by including the branch name in the push
to Heroku as follows:

$ git push heroku user-microposts:master

As usual, we then reset the database and reseed the sample data:

$ heroku pg:reset DATABASE

$ heroku run rails db:migrate

$ heroku run rails db:seed

Because Heroku comes with an installation of ImageMagick, the result is suc-
cessful image resizing and upload in production, as seen in Figure 13.40.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Upload a large image and confirm directly that the resizing is working in
production. Does the resizing work even if the image isn’t square?

13.5 Conclusion
With the addition of the Microposts resource, we are nearly finished with our
sample application. All that remains is to add a social layer by letting users

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

13.5. CONCLUSION 803

Figure 13.40: An uploaded image in production.

804 CHAPTER 13. USER MICROPOSTS

follow each other. We’ll learn how to model such user relationships, and see
the implications for the microposts feed, in Chapter 14.

If you skipped Section 13.4.4, be sure to commit your changes:

$ rails test

$ git add -A

$ git commit -m "Add user microposts"

Then merge into master:

$ git checkout master

$ git merge user-microposts

$ git push

And finally deploy to production:

$ git push heroku

$ heroku pg:reset DATABASE

$ heroku run rails db:migrate

$ heroku run rails db:seed

It’s worth noting that this chapter saw the last of the necessary gem instal-
lations. For reference, the final Gemfile is shown in Listing 13.75.25

Listing 13.75: The final Gemfile for the sample application.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.1'

gem 'image_processing', '1.9.3'

gem 'mini_magick', '4.9.5'

gem 'active_storage_validations', '0.8.2'

gem 'bcrypt', '3.1.13'

gem 'faker', '2.1.2'

gem 'will_paginate', '3.1.8'

25As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://gemfiles-6th-ed.railstutorial.org/

13.5. CONCLUSION 805

gem 'bootstrap-will_paginate', '1.0.0'

gem 'bootstrap-sass', '3.4.1'

gem 'puma', '3.12.1'

gem 'sass-rails', '5.1.0'

gem 'webpacker', '4.0.7'

gem 'turbolinks', '5.2.0'

gem 'jbuilder', '2.9.1'

gem 'bootsnap', '1.4.4', require: false

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

end

group :development do

gem 'web-console', '4.0.1'

gem 'listen', '3.1.5'

gem 'spring', '2.1.0'

gem 'spring-watcher-listen', '2.0.1'

end

group :test do

gem 'capybara', '3.28.0'

gem 'selenium-webdriver', '3.142.4'

gem 'webdrivers', '4.1.2'

gem 'rails-controller-testing', '1.0.4'

gem 'minitest', '5.11.3'

gem 'minitest-reporters', '1.3.8'

gem 'guard', '2.15.0'

gem 'guard-minitest', '2.4.6'

end

group :production do

gem 'pg', '1.1.4'

gem 'aws-sdk-s3', '1.46.0', require: false

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

13.5.1 What we learned in this chapter
• Microposts, like Users, are modeled as a resource backed by an Active

Record model.

• Rails supports multiple-key indices.

806 CHAPTER 13. USER MICROPOSTS

• We can model a user having many microposts using the has_many and
belongs_to methods in the User and Micropost models, respectively.

• The has_many/belongs_to combination gives rise to methods that
work through the association.

• The code user.microposts.build(...) returns a new Micropost
object automatically associated with the given user.

• Rails supports default ordering via default_scope.

• Scopes take anonymous functions as arguments.

• The dependent: :destroy option causes objects to be destroyed at
the same time as associated objects.

• Pagination and object counts can both be performed through associations,
leading to automatically efficient code.

• Fixtures support the creation of associations.

• It is possible to pass variables to Rails partials.

• The where method can be used to perform Active Record selections.

• We can enforce secure operations by always creating and destroying de-
pendent objects through their association.

• We can upload images using Active Storage.

