
794 CHAPTER 13. USER MICROPOSTS

13.4.4 Image upload in production
The image uploading developed in Section 13.4.3 is good enough for devel-
opment, but (as seen below in Listing 13.73) it uses the local disk for storing
the images, which isn’t a good practice in production. (Among other things,
file storage on Heroku is temporary, so uploaded images will be deleted every
time you deploy.) Instead, we’ll use a cloud storage service to store images
separately from our application.

There are many choices for cloud storage, but we’ll use one of the most
popular and well-supported, Amazon.com’s Simple Storage Service (S3), part
of Amazon Web Services (AWS).23

To configure our application to use cloud storage in production, we’ll add
the aws-sdk-s3 gem to the :production environment, as shown in List-
ing 13.72.

Listing 13.72: Adding a gem for Amazon Web Services (AWS).
Gemfile

source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.1'

gem 'image_processing', '1.9.3'

gem 'mini_magick', '4.9.5'

gem 'active_storage_validations', '0.8.2'

.

.

.

group :production do

gem 'pg', '1.1.4'

gem 'aws-sdk-s3', '1.46.0', require: false

end

.

.

.

Then bundle one more time:
23S3 is a paid service, but the storage needed to set up and test the Rails Tutorial sample application costs less

than a cent per month.

https://aws.amazon.com/s3/
https://aws.amazon.com

13.4. MICROPOST IMAGES 795

$ bundle install

AWS configuration

At this point, you’ll need to configure your AWS system to use S3. Here are
the basic steps:24

1. Sign up for an Amazon Web Services account if you don’t have one
already (Figure 13.31). (If you signed up for the Cloud9 IDE in Sec-
tion 1.1.1, you already have an AWS account and can skip this step.)

2. Create a user via AWS Identity and Access Management (IAM). This
involves using the IAM users interface (Figure 13.32) to navigate to the
“Add user” page (Figure 13.33), where you should create a user while
enabling “programmatic access” (Figure 13.34), grant the user adminis-
trator access (Figure 13.35), and then skip the optional user tags (Fig-
ure 13.36).

3. After clicking “Create user”, you should see the name of the user together
with the access key ID and the secret access key (Figure 13.37). Copy
these keys and store them some place safe.

4. Create an S3 bucket using the AWS Console (Figure 13.38). S3 buckets
exist in a global namespace, so the name has to be unique, but otherwise
the default bucket settings should be fine.

You may find setting up S3 to be a challenging exercise in technical so-
phistication (Box 1.2); for further details on the steps above, consult the S3
documentation, the article “Setting up Rails 5 [or higher] with Active Storage
with Amazon S3”, and, if necessary, Google or Stack Overflow.

24The steps are current as of this writing, but services like AWS are constantly evolving, so the user interface
may have changed in the interim. Use your technical sophistication to resolve any discrepancies.

https://aws.amazon.com/
https://aws.amazon.com/iam/
https://console.aws.amazon.com/iam/home?#/users
https://console.aws.amazon.com/s3
https://en.wikipedia.org/wiki/Namespace
https://aws.amazon.com/documentation/s3/
https://aws.amazon.com/documentation/s3/
https://medium.com/alturasoluciones/setting-up-rails-5-active-storage-with-amazon-s3-3d158cf021ff
https://medium.com/alturasoluciones/setting-up-rails-5-active-storage-with-amazon-s3-3d158cf021ff

796 CHAPTER 13. USER MICROPOSTS

Figure 13.31: Signing up for AWS.

Figure 13.32: The AWS IAM interface.

13.4. MICROPOST IMAGES 797

Figure 13.33: Navigating to the “Add user” page.

798 CHAPTER 13. USER MICROPOSTS

Figure 13.34: Creating a user with “programmatic access”.

Figure 13.35: Granting the user administrator access.

13.4. MICROPOST IMAGES 799

Figure 13.36: Skipping optional user tags.

Figure 13.37: Displaying the access key ID and the secret access key.

800 CHAPTER 13. USER MICROPOSTS

Figure 13.38: Creating an AWS bucket.

Figure 13.39: Getting the AWS region from the S3 console URL.

Production AWS

As with production email configuration (Listing 11.41), we’ll be using Heroku
ENV variables to avoid hard-coding sensitive information like AWS keys. In
Section 11.4 and Section 12.4, these variables were defined automatically via
the SendGrid add-on, but in this case we need to define them explicitly. Per the
gem configuration documentation, these variables should be named using the
prefix AWS, which we can accomplish using heroku config:set as follows:

$ heroku config:set AWS_ACCESS_KEY=<access key>

$ heroku config:set AWS_SECRET_KEY=<secret key>

$ heroku config:set AWS_REGION=<region>

$ heroku config:set AWS_BUCKET=<bucket name>

You should paste in the values for your configuration in place of the placeholder
values above. To get the region, you can inspect the URL on the S3 console page
(Figure 13.39).

https://github.com/aws/aws-sdk-ruby#configuration

13.4. MICROPOST IMAGES 801

Once the Heroku variables are set, the next step is to use them in a special
YAML file for configuring storage options called storage.yml. We can create
a storage option for Amazon using the code in Listing 13.73.

Listing 13.73: Adding Amazon AWS as a storage option.
config/storage.yml

test:

service: Disk

root: <%= Rails.root.join("tmp/storage") %>

local:

service: Disk

root: <%= Rails.root.join("storage") %>

amazon:

service: S3

access_key_id: <%= ENV['AWS_ACCESS_KEY_ID'] %>

secret_access_key: <%= ENV['AWS_SECRET_ACCESS_KEY'] %>

region: <%= ENV['AWS_REGION'] %>

bucket: <%= ENV['AWS_BUCKET'] %>

Finally, we can put the option defined in Listing 13.73 to use in a production
environment by adding the Active Storage service configuration parameter in
production.rb. The result appears in Listing 13.74.

Listing 13.74: Configuring the production environment to use Amazon AWS
(S3).
config/environments/production.rb

Rails.application.configure do

.

.

.

Store uploaded files on Amazon AWS.

config.active_storage.service = :amazon

.

.

.

end

With the configuration above, we are ready to commit our changes and de-
ploy:

802 CHAPTER 13. USER MICROPOSTS

$ rails test

$ git add -A

$ git commit -m "Add user microposts"

Because so many things can go wrong with the configuration, we’ll deploy the
app directly from our current topic branch, making sure it’s working before
merging into master. We can do this by including the branch name in the push
to Heroku as follows:

$ git push heroku user-microposts:master

As usual, we then reset the database and reseed the sample data:

$ heroku pg:reset DATABASE

$ heroku run rails db:migrate

$ heroku run rails db:seed

Because Heroku comes with an installation of ImageMagick, the result is suc-
cessful image resizing and upload in production, as seen in Figure 13.40.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Upload a large image and confirm directly that the resizing is working in
production. Does the resizing work even if the image isn’t square?

13.5 Conclusion
With the addition of the Microposts resource, we are nearly finished with our
sample application. All that remains is to add a social layer by letting users

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

