
13.3. MANIPULATING MICROPOSTS 763

Listing 13.51: Setting an explicit controller and action.
app/views/shared/_feed.html.erb

<% if @feed_items.any? %>

<ol class="microposts">

<%= render @feed_items %>

<%= will_paginate @feed_items,

params: { controller: :static_pages, action: :home } %>

<% end %>

Now clicking on either of the pagination links in Figure 13.17 yields the
expected second page, as shown in Figure 13.19.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Use the newly created micropost UI to create the first real micropost.
What are the contents of the INSERT command in the server log?

2. In the console, set user to the first user in the database. Confirm that the
v a l u e s o f Micropost.where("user_id = ?", user.id),
user.microposts, and user.feed are all the same. Hint: It’s proba-
bly easiest to compare directly using ==.

13.3.4 Destroying microposts
The last piece of functionality to add to the Microposts resource is the ability to
destroy posts. As with user deletion (Section 10.4.2), we accomplish this with
“delete” links, as mocked up in Figure 13.20. Unlike that case, which restricted
user destruction to admin users, the delete links will work only for microposts
created by the current user.

Our first step is to add a delete link to the micropost partial as in List-
ing 13.22. The result appears in Listing 13.52.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

764 CHAPTER 13. USER MICROPOSTS

Figure 13.19: The result of a working pagination link to the second page.

13.3. MANIPULATING MICROPOSTS 765

Figure 13.20: A mockup of the proto-feed with micropost delete links.

766 CHAPTER 13. USER MICROPOSTS

Listing 13.52: Adding a delete link to the micropost partial.
app/views/microposts/_micropost.html.erb

<li id="micropost-<%= micropost.id %>">

<%= link_to gravatar_for(micropost.user, size: 50), micropost.user %>

<%= link_to micropost.user.name, micropost.user %>

<%= micropost.content %>

Posted <%= time_ago_in_words(micropost.created_at) %> ago.

<% if current_user?(micropost.user) %>

<%= link_to "delete", micropost, method: :delete,

data: { confirm: "You sure?" } %>

<% end %>

The next step is to define a destroy action in the Microposts controller,
which is analogous to the user case in Listing 10.59. The main difference is that,
rather than using an @user variable with an admin_user before filter, we’ll
find the micropost through the association, which will automatically fail if a user
tries to delete another user’s micropost. We’ll put the resulting find inside a
correct_user before filter, which checks that the current user actually has a
micropost with the given id. The result appears in Listing 13.53.

Listing 13.53: The Microposts controller destroy action.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before_action :logged_in_user, only: [:create, :destroy]

before_action :correct_user, only: :destroy

.

.

.

def destroy

@micropost.destroy

flash[:success] = "Micropost deleted"

redirect_to request.referrer || root_url

end

private

def micropost_params

params.require(:micropost).permit(:content)

13.3. MANIPULATING MICROPOSTS 767

end

def correct_user

@micropost = current_user.microposts.find_by(id: params[:id])

redirect_to root_url if @micropost.nil?

end

end

Note that the destroy method in Listing 13.53 redirects to the URL

request.referrer || root_url

This uses the request.referrer method,14 which is related to the
request.original_url variable used in friendly forwarding
(Section 10.2.3), and is just the previous URL (in this case, the Home page).15

This is convenient because microposts appear on both the Home page and on
the user’s profile page, so by using request.referrer we arrange to redirect
back to the page issuing the delete request in both cases. If the referring URL
is nil (as is the case inside some tests), Listing 13.53 sets the root_url as
the default using the || operator. (Compare to the default options defined in
Listing 9.24.)

With the code as above, the Home page has working delete links (Fig-
ure 13.21), which you can verify by deleting, e.g., the second post (Figure
13.22).

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Create a new micropost and then delete it. What are the contents of the
DELETE command in the server log?

14This corresponds to HTTP_REFERER, as defined by the specification for HTTP. Note that “referer” is not a
typo—the word is actually misspelled in the spec. Rails corrects this error by writing “referrer” instead.

15I didn’t remember offhand how to get this URL inside a Rails application, so I Googled “rails request previous
url” and found a Stack Overflow thread with the answer.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://stackoverflow.com/questions/4652084/ruby-on-rails-how-do-you-get-the-previous-url

768 CHAPTER 13. USER MICROPOSTS

Figure 13.21: The Home page with delete links.

13.3. MANIPULATING MICROPOSTS 769

Figure 13.22: The result of deleting the second post.

770 CHAPTER 13. USER MICROPOSTS

2. Confirm directly in the browser that the line redirect_to request.-
referrer || root_url can be replaced with the line redirect_-

back(fallback_location: root_url). (This method was added
in Rails 5.)

13.3.5 Micropost tests
With the code in Section 13.3.4, the Micropost model and interface are com-
plete. All that’s left is writing a short Microposts controller test to check autho-
rization and a micropost integration test to tie it all together.

We’ll start by adding a few microposts with different owners to the micro-
post fixtures, as shown in Listing 13.54. (We’ll be using only one for now, but
we’ve put in the others for future reference.)

Listing 13.54: Adding a micropost with a different owner.
test/fixtures/microposts.yml

.

.

.

ants:

content: "Oh, is that what you want? Because that's how you get ants!"

created_at: <%= 2.years.ago %>

user: archer

zone:

content: "Danger zone!"

created_at: <%= 3.days.ago %>

user: archer

tone:

content: "I'm sorry. Your words made sense, but your sarcastic tone did not."

created_at: <%= 10.minutes.ago %>

user: lana

van:

content: "Dude, this van's, like, rolling probable cause."

created_at: <%= 4.hours.ago %>

user: lana

We next write a short test to make sure one user can’t delete the microp-
osts of a different user, and we also check for the proper redirect, as seen in

13.3. MANIPULATING MICROPOSTS 771

Listing 13.55.

Listing 13.55: Testing micropost deletion with a user mismatch. green
test/controllers/microposts_controller_test.rb

require 'test_helper'

class MicropostsControllerTest < ActionDispatch::IntegrationTest

def setup

@micropost = microposts(:orange)

end

test "should redirect create when not logged in" do

assert_no_difference 'Micropost.count' do

post microposts_path, params: { micropost: { content: "Lorem ipsum" } }

end

assert_redirected_to login_url

end

test "should redirect destroy when not logged in" do

assert_no_difference 'Micropost.count' do

delete micropost_path(@micropost)

end

assert_redirected_to login_url

end

test "should redirect destroy for wrong micropost" do

log_in_as(users(:michael))

micropost = microposts(:ants)

assert_no_difference 'Micropost.count' do

delete micropost_path(micropost)

end

assert_redirected_to root_url

end

end

Finally, we’ll write an integration test to log in, check the micropost pag-
ination, make an invalid submission, make a valid submission, delete a post,
and then visit a second user’s page to make sure there are no “delete” links. We
start by generating a test as usual:

$ rails generate integration_test microposts_interface

invoke test_unit

create test/integration/microposts_interface_test.rb

772 CHAPTER 13. USER MICROPOSTS

The test appears in Listing 13.56. See if you can connect the lines in List-
ing 13.12 to the steps mentioned above.

Listing 13.56: An integration test for the micropost interface. green
test/integration/microposts_interface_test.rb

require 'test_helper'

class MicropostsInterfaceTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "micropost interface" do

log_in_as(@user)

get root_path

assert_select 'div.pagination'

Invalid submission

assert_no_difference 'Micropost.count' do

post microposts_path, params: { micropost: { content: "" } }

end

assert_select 'div#error_explanation'

assert_select 'a[href=?]', '/?page=2' # Correct pagination link

Valid submission

content = "This micropost really ties the room together"

assert_difference 'Micropost.count', 1 do

post microposts_path, params: { micropost: { content: content } }

end

assert_redirected_to root_url

follow_redirect!

assert_match content, response.body

Delete post

assert_select 'a', text: 'delete'

first_micropost = @user.microposts.paginate(page: 1).first

assert_difference 'Micropost.count', -1 do

delete micropost_path(first_micropost)

end

Visit different user (no delete links)

get user_path(users(:archer))

assert_select 'a', text: 'delete', count: 0

end

end

Because we wrote working application code first, the test suite should be
green:

13.3. MANIPULATING MICROPOSTS 773

Listing 13.57: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. For each of the four scenarios indicated by comments in Listing 13.56
(starting with “Invalid submission”), comment out application code to
get the corresponding test to red, then uncomment to get back to green.

2. Add tests for the sidebar micropost count (including proper pluralization).
Listing 13.58 will help get you started.

Listing 13.58: A template for the sidebar micropost count test.
test/integration/microposts_interface_test.rb

require 'test_helper'

class MicropostInterfaceTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "micropost sidebar count" do

log_in_as(@user)

get root_path

assert_match "#{FILL_IN} microposts", response.body

User with zero microposts

other_user = users(:malory)

log_in_as(other_user)

get root_path

assert_match "0 microposts", response.body

other_user.microposts.create!(content: "A micropost")

get root_path

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

