
Chapter 13

User microposts
In the course of developing the core sample application, we’ve now encountered
four resources—users, sessions, account activations, and password
resets—but only the first of these is backed by an Active Record model with
a table in the database. The time has finally come to add a second such re-
source: user microposts, which are short messages associated with a particular
user.1 We first saw microposts in larval form in Chapter 2, and in this chap-
ter we will make a full-strength version of the sketch from Section 2.3 by con-
structing the Micropost data model, associating it with the User model using the
has_many and belongs_to methods, and then making the forms and partials
needed to manipulate and display the results (including, in Section 13.4, up-
loaded images). In Chapter 14, we’ll complete our tiny Twitter clone by adding
the notion of following users in order to receive a feed of their microposts.

13.1 A Micropost model
We begin the Microposts resource by creating a Micropost model, which cap-
tures the essential characteristics of microposts. What follows builds on the
work from Section 2.3; as with the model in that section, our new Micropost
model will include data validations and an association with the User model. Un-

1The name is motivated by the common description of Twitter as a microblog; since blogs have posts, mi-
croblogs should have microposts, which can be thought of as the generic equivalent of “tweets”.

703

https://en.wikipedia.org/wiki/Microblogging

704 CHAPTER 13. USER MICROPOSTS

datetimeupdated_at
datetimecreated_at

user_id integer

id
content text

integer
microposts

Figure 13.1: The Micropost data model.

like that model, the present Micropost model will be fully tested, and will also
have a default ordering and automatic destruction if its parent user is destroyed.

If you’re using Git for version control, I suggest making a topic branch at
this time:

$ git checkout -b user-microposts

13.1.1 The basic model
The Micropost model needs only two attributes: a content attribute to hold the
micropost’s content and a user_id to associate a micropost with a particular
user. The result is a Micropost model with the structure shown in Figure 13.1.

It’s worth noting that the model in Figure 13.1 uses the text data type for
micropost content (instead of string), which is capable of storing an arbi-
trary amount of text. Even though the content will be restricted to fewer than
140 characters (Section 13.1.2) and hence would fit inside the 255-character
string type, using text better expresses the nature of microposts, which are
more naturally thought of as blocks of text. Indeed, in Section 13.3.2 we’ll use
a text area instead of a text field for submitting microposts. In addition, using
text gives us greater flexibility should we wish to increase the length limit at

13.1. A MICROPOST MODEL 705

a future date (as part of internationalization, for example). Finally, using the
text type results in no performance difference in production,2 so it costs us
nothing to use it here.

As with the case of the User model (Listing 6.1), we generate the Micropost
model using generate model (Listing 13.1).

Listing 13.1: Generating the Micropost model.
$ rails generate model Micropost content:text user:references

This migration leads to the creation of the Micropost model shown in List-
ing 13.2. In addition to inheriting from ApplicationRecord as usual (Sec-
tion 6.1.2), the generated model includes a line indicating that a micropost
belongs_to a user, which is included as a result of the user:references
argument in Listing 13.1. We’ll explore the implications of this line in Sec-
tion 13.1.3.

Listing 13.2: The generated Micropost model.
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

end

The generate command in Listing 13.1 also produces a migration to create
a microposts table in the database (Listing 13.3); compare it to the analogous
migration for the users table from Listing 6.2. The biggest difference is the
use of references, which automatically adds a user_id column (along with
an index and a foreign key reference)3 for use in the user/micropost association.
As with the User model, the Micropost model migration automatically includes

2www.postgresql.org/docs/9.1/static/datatype-character.html
3The foreign key reference is a database-level constraint indicating that the user id in the microposts table

refers to the id column in the users table. This detail will never be important in this tutorial, and the foreign key
constraint isn’t even supported by all databases. (It’s supported by PostgreSQL, which we use in production, but
not by the development SQLite database adapter.) We’ll learn more about foreign keys in Section 14.1.2.

https://www.postgresql.org/docs/9.1/static/datatype-character.html

706 CHAPTER 13. USER MICROPOSTS

the t.timestamps line, which (as mentioned in Section 6.1.1) adds the magic
created_at and updated_at columns shown in Figure 13.1. (We’ll put the
created_at column to work starting in Section 13.1.4.)

Listing 13.3: The Micropost migration with added index.
db/migrate/[timestamp]_create_microposts.rb

class CreateMicroposts < ActiveRecord::Migration[6.0]

def change

create_table :microposts do |t|

t.text :content

t.references :user, foreign_key: true

t.timestamps

end

add_index :microposts, [:user_id, :created_at]

end

end

Because we expect to retrieve all the microposts associated with a given user id
in reverse order of creation, Listing 13.3 adds an index (Box 6.2) on the user_-
id and created_at columns:

add_index :microposts, [:user_id, :created_at]

By including both the user_id and created_at columns as an array, we
arrange for Rails to create a multiple key index, which means that Active Record
uses both keys at the same time.

With the migration in Listing 13.3, we can update the database as usual:

$ rails db:migrate

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

13.1. A MICROPOST MODEL 707

1. Using Micropost.new in the console, instantiate a new Micropost ob-
ject called micropost with content “Lorem ipsum” and user id equal to
the id of the first user in the database. What are the values of the magic
columns created_at and updated_at?

2. What is micropost.user for the micropost in the previous exercise?
What about micropost.user.name?

3. Save the micropost to the database. What are the values of the magic
columns now?

13.1.2 Micropost validations
Now that we’ve created the basic model, we’ll add some validations to enforce
the desired design constraints. One of the necessary aspects of the Micropost
model is the presence of a user id to indicate which user made the micropost.
The idiomatically correct way to do this is to use Active Record associations,
which we’ll implement in Section 13.1.3, but for now we’ll work with the Mi-
cropost model directly.

The initial micropost tests parallel those for the User model (Listing 6.7). In
the setup step, we create a new micropost while associating it with a valid user
from the fixtures, and then check that the result is valid. Because every micro-
post should have a user id, we’ll add a test for a user_id presence validation.
Putting these elements together yields the test in Listing 13.4.

Listing 13.4: Tests for the validity of a new micropost. green
test/models/micropost_test.rb

require 'test_helper'

class MicropostTest < ActiveSupport::TestCase

def setup

@user = users(:michael)

This code is not idiomatically correct.

@micropost = Micropost.new(content: "Lorem ipsum", user_id: @user.id)

end

708 CHAPTER 13. USER MICROPOSTS

test "should be valid" do

assert @micropost.valid?

end

test "user id should be present" do

@micropost.user_id = nil

assert_not @micropost.valid?

end

end

As indicated by the comment in the setup method, the code to create the mi-
cropost is not idiomatically correct, which we’ll fix in Section 13.1.3.

As with the original User model test (Listing 6.5), the first test in Listing 13.4
is just a reality check, but the second is a test of the presence of the user id, for
which we’ll add the presence validation shown in Listing 13.5.

Listing 13.5: A validation for the micropost’s user_id. green
app/models/micropost.rb

class Micropost < ActiveRecord::Base

belongs_to :user

validates :user_id, presence: true

end

By the way, as of Rails 5 the tests in Listing 13.4 actually pass without the
validation in Listing 13.5, but only when using the idiomatically incorrect line
highlighted in Listing 13.4. The user id presence validation is necessary after
switching to the idiomatically correct code in Listing 13.12, so we include it
here for convenience.

With the code in Listing 13.5 the tests should (still) be green:

Listing 13.6: green
$ rails test:models

Next, we’ll add validations for the micropost’s content attribute (follow-
ing the example from Section 2.3.2). As with the user_id, the content at-
tribute must be present, and it is further constrained to be no longer than 140
characters (which is what puts the micro in micropost).

13.1. A MICROPOST MODEL 709

As with the User model validations (Section 6.2), we’ll add the micropost
content validations using test-driven development. The resulting tests gener-
ally follow the examples from the User model validation tests, as shown in
Listing 13.7.

Listing 13.7: Tests for the Micropost model validations. red
test/models/micropost_test.rb

require 'test_helper'

class MicropostTest < ActiveSupport::TestCase

def setup

@user = users(:michael)

@micropost = Micropost.new(content: "Lorem ipsum", user_id: @user.id)

end

test "should be valid" do

assert @micropost.valid?

end

test "user id should be present" do

@micropost.user_id = nil

assert_not @micropost.valid?

end

test "content should be present" do

@micropost.content = " "

assert_not @micropost.valid?

end

test "content should be at most 140 characters" do

@micropost.content = "a" * 141

assert_not @micropost.valid?

end

end

As in Section 6.2, the code in Listing 13.7 uses string multiplication to test the
micropost length validation:

$ rails console

>> "a" * 10

=> "aaaaaaaaaa"

>> "a" * 141

=> "aaa

aa"

710 CHAPTER 13. USER MICROPOSTS

The corresponding application code is virtually identical to the name vali-
dation for users (Listing 6.16), as shown in Listing 13.8.

Listing 13.8: The Micropost model validations. green
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

validates :user_id, presence: true

validates :content, presence: true, length: { maximum: 140 }

end

At this point, the full test suite should be green:

Listing 13.9: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. At the console, instantiate a micropost with no user id and blank content.
Is it valid? What are the full error messages?

2. At the console, instantiate a second micropost with no user id and content
that’s too long. Is it valid? What are the full error messages?

13.1.3 User/Micropost associations
When constructing data models for web applications, it is essential to be able
to make associations between individual models. In the present case, each mi-
cropost is associated with one user, and each user is associated with (poten-
tially) many microposts—a relationship seen briefly in Section 2.3.3 and shown

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

13.1. A MICROPOST MODEL 711

micropost

user
micropost.user

be
lon
gs
_to

id
3 Lorem ipsum

content user_id
1

id
1 Michael Hartl

name email
mhartl@example.com

Figure 13.2: The belongs_to relationship between a micropost and its asso-
ciated user.

schematically in Figure 13.2 and Figure 13.3. As part of implementing these
associations, we’ll write tests for the Micropost model and add a couple of tests
to the User model.

Using the belongs_to/has_many association defined in this section,
Rails constructs the methods shown in Table 13.1. Note from Table 13.1 that
instead of

Micropost.create

Micropost.create!

Micropost.new

we have

user.microposts.create

user.microposts.create!

user.microposts.build

These latter methods constitute the idiomatically correct way to make a microp-
ost, namely, through its association with a user. When a new micropost is made
in this way, its user_id is automatically set to the right value. In particular,
we can replace the code

712 CHAPTER 13. USER MICROPOSTS

has_many

has_many

has_many

user.microposts

micropost
id
4 Dolor sit amet

content user_id
1

micropost
id
3 Lorem ipsum

content user_id
1

micropost
id
7 Consectetur

content user_id
1

user
id
1 Michael Hartl

name email
mhartl@example.com

Figure 13.3: The has_many relationship between a user and its microposts.

@user = users(:michael)

This code is not idiomatically correct.

@micropost = Micropost.new(content: "Lorem ipsum", user_id: @user.id)

from Listing 13.4 with this:

@user = users(:michael)

@micropost = @user.microposts.build(content: "Lorem ipsum")

(As with new, build returns an object in memory but doesn’t modify the da-
tabase.) Once we define the proper associations, the resulting @micropost

variable will automatically have a user_id attribute equal to its associated
user’s id.

To get code like @user.microposts.build to work, we need to update
the User and Micropost models with code to associate them. The first of these
was included automatically by the migration in Listing 13.3 via belongs_to
:user, as shown in Listing 13.10. The second half of the association, has_-
many :microposts, needs to be added by hand, as shown in (Listing 13.11).

13.1. A MICROPOST MODEL 713

Method Purpose
micropost.user Returns the User object associated with the micropost
user.microposts Returns a collection of the user’s microposts
user.microposts.create(arg) Creates a micropost associated with user

user.microposts.create!(arg) Creates a micropost associated with user (exception on failure)
user.microposts.build(arg) Returns a new Micropost object associated with user

user.microposts.find_by(id: 1) Finds the micropost with id 1 and user_id equal to user.id

Table 13.1: A summary of user/micropost association methods.

Listing 13.10: A micropost belongs_to a user. green
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

validates :user_id, presence: true

validates :content, presence: true, length: { maximum: 140 }

end

Listing 13.11: A user has_many microposts. green
app/models/user.rb

class User < ApplicationRecord

has_many :microposts

.

.

.

end

With the association thus made, we can update the setup method in List-
ing 13.4 with the idiomatically correct way to build a new micropost, as shown
in Listing 13.12.

Listing 13.12: Using idiomatically correct code to build a micropost. green
test/models/micropost_test.rb

require 'test_helper'

class MicropostTest < ActiveSupport::TestCase

714 CHAPTER 13. USER MICROPOSTS

def setup

@user = users(:michael)

@micropost = @user.microposts.build(content: "Lorem ipsum")

end

test "should be valid" do

assert @micropost.valid?

end

test "user id should be present" do

@micropost.user_id = nil

assert_not @micropost.valid?

end

.

.

.

end

Of course, after this minor refactoring the test suite should still be green:

Listing 13.13: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Set user to the first user in the database. What happens when you exe-
cute the command micropost = user.microposts.create(con-
tent: "Lorem ipsum")?

2. The previous exercise should have created a micropost in the database.
Confirm this by running user.microposts.find(micropost.id).
What if you write micropost instead of micropost.id?

3. What is the value of user == micropost.user? How about user.-
microposts.first == micropost?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

13.1. A MICROPOST MODEL 715

13.1.4 Micropost refinements
In this section, we’ll add a couple of refinements to the user/micropost associ-
ation. In particular, we’ll arrange for a user’s microposts to be retrieved in a
specific order, and we’ll also make microposts dependent on users so that they
will be automatically destroyed if their associated user is destroyed.

Default scope
By default, the user.microposts method makes no guarantees about the or-
der of the posts, but (following the convention of blogs and Twitter) we want
the microposts to come out in reverse order of when they were created so that
the most recent post is first.4 We’ll arrange for this to happen using a default
scope.

This is exactly the sort of feature that could easily lead to a spurious passing
test (i.e., a test that would pass even if the application code were wrong), so
we’ll proceed using test-driven development to be sure we’re testing the right
thing. In particular, let’s write a test to verify that the first micropost in the
database is the same as a fixture micropost we’ll call most_recent, as shown
in Listing 13.14.

Listing 13.14: Testing the micropost order. red
test/models/micropost_test.rb

require 'test_helper'

class MicropostTest < ActiveSupport::TestCase

.

.

.

test "order should be most recent first" do

assert_equal microposts(:most_recent), Micropost.first

end

end

Listing 13.14 relies on having some micropost fixtures, which we can define
in analogy with the user fixtures, last seen in Listing 11.5. In addition to the

4We briefly encountered a similar issue in Section 10.5 in the context of the users index.

716 CHAPTER 13. USER MICROPOSTS

content attribute defined in Section 13.1.1, we also need define the associated
user. Conveniently, Rails includes a way to build associations in fixtures, like
this:

orange:

content: "I just ate an orange!"

created_at: <%= 10.minutes.ago %>

user: michael

By identifying the user as michael, we tell Rails to associate this micropost
with the corresponding user in the users fixture:

michael:

name: Michael Example

email: michael@example.com

.

.

.

The full micropost fixtures appear in Listing 13.15.

Listing 13.15: Micropost fixtures.
test/fixtures/microposts.yml

orange:

content: "I just ate an orange!"

created_at: <%= 10.minutes.ago %>

user: michael

tau_manifesto:

content: "Check out the @tauday site by @mhartl: https://tauday.com"

created_at: <%= 3.years.ago %>

user: michael

cat_video:

content: "Sad cats are sad: https://youtu.be/PKffm2uI4dk"

created_at: <%= 2.hours.ago %>

user: michael

most_recent:

content: "Writing a short test"

created_at: <%= Time.zone.now %>

user: michael

13.1. A MICROPOST MODEL 717

Note that Listing 13.15 explicitly sets the created_at column using embed-
ded Ruby. Because it’s a “magic” column automatically updated by Rails, set-
ting created_at by hand isn’t ordinarily possible, but it is possible in fix-
tures.5

With the code in Listing 13.14 and Listing 13.15, the test suite should be
red:

Listing 13.16: red
$ rails test test/models/micropost_test.rb

We’ll get the test to pass using a Rails method called default_scope,
which among other things can be used to set the default order in which elements
are retrieved from the database. To enforce a particular order, we’ll include the
order argument in default_scope, which lets us order by the created_at
column as follows:

order(:created_at)

Unfortunately, this orders the results in ascending order from smallest to big-
gest, which means that the oldest microposts come out first. To pull them out
in reverse order, we can push down one level deeper and include a string with
some raw SQL:

order('created_at DESC')

Here DESC is SQL for “descending”, i.e., in descending order from newest to
oldest.6 In older versions of Rails, using this raw SQL used to be the only
option to get the desired behavior, but as of Rails 4.0 we can use a more natural
pure-Ruby syntax as well:

5In practice this might not be necessary, and in fact on many systems the fixtures are created in the order in
which they appear in the file. In this case, the final fixture in the file is created last (and hence is most recent), but
it would be foolish to rely on this behavior, which is brittle and probably system-dependent.

6SQL is case-insensitive, but it is conventional to write SQL keywords (such as DESC) in all-caps.

718 CHAPTER 13. USER MICROPOSTS

order(created_at: :desc)

Adding this in a default scope for the Micropost model gives Listing 13.17.

Listing 13.17: Ordering the microposts with default_scope. green
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

default_scope -> { order(created_at: :desc) }

validates :user_id, presence: true

validates :content, presence: true, length: { maximum: 140 }

end

Listing 13.17 introduces the “stabby lambda” syntax for an object called a
Proc (procedure) or lambda, which is an anonymous function (a function cre-
ated without a name). The stabby lambda -> takes in a block (Section 4.3.2)
and returns a Proc, which can then be evaluated with the call method. We can
see how it works at the console:

>> -> { puts "foo" }

=> #<Proc:0x007fab938d0108@(irb):1 (lambda)>

>> -> { puts "foo" }.call

foo

=> nil

(This is a somewhat advanced Ruby topic, so don’t worry if it doesn’t make
sense right away.)

With the code in Listing 13.17, the tests should be green:

Listing 13.18: green
$ rails test

13.1. A MICROPOST MODEL 719

Dependent: destroy
Apart from proper ordering, there is a second refinement we’d like to add to
microposts. Recall from Section 10.4 that site administrators have the power to
destroy users. It stands to reason that, if a user is destroyed, the user’s microp-
osts should be destroyed as well.

We can arrange for this behavior by passing an option to the has_many

association method, as shown in Listing 13.19.

Listing 13.19: Ensuring that a user’s microposts are destroyed along with the
user.
app/models/user.rb

class User < ApplicationRecord

has_many :microposts, dependent: :destroy

.

.

.

end

Here the option dependent: :destroy arranges for the dependent microp-
osts to be destroyed when the user itself is destroyed. This prevents userless
microposts from being stranded in the database when admins choose to remove
users from the system.

We can verify that Listing 13.19 is working with a test for the User model.
All we need to do is save the user (so it gets an id) and create an associated
micropost. Then we check that destroying the user reduces the micropost count
by 1. The result appears in Listing 13.20. (Compare to the integration test for
“delete” links in Listing 10.62.)

Listing 13.20: A test of dependent: :destroy. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

720 CHAPTER 13. USER MICROPOSTS

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

test "associated microposts should be destroyed" do

@user.save

@user.microposts.create!(content: "Lorem ipsum")

assert_difference 'Micropost.count', -1 do

@user.destroy

end

end

end

If the code in Listing 13.19 is working correctly, the test suite should still
be green:

Listing 13.21: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. How does the value of Micropost.first.created_at compare to
Micropost.last.created_at?

2. What are the SQL queries for Micropost.first and Micropost.last? Hint:
They are printed out by the console.

3. Let user be the first user in the database. What is the id of its first micro-
post? Destroy the first user in the database using the destroy method,
then confirm using Micropost.find that the user’s first micropost was
also destroyed.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

