
13.3. MANIPULATING MICROPOSTS 737

assert_select 'h1>img.gravatar'

This checks for an img tag with class gravatar inside a top-level heading tag
(h1).

Because the application code was working, the test suite should be green:

Listing 13.29: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Comment out the application code needed to change the two 'h1' lines
in Listing 13.28 from green to red.

2. Update Listing 13.28 to test that will_paginate appears only once.
Hint: Refer to Table 5.2.

13.3 Manipulating microposts
Having finished both the data modeling and display templates for microposts,
we now turn our attention to the interface for creating them through the web.
In this section, we’ll also see the first hint of a status feed—a notion brought
to full fruition in Chapter 14. Finally, as with users, we’ll make it possible to
destroy microposts through the web.

There is one break with past convention worth noting: the interface to the
Microposts resource will run principally through the Profile and Home pages,
so we won’t need actions like new or edit in the Microposts controller; we’ll
need only create and destroy. This leads to the routes for the Microposts

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

738 CHAPTER 13. USER MICROPOSTS

HTTP request URL Action Named route
POST /microposts create microposts_path

DELETE /microposts/1 destroy micropost_path(micropost)

Table 13.2: RESTful routes provided by the Microposts resource in List-
ing 13.30.

resource shown in Listing 13.30. The code in Listing 13.30 leads in turn to
the RESTful routes shown in Table 13.2, which is a small subset of the full set
of routes seen in Table 2.3. Of course, this simplicity is a sign of being more
advanced, not less—we’ve come a long way since our reliance on scaffolding
in Chapter 2, and we no longer need most of its complexity.

Listing 13.30: Routes for the Microposts resource.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

get '/login', to: 'sessions#new'

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users

resources :account_activations, only: [:edit]

resources :password_resets, only: [:new, :create, :edit, :update]

resources :microposts, only: [:create, :destroy]

end

13.3.1 Micropost access control
We begin our development of the Microposts resource with some access con-
trol in the Microposts controller. In particular, because we access microposts
through their associated users, both the create and destroy actions must
require users to be logged in.

13.3. MANIPULATING MICROPOSTS 739

Tests to enforce logged-in status mirror those for the Users controller (List-
ing 10.20 and Listing 10.61). We simply issue the correct request to each action
and confirm that the micropost count is unchanged and the result is redirected
to the login URL, as seen in Listing 13.31.

Listing 13.31: Authorization tests for the Microposts controller. red
test/controllers/microposts_controller_test.rb

require 'test_helper'

class MicropostsControllerTest < ActionDispatch::IntegrationTest

def setup

@micropost = microposts(:orange)

end

test "should redirect create when not logged in" do

assert_no_difference 'Micropost.count' do

post microposts_path, params: { micropost: { content: "Lorem ipsum" } }

end

assert_redirected_to login_url

end

test "should redirect destroy when not logged in" do

assert_no_difference 'Micropost.count' do

delete micropost_path(@micropost)

end

assert_redirected_to login_url

end

end

Writing the application code needed to get the tests in Listing 13.31 to pass
requires a little refactoring first. Recall from Section 10.2.1 that we enforced
the login requirement using a before filter that called the logged_in_user

method (Listing 10.15). At the time, we needed that method only in the Users
controller, but now we find that we need it in the Microposts controller as well,
so we’ll move it into the Application controller, which is the base class of all
controllers (Section 4.4.4).11 The result appears in Listing 13.32.

11Note that, unlike the behavior in languages like Java or C++, private methods in Ruby can be called from
derived classes. Thanks to reader Vishal Antony for bringing this difference to my attention.

https://stackoverflow.com/questions/3534449/why-does-ruby-have-both-private-and-protected-methods/3534581#3534581

740 CHAPTER 13. USER MICROPOSTS

Listing 13.32: Moving the logged_in_user method into the Application
controller. red
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

include SessionsHelper

private

Confirms a logged-in user.

def logged_in_user

unless logged_in?

store_location

flash[:danger] = "Please log in."

redirect_to login_url

end

end

end

To avoid code repetition, you should also remove logged_in_user from the
Users controller at this time (Listing 13.33).

Listing 13.33: The Users controller with the logged-in user filter removed.
red
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update, :destroy]

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Before filters

Confirms the correct user.

def correct_user

@user = User.find(params[:id])

redirect_to(root_url) unless current_user?(@user)

end

13.3. MANIPULATING MICROPOSTS 741

Confirms an admin user.

def admin_user

redirect_to(root_url) unless current_user.admin?

end

end

With the code in Listing 13.32, the logged_in_user method is now avail-
able in the Microposts controller, which means that we can add create and
destroy actions and then restrict access to them using a before filter, as shown
in Listing 13.34.

Listing 13.34: Adding authorization to the Microposts controller actions.
green
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before_action :logged_in_user, only: [:create, :destroy]

def create

end

def destroy

end

end

At this point, the tests should pass:

Listing 13.35: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Why is it a bad idea to leave a copy of logged_in_user in the Users
controller?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

742 CHAPTER 13. USER MICROPOSTS

13.3.2 Creating microposts
In Chapter 7, we implemented user signup by making an HTML form that is-
sued an HTTP POST request to the create action in the Users controller. The
implementation of micropost creation is similar; the main difference is that,
rather than using a separate page at /microposts/new, we will put the form on
the Home page itself (i.e., the root path /), as mocked up in Figure 13.10.

When we last left the Home page, it appeared as in Figure 5.8—that is, it
had a “Sign up now!” button in the middle. Since a micropost creation form
makes sense only in the context of a particular logged-in user, one goal of this
section will be to serve different versions of the Home page depending on a
visitor’s login status. We’ll implement this in Listing 13.37 below.

We’ll start with the create action for microposts, which is similar to its
user analogue (Listing 7.26); the principal difference lies in using the user/mi-
cropost association to build the new micropost, as seen in Listing 13.36. Note
the use of strong parameters via micropost_params, which permits only the
micropost’s content attribute to be modified through the web.

Listing 13.36: The Microposts controller create action.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before_action :logged_in_user, only: [:create, :destroy]

def create

@micropost = current_user.microposts.build(micropost_params)

if @micropost.save

flash[:success] = "Micropost created!"

redirect_to root_url

else

render 'static_pages/home'

end

end

def destroy

end

private

def micropost_params

params.require(:micropost).permit(:content)

end

end

13.3. MANIPULATING MICROPOSTS 743

Figure 13.10: A mockup of the Home page with a form for creating microposts.

744 CHAPTER 13. USER MICROPOSTS

To build a form for creating microposts, we use the code in Listing 13.37,
which serves up different HTML based on whether the site visitor is logged in
or not.

Listing 13.37: Adding microposts creation to the Home page (/).
app/views/static_pages/home.html.erb

<% if logged_in? %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<%= render 'shared/user_info' %>

</section>

<section class="micropost_form">

<%= render 'shared/micropost_form' %>

</section>

</aside>

</div>

<% else %>

<div class="center jumbotron">

<h1>Welcome to the Sample App</h1>

<h2>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</h2>

<%= link_to "Sign up now!", signup_path, class: "btn btn-lg btn-primary" %>

</div>

<%= link_to image_tag("rails.svg", alt: "Rails logo", width: "200"),

"https://rubyonrails.org/" %>

<% end %>

(Having so much code in each branch of the if-else conditional is a bit messy,
and cleaning it up using partials is left as an exercise (Section 13.3.2).)

To get the page defined in Listing 13.37 working, we need to create and fill
in a couple of partials. The first is the new Home page sidebar, as shown in
Listing 13.38.

Listing 13.38: The partial for the user info sidebar.
app/views/shared/_user_info.html.erb

13.3. MANIPULATING MICROPOSTS 745

<%= link_to gravatar_for(current_user, size: 50), current_user %>

<h1><%= current_user.name %></h1>

<%= link_to "view my profile", current_user %>

<%= pluralize(current_user.microposts.count, "micropost") %>

Note that, as in the profile sidebar (Listing 13.24), the user info in List-
ing 13.38 displays the total number of microposts for the user. There’s a slight
difference in the display, though; in the profile sidebar, “Microposts” is a label,
and showing “Microposts (1)” makes sense. In the present case, though, saying
“1 microposts” is ungrammatical, so we arrange to display “1 micropost” and
“2 microposts” using the pluralize method we saw in Section 7.3.3.

We next define the form for creating microposts (Listing 13.39), which is
similar to the signup form in Listing 7.15.

Listing 13.39: The form partial for creating microposts.
app/views/shared/_micropost_form.html.erb

<%= form_with(model: @micropost, local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

<div class="field">

<%= f.text_area :content, placeholder: "Compose new micropost..." %>

</div>

<%= f.submit "Post", class: "btn btn-primary" %>

<% end %>

We need to make two changes before the form in Listing 13.39 will work.
First, we need to define @micropost, which (as before) we do through the
association:

@micropost = current_user.microposts.build

The result appears in Listing 13.40.

Listing 13.40: Adding a micropost instance variable to the home action.
app/controllers/static_pages_controller.rb

746 CHAPTER 13. USER MICROPOSTS

class StaticPagesController < ApplicationController

def home

@micropost = current_user.microposts.build if logged_in?

end

def help

end

def about

end

def contact

end

end

Of course, current_user exists only if the user is logged in, so the @micro-
post variable should only be defined in this case.

The second change needed to get Listing 13.39 to work is to redefine the
error-messages partial so the following code from Listing 13.39 works:

<%= render 'shared/error_messages', object: f.object %>

You may recall from Listing 7.20 that the error-messages partial references the
@user variable explicitly, but in the present case we have an @micropost

variable instead. To unify these cases, we can pass the form variable f to the
partial and access the associated object through f.object, so that in

form_with(model: @user, local: true) do |f|

f.object is @user, and in

form_with(model: @micropost, local: true) do |f|

f.object is @micropost, etc.
To pass the object to the partial, we use a hash with value equal to the ob-

ject and key equal to the desired name of the variable in the partial, which is

13.3. MANIPULATING MICROPOSTS 747

what the second line in Listing 13.39 accomplishes. In other words, object:
f.object creates a variable called object in the error_messages partial,
and we can use it to construct a customized error message, as shown in List-
ing 13.41.

Listing 13.41: Error messages that work with other objects. red
app/views/shared/_error_messages.html.erb

<% if object.errors.any? %>

<div id="error_explanation">

<div class="alert alert-danger">

The form contains <%= pluralize(object.errors.count, "error") %>.

</div>

<% object.errors.full_messages.each do |msg| %>

<%= msg %>

<% end %>

</div>

<% end %>

At this point, you should verify that the test suite is red:

Listing 13.42: red
$ rails test

This is a hint that we need to update the other occurrences of the error-messages
partial, which we used when signing up users (Listing 7.20), resetting pass-
words (Listing 12.14), and editing users (Listing 10.2). The updated versions
are shown in Listing 13.43, Listing 13.45, and Listing 13.44.

Listing 13.43: Updating the rendering of user signup errors. red
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

<div class="row">

748 CHAPTER 13. USER MICROPOSTS

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Create my account", class: "btn btn-primary" %>

<% end %>

</div>

</div>

Listing 13.44: Updating the errors for editing users. red
app/views/users/edit.html.erb

<% provide(:title, "Edit user") %>

<h1>Update your profile</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Save changes", class: "btn btn-primary" %>

<% end %>

<div class="gravatar_edit">

<%= gravatar_for @user %>

13.3. MANIPULATING MICROPOSTS 749

change

</div>

</div>

</div>

Listing 13.45: Updating the errors for password resets. green
app/views/password_resets/edit.html.erb

<% provide(:title, 'Reset password') %>

<h1>Reset password</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, url: password_reset_path(params[:id]),

local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

<%= hidden_field_tag :email, @user.email %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Update password", class: "btn btn-primary" %>

<% end %>

</div>

</div>

At this point, all the tests should be green:

$ rails test

Additionally, all the HTML in this section should render properly, showing the
form as in Figure 13.11, and a form with a submission error as in Figure 13.12.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

750 CHAPTER 13. USER MICROPOSTS

Figure 13.11: The Home page with a new micropost form.

13.3. MANIPULATING MICROPOSTS 751

Figure 13.12: The Home page with a form error.

752 CHAPTER 13. USER MICROPOSTS

1. Refactor the Home page to use separate partials for the two branches of
the if-else statement.

13.3.3 A proto-feed
Although the micropost form is actually now working, users can’t immedi-
ately see the results of a successful submission because the current Home page
doesn’t display any microposts. If you like, you can verify that the form shown
in Figure 13.11 is working by submitting a valid entry and then navigating to the
profile page to see the post, but that’s rather cumbersome. It would be far bet-
ter to have a feed of microposts that includes the user’s own posts, as mocked
up in Figure 13.13. (In Chapter 14, we’ll generalize this feed to include the
microposts of users being followed by the current user, à la Twitter.)

Since each user should have a feed, we are led naturally to a feed method
in the User model, which will initially just select all the microposts belonging to
the current user. We’ll accomplish this using the where method on the Micro-
postmodel (seen briefly before in Section 11.3.3), as shown in Listing 13.46.12

Listing 13.46: A preliminary implementation for the micropost status feed.
app/models/user.rb

class User < ApplicationRecord

.

.

.

Defines a proto-feed.

See "Following users" for the full implementation.

def feed

Micropost.where("user_id = ?", id)

end

private

.

.

.

end

The question mark in
12See the Rails Guide on the Active Record Query Interface for more on where and related methods.

https://guides.rubyonrails.org/active_record_querying.html

13.3. MANIPULATING MICROPOSTS 753

Figure 13.13: A mockup of the Home page with a proto-feed.

754 CHAPTER 13. USER MICROPOSTS

Micropost.where("user_id = ?", id)

ensures that id is properly escaped before being included in the underlying
SQL query, thereby avoiding a serious security hole called SQL injection. The
id attribute here is just an integer (i.e., self.id, the unique ID of the user), so
there is no danger of SQL injection in this case, but it does no harm, and always
escaping variables injected into SQL statements is a good habit to cultivate.

Alert readers might note at this point that the code in Listing 13.46 is essen-
tially equivalent to writing

def feed

microposts

end

We’ve used the code in Listing 13.46 instead because it generalizes much more
naturally to the full status feed needed in Chapter 14.

To use the feed in the sample application, we add an @feed_items instance
variable for the current user’s (paginated) feed, as in Listing 13.47, and then
add a status feed partial (Listing 13.48) to the Home page (Listing 13.49). Note
that, now that there are two lines that need to be run when the user is logged in,
Listing 13.47 changes

@micropost = current_user.microposts.build if logged_in?

from Listing 13.40 to

if logged_in?

@micropost = current_user.microposts.build

@feed_items = current_user.feed.paginate(page: params[:page])

end

thereby moving the conditional from the end of the line to an if-end statement.

https://en.wikipedia.org/wiki/SQL_injection

13.3. MANIPULATING MICROPOSTS 755

Listing 13.47: Adding a feed instance variable to the home action.
app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

if logged_in?

@micropost = current_user.microposts.build

@feed_items = current_user.feed.paginate(page: params[:page])

end

end

def help

end

def about

end

def contact

end

end

Listing 13.48: The status feed partial.
app/views/shared/_feed.html.erb

<% if @feed_items.any? %>

<ol class="microposts">

<%= render @feed_items %>

<%= will_paginate @feed_items %>

<% end %>

The status feed partial defers the rendering to the micropost partial defined
in Listing 13.22:

<%= render @feed_items %>

Here Rails knows to call the micropost partial because each element of
@feed_items has class Micropost. This causes Rails to look for a partial
with the corresponding name in the views directory of the given resource:

756 CHAPTER 13. USER MICROPOSTS

app/views/microposts/_micropost.html.erb

We can add the feed to the Home page by rendering the feed partial as usual
(Listing 13.49). The result is a display of the feed on the Home page, as required
(Figure 13.14).

Listing 13.49: Adding a status feed to the Home page.
app/views/static_pages/home.html.erb

<% if logged_in? %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<%= render 'shared/user_info' %>

</section>

<section class="micropost_form">

<%= render 'shared/micropost_form' %>

</section>

</aside>

<div class="col-md-8">

<h3>Micropost Feed</h3>

<%= render 'shared/feed' %>

</div>

</div>

<% else %>

.

.

.

<% end %>

At this point, creating a new micropost works as expected, as seen in Fig-
ure 13.15.

There is one subtlety, though: on failed micropost submission, the Home
page expects an @feed_items instance variable, so failed submissions cur-
rently break. The solution is to create the necessary feed variable in the branch
for failed submissions in the Microposts controller create action, as shown in
Listing 13.50.

13.3. MANIPULATING MICROPOSTS 757

Figure 13.14: The Home page with a proto-feed.

758 CHAPTER 13. USER MICROPOSTS

Figure 13.15: The Home page after creating a new micropost.

13.3. MANIPULATING MICROPOSTS 759

Listing 13.50: Adding an (empty) @feed_items instance variable to the
create action.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before_action :logged_in_user, only: [:create, :destroy]

def create

@micropost = current_user.microposts.build(micropost_params)

if @micropost.save

flash[:success] = "Micropost created!"

redirect_to root_url

else

@feed_items = current_user.feed.paginate(page: params[:page])

render 'static_pages/home'

end

end

def destroy

end

private

def micropost_params

params.require(:micropost).permit(:content)

end

end

Unfortunately, pagination still doesn’t quite work. We can see why by sub-
mitting an invalid micropost, say, one whose length is too long (Figure 13.16).

Scrolling down to the pagination links, we see links on both “2” and “Next”
pointing to the next page (Figure 13.17). Because the create action is in the
Microposts controller (Listing 13.50), the URL is /microposts?page=2, which
tries to go to the nonexistent Microposts index action. As a result, clicking on
either link gives a routing error (Figure 13.18).

We can solve this problem by giving will_paginate explicit control-
ler and action parameters corresponding to the Home page, i.e., the
static_pages controller and the home action.13 The result appears in List-
ing 13.51.

13Thanks to reader Martin Francl for pointing out this solution.

760 CHAPTER 13. USER MICROPOSTS

Figure 13.16: An invalid micropost on the Home page.

13.3. MANIPULATING MICROPOSTS 761

Figure 13.17: The next link on the Home page.

762 CHAPTER 13. USER MICROPOSTS

Figure 13.18: A routing error on page 2.

13.3. MANIPULATING MICROPOSTS 763

Listing 13.51: Setting an explicit controller and action.
app/views/shared/_feed.html.erb

<% if @feed_items.any? %>

<ol class="microposts">

<%= render @feed_items %>

<%= will_paginate @feed_items,

params: { controller: :static_pages, action: :home } %>

<% end %>

Now clicking on either of the pagination links in Figure 13.17 yields the
expected second page, as shown in Figure 13.19.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Use the newly created micropost UI to create the first real micropost.
What are the contents of the INSERT command in the server log?

2. In the console, set user to the first user in the database. Confirm that the
v a l u e s o f Micropost.where("user_id = ?", user.id),
user.microposts, and user.feed are all the same. Hint: It’s proba-
bly easiest to compare directly using ==.

13.3.4 Destroying microposts
The last piece of functionality to add to the Microposts resource is the ability to
destroy posts. As with user deletion (Section 10.4.2), we accomplish this with
“delete” links, as mocked up in Figure 13.20. Unlike that case, which restricted
user destruction to admin users, the delete links will work only for microposts
created by the current user.

Our first step is to add a delete link to the micropost partial as in List-
ing 13.22. The result appears in Listing 13.52.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

