
774 CHAPTER 13. USER MICROPOSTS

assert_match FILL_IN, response.body

end

end

13.4 Micropost images
Now that we’ve added support for all relevant micropost actions, in this section
we’ll make it possible for microposts to include images as well as text. We’ll
start with a basic version good enough for development use, and then add a
series of enhancements to make image upload production-ready.

Adding image upload involves two main visible elements: a form field for
uploading an image and the micropost images themselves. A mockup of the re-
sulting “Upload image” button and micropost photo appears in Figure 13.23.16

13.4.1 Basic image upload
The most convenient way to upload files in Rails is to use a built-in feature
called Active Storage.17 Active Storage makes it easy to handle an uploaded
image and associate it with a model of our choice (e.g., the Micropost model).
Although we’ll be using it only for uploading images, Active Storage is actually
quite general, and can handle plain text and multiple kinds of binary files (such
as PDF documents or recorded audio).

As described in the Active Storage documentation, adding Active Storage
to our application is as easy as running a single command:

$ rails active_storage:install

This command generates a database migration that creates a data model for stor-
ing attached files. You’re welcome to take a look at it, but this is an excellent

16Image retrieved from https://www.flickr.com/photos/grungepunk/14026922186 on 2014-09-19. Copyright ©
2014 by Jussie D. Brito and used unaltered under the terms of the Creative Commons Attribution-ShareAlike 2.0
Generic license.

17Active Storage was added in Rails 5.2.

https://en.wikipedia.org/wiki/Binary_file
https://edgeguides.rubyonrails.org/active_storage_overview.html
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/

13.4. MICROPOST IMAGES 775

Figure 13.23: A mockup of micropost image upload (with an uploaded image).

776 CHAPTER 13. USER MICROPOSTS

example of applying technical sophistication to know which details matter and
which don’t. In this case, what matters is the API for interacting with Active
Storage, which we’ll start covering in a moment; for our purposes, the imple-
mentation details are safe to ignore. All we need to do to set it up is run the
migration:

$ rails db:migrate

The first part of the Active Storage API that we need is the has_one_-

attached method, which allows us to associate an uploaded file with a given
model. In our case, we’ll call it image and associate it with the Micropost
model, as shown in Listing 13.59.

Listing 13.59: Adding an image to the Micropost model.
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

has_one_attached :image

default_scope -> { order(created_at: :desc) }

validates :user_id, presence: true

validates :content, presence: true, length: { maximum: 140 }

end

We’ll adopt a design of one image per micropost for our application, but Active
Storage also offers a second option, has_many_attached, which allows for
the attachment of multiple files to a single Active Record object.

To include image upload on the Home page as in Figure 13.23, we need to
include a file_field tag in the micropost form, as shown in Listing 13.60
and Figure 13.24.

Listing 13.60: Adding image upload to the micropost create form.
app/views/shared/_micropost_form.html.erb

<%= form_with(model: @micropost, local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

https://en.wikipedia.org/wiki/Application_programming_interface

13.4. MICROPOST IMAGES 777

Figure 13.24: Adding an image upload field.

<div class="field">

<%= f.text_area :content, placeholder: "Compose new micropost..." %>

</div>

<%= f.submit "Post", class: "btn btn-primary" %>

<%= f.file_field :image %>

<% end %>

Finally, we need to update the Microposts controller to add the image to
the newly created micropost object. We can do this using the attach method
provided by the Active Storage API, which attaches the uploaded image to the
@micropost object in the Microposts controller’s create action. To allow

778 CHAPTER 13. USER MICROPOSTS

the upload to go through, we also need to update micropost_params method
to add :image to the list of attributes permitted to be modified through the web.
The result appears in Listing 13.61.

Listing 13.61: Adding image to the list of permitted attributes.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before_action :logged_in_user, only: [:create, :destroy]

before_action :correct_user, only: :destroy

def create

@micropost = current_user.microposts.build(micropost_params)

@micropost.image.attach(params[:micropost][:image])

if @micropost.save

flash[:success] = "Micropost created!"

redirect_to root_url

else

@feed_items = current_user.feed.paginate(page: params[:page])

render 'static_pages/home'

end

end

def destroy

@micropost.destroy

flash[:success] = "Micropost deleted"

redirect_to request.referrer || root_url

end

private

def micropost_params

params.require(:micropost).permit(:content, :image)

end

def correct_user

@micropost = current_user.microposts.find_by(id: params[:id])

redirect_to root_url if @micropost.nil?

end

end

Once the image has been uploaded, we can render the associated micro-

post.image using the image_tag helper in the micropost partial, as shown
in Listing 13.62. Notice the use of the attached? boolean method to prevent
displaying an image tag when there isn’t an image.

13.4. MICROPOST IMAGES 779

Listing 13.62: Adding image display to microposts.
app/views/microposts/_micropost.html.erb

<li id="micropost-<%= micropost.id %>">

<%= link_to gravatar_for(micropost.user, size: 50), micropost.user %>

<%= link_to micropost.user.name, micropost.user %>

<%= micropost.content %>

<%= image_tag micropost.image if micropost.image.attached? %>

Posted <%= time_ago_in_words(micropost.created_at) %> ago.

<% if current_user?(micropost.user) %>

<%= link_to "delete", micropost, method: :delete,

data: { confirm: "You sure?" } %>

<% end %>

The result of making a micropost with an image appears in Figure 13.25.
I’m always amazed when things like this actually work, but there’s the proof!
(It’s also a good idea to write at least a basic automated test for image upload,
which is left as an exercise (Section 13.4.1).)

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Upload a micropost with attached image. Does the result look too big?
(If so, don’t worry; we’ll fix it in Section 13.4.3.)

2. Following the template in Listing 13.64, write a test of the image uploader
in Section 13.4. As preparation, you should add an image to the fixtures
directory using Listing 13.63. The additional assertions in Listing 13.64
check both for a file upload field on the Home page and for a valid im-
age attribute on the micropost resulting from valid submission. Note the
use of the special fixture_file_uploadmethod for uploading files as

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

780 CHAPTER 13. USER MICROPOSTS

Figure 13.25: The result of submitting a micropost with an image.

13.4. MICROPOST IMAGES 781

fixtures inside tests.18 Hint: To check for a valid image attribute, use the
assigns method mentioned in Section 11.3.3 to access the micropost in
the create action after valid submission.

Listing 13.63: Downloading a fixture image for use in the tests.
$ curl -o test/fixtures/kitten.jpg -OL https://cdn.learnenough.com/kitten.jpg

Listing 13.64: A template for testing image upload.
test/integration/microposts_interface_test.rb

require 'test_helper'

class MicropostInterfaceTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "micropost interface" do

log_in_as(@user)

get root_path

assert_select 'div.pagination'

assert_select 'input[type=FILL_IN]'

Invalid submission

assert_no_difference 'Micropost.count' do

post microposts_path, params: { micropost: { content: "" } }

end

assert_select 'div#error_explanation'

assert_select 'a[href=?]', '/?page=2' # Correct pagination link

Valid submission

content = "This micropost really ties the room together"

image = fixture_file_upload('test/fixtures/kitten.jpg', 'image/jpeg')

assert_difference 'Micropost.count', 1 do

post microposts_path, params: { micropost:

{ content: content, image: image } }

end

assert FILL_IN.image.attached?

follow_redirect!

assert_match content, response.body

Delete a post.

assert_select 'a', text: 'delete'

first_micropost = @user.microposts.paginate(page: 1).first

18Windows users should add a :binary parameter: fixture_file_upload(file, type, :binary).

782 CHAPTER 13. USER MICROPOSTS

assert_difference 'Micropost.count', -1 do

delete micropost_path(first_micropost)

end

Visit a different user.

get user_path(users(:archer))

assert_select 'a', { text: 'delete', count: 0 }

end

.

.

.

end

13.4.2 Image validation
The image upload code in Section 13.4.1 is a good start, but it has significant
limitations. Among other things, it doesn’t enforce any constraints on the up-
loaded file, which can cause problems if users try to upload large files or invalid
file types. To remedy this defect, we’ll add validations for the image size and
format.

As of this writing, Active Storage (somewhat surprisingly) doesn’t offer
native support for things like format and size validations, but as is so often the
case there is a gem that adds it for us (Listing 13.65).

Listing 13.65: Adding a gem for Active Storage validations.
Gemfile

source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.1'

gem 'active_storage_validations', '0.8.2'

gem 'bcrypt', '3.1.13'

.

.

.

Then bundle install:

13.4. MICROPOST IMAGES 783

$ bundle install

Following the gem documentation, we see that we can validate the image
format by examining the content_type as follows:

content_type: { in: %w[image/jpeg image/gif image/png],

message: "must be a valid image format" }

This checks that the MIME type of the image corresponds to a supported image
format. (Recall the %w[] array-building syntax from Section 6.2.4.)

Similarly, we can validate the file size like this:

size: { less_than: 5.megabytes,

message: "should be less than 5MB" }

This sets a limit of 5 megabytes using a syntax we saw before in the context of
time helpers (Box 9.1).

Adding these validations to the Micropost model gives the code in List-
ing 13.66.

Listing 13.66: Adding validations to images.
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

has_one_attached :image

default_scope -> { order(created_at: :desc) }

validates :user_id, presence: true

validates :content, presence: true, length: { maximum: 140 }

validates :image, content_type: { in: %w[image/jpeg image/gif image/png],

message: "must be a valid image format" },

size: { less_than: 5.megabytes,

message: "should be less than 5MB" }

end

The result of trying to upload a large, invalid image then appears as in Fig-
ure 13.26. (You may have to restart the Rails server first.)

https://github.com/igorkasyanchuk/active_storage_validations
https://en.wikipedia.org/wiki/Internet_media_type

784 CHAPTER 13. USER MICROPOSTS

Figure 13.26: Trying to upload a large, invalid image.

13.4. MICROPOST IMAGES 785

To go along with the validations in Listing 13.66, we’ll add client-side (in-
browser) checks on the uploaded image size and format. We’ll start by including
a little JavaScript (or, more specifically, jQuery) to issue an alert if a user tries to
upload an image that’s too big (which prevents accidental time-consuming up-
loads and lightens the load on the server). The result appears in Listing 13.67.19

Listing 13.67: Checking the file size with jQuery.
app/views/shared/_micropost_form.html.erb

<%= form_with(model: @micropost, local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

<div class="field">

<%= f.text_area :content, placeholder: "Compose new micropost..." %>

</div>

<%= f.submit "Post", class: "btn btn-primary" %>

<%= f.file_field :image %>

<% end %>

<script type="text/javascript">

$("#micropost_image").bind("change", function() {

var size_in_megabytes = this.files[0].size/1024/1024;

if (size_in_megabytes > 5) {

alert("Maximum file size is 5MB. Please choose a smaller file.");

$("#micropost_image").val("");

}

});

</script>

Although JavaScript isn’t the focus of this book, you might be able to figure
out that Listing 13.67 monitors the page element containing the CSS id micro-
post_image (as indicated by the hash mark #), which is the id of the micropost
form in Listing 13.60. (The way to figure this out is to Ctrl-click and use your
browser’s web inspector.) When the element with that CSS id changes, the
jQuery function fires and issues the alert method if the file is too big, as seen
in Figure 13.27.20

19More advanced users of JavaScript would probably put the size check in its own function, but since this isn’t
a JavaScript tutorial the code in Listing 13.67 is fine for our purposes.

20To learn how to do things like this, you can do what I did: Google for things like “javascript maximum file
size” until you find something on Stack Overflow.

https://jquery.com/

786 CHAPTER 13. USER MICROPOSTS

Figure 13.27: A JavaScript alert for a large file.

13.4. MICROPOST IMAGES 787

Finally, by using the accept parameter in the file_field input tag, we
can specify that only valid formats should be allowed (Listing 13.68).

Listing 13.68: Allowing only valid image formats.
app/views/shared/_micropost_form.html.erb

<%= form_with(model: @micropost, local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

<div class="field">

<%= f.text_area :content, placeholder: "Compose new micropost..." %>

</div>

<%= f.submit "Post", class: "btn btn-primary" %>

<%= f.file_field :image, accept: "image/jpeg,image/gif,image/png" %>

<% end %>

<script type="text/javascript">

$("#micropost_image").bind("change", function() {

var size_in_megabytes = this.files[0].size/1024/1024;

if (size_in_megabytes > 5) {

alert("Maximum file size is 5MB. Please choose a smaller file.");

$("#micropost_image").val("");

}

});

</script>

Listing 13.68 arranges to allow only valid image types to be selected in the first
place, graying out any other file types (Figure 13.28).

Preventing invalid images from being uploaded in a browser is a nice touch,
but it’s important to understand that this sort of code can only make it difficult
to upload an invalid format or large file; a user determined to upload an invalid
file can always issue a direct POST request using, e.g., curl. It is thus essential
to include server-side validations of the type shown in Listing 13.66.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. What happens if you try uploading an image bigger than 5 megabytes?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

788 CHAPTER 13. USER MICROPOSTS

Figure 13.28: Grayed-out invalid file types.

13.4. MICROPOST IMAGES 789

2. What happens if you try uploading a file with an invalid extension?

13.4.3 Image resizing
The image size validations in Section 13.4.2 are a good start, but they still allow
the uploading of images large enough to break our site’s layout, sometimes with
frightening results (Figure 13.29). Thus, while it’s convenient to allow users to
select fairly large images from their local disk, it’s also a good idea to resize the
images before displaying them.21

We’ll be resizing images using the image manipulation program ImageMag-
ick, which we need to install on the development environment. (As we’ll see in
Section 13.4.4, when using Heroku for deployment ImageMagick comes pre-
installed in production.) On the cloud IDE, we can do this as follows:

$ sudo apt-get -y install imagemagick

(If you’re not using the cloud IDE or an equivalent Linux system, do a Google
search for “imagemagick <your platform>”. On macOS, brew install
imagemagick should work if you have Homebrew installed. Use your techni-
cal sophistication (Box 1.2) if you get stuck.)

Next, we need to add a couple of gems for image processing, including the
aptly named image_processing gem and mini_magick, a Ruby proces-
sor for ImageMagick (Listing 13.69).

Listing 13.69: Adding gems for image processing.
Gemfile

source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.1'

gem 'image_processing', '1.9.3'

21It’s possible to constrain the display size with CSS, but this doesn’t change the image size. In particular, large
images would still take a while to load. (You’ve probably visited websites where “small” images seemingly take
forever to load. This is why.)

https://www.imagemagick.org/
https://www.imagemagick.org/
https://brew.sh/

790 CHAPTER 13. USER MICROPOSTS

Figure 13.29: A frighteningly large uploaded image.

13.4. MICROPOST IMAGES 791

gem 'mini_magick', '4.9.5'

gem 'active_storage_validations', '0.8.2'

.

.

.

Then install as usual:

$ bundle install

You will probably need to restart the Rails server as well.
With the necessary software installed, we’re now ready to use the variant

method supplied by Active Storage for creating transformed images. In partic-
ular, we’ll use the resize_to_limit option to ensure that neither the width
nor the height of the image is greater than 500 pixels, as follows:

image.variant(resize_to_limit: [500, 500])

For convenience, we’ll put this code in a separate display_image method, as
shown in Listing 13.70.

Listing 13.70: Adding a resized display image.
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

has_one_attached :image

default_scope -> { order(created_at: :desc) }

validates :user_id, presence: true

validates :content, presence: true, length: { maximum: 140 }

validates :image, content_type: { in: %w[image/jpeg image/gif image/png],

message: "must be a valid image format" },

size: { less_than: 5.megabytes,

message: "should be less than 5MB" }

Returns a resized image for display.

def display_image

image.variant(resize_to_limit: [500, 500])

end

end

https://edgeguides.rubyonrails.org/active_storage_overview.html#transforming-images

792 CHAPTER 13. USER MICROPOSTS

Finally, we can use display_image in the micropost partial, as shown in
Listing 13.71.

Listing 13.71: Using the resized display_image.
app/views/microposts/_micropost.html.erb

<li id="micropost-<%= micropost.id %>">

<%= link_to gravatar_for(micropost.user, size: 50), micropost.user %>

<%= link_to micropost.user.name, micropost.user %>

<%= micropost.content %>

<%= image_tag micropost.display_image if micropost.image.attached? %>

Posted <%= time_ago_in_words(micropost.created_at) %> ago.

<% if current_user?(micropost.user) %>

<%= link_to "delete", micropost, method: :delete,

data: { confirm: "You sure?" } %>

<% end %>

The variant resizing in Listing 13.70 will happen on demand when the
method is first called in Listing 13.71, and will be cached for efficiency in
subsequent uses.22 The result is a properly resized display image, as seen in
Figure 13.30.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Upload a large image and confirm directly that the resizing is working.
Does the resizing work even if the image isn’t square?

22For larger sites, it’s probably better to defer such processing to a background process; this method is beyond
the scope of this tutorial, but investigating Active Job will get you started if you need to go this route.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Background_process
https://guides.rubyonrails.org/active_job_basics.html

13.4. MICROPOST IMAGES 793

Figure 13.30: A nicely resized image.

