
13.2. SHOWING MICROPOSTS 721

13.2 Showing microposts
Although we don’t yet have a way to create microposts through the web—that
comes in Section 13.3.2—this won’t stop us from displaying them (and testing
that display). Following Twitter’s lead, we’ll plan to display a user’s microposts
not on a separate microposts index page but rather directly on the user show
page itself, as mocked up in Figure 13.4. We’ll start with fairly simple ERb
templates for adding a micropost display to the user profile, and then we’ll add
microposts to the seed data from Section 10.3.2 so that we have something to
display.

13.2.1 Rendering microposts
Our plan is to display the microposts for each user on their respective profile
page (show.html.erb), together with a running count of how many microp-
osts they’ve made. As we’ll see, many of the ideas are similar to our work in
Section 10.3 on showing all users.

In case you’ve added some microposts in the exercises, it’s a good idea to
reset and reseed the database at this time:

$ rails db:migrate:reset

$ rails db:seed

Although we won’t need the Microposts controller until Section 13.3, we
will need the views directory in just a moment, so let’s generate the controller
now:

$ rails generate controller Microposts

Our primary purpose in this section is to render all the microposts for each
user. We saw in Section 10.3.5 that the code

722 CHAPTER 13. USER MICROPOSTS

Figure 13.4: A mockup of a profile page with microposts.

13.2. SHOWING MICROPOSTS 723

<ul class="users">

<%= render @users %>

automatically renders each of the users in the @users variable using the _us-
er.html.erb partial. We’ll define an analogous _micropost.html.erb

partial so that we can use the same technique on a collection of microposts as
follows:

<ol class="microposts">

<%= render @microposts %>

Note that we’ve used the ordered list tag ol (as opposed to an unordered list ul)
because microposts are listed in a particular order (reverse-chronological). The
corresponding partial appears in Listing 13.22.

Listing 13.22: A partial for showing a single micropost.
app/views/microposts/_micropost.html.erb

<li id="micropost-<%= micropost.id %>">

<%= link_to gravatar_for(micropost.user, size: 50), micropost.user %>

<%= link_to micropost.user.name, micropost.user %>

<%= micropost.content %>

Posted <%= time_ago_in_words(micropost.created_at) %> ago.

This uses the awesome time_ago_in_words helper method, whose meaning
is probably clear and whose effect we will see in Section 13.2.2. Listing 13.22
also adds a CSS id for each micropost using

<li id="micropost-<%= micropost.id %>">

This is a generally good practice, as it opens up the possibility of manipulating
individual microposts at a future date (using JavaScript, for example).

724 CHAPTER 13. USER MICROPOSTS

The next step is to address the difficulty of displaying a potentially large
number of microposts. We’ll solve this problem the same way we solved it
for users in Section 10.3.3, namely, using pagination. As before, we’ll use the
will_paginate method:

<%= will_paginate @microposts %>

If you compare this with the analogous line on the user index page,
Listing 10.45, you’ll see that before we had just

<%= will_paginate %>

This worked because, in the context of the Users controller, will_paginate
assumes the existence of an instance variable called @users (which, as we
saw in Section 10.3.3, should be of class ActiveRecord::Relation). In
the present case, since we are still in the Users controller but want to paginate
microposts instead, we’ll pass an explicit @microposts variable to will_pa-
ginate. Of course, this means that we will have to define such a variable in
the user show action (Listing 13.23).

Listing 13.23: Adding an @microposts instance variable to the user show
action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def show

@user = User.find(params[:id])

@microposts = @user.microposts.paginate(page: params[:page])

end

.

.

.

end

13.2. SHOWING MICROPOSTS 725

Notice here how clever paginate is—it even works through the microposts
association, reaching into the microposts table and pulling out the desired
page of microposts.

Our final task is to display the number of microposts for each user, which
we can do with the count method:

user.microposts.count

As with paginate, we can use the count method through the association.
In particular, count does not pull all the microposts out of the database and
then call length on the resulting array, as this would become inefficient as the
number of microposts grew. Instead, it performs the calculation directly in the
database, asking the database to count the microposts with the given user_id

(an operation for which all databases are highly optimized). (In the unlikely
event that finding the count is still a bottleneck in your application, you can
make it even faster using a counter cache.)

Putting all the elements above together, we are now in a position to add
microposts to the profile page, as shown in Listing 13.24. Note the use of if
@user.microposts.any? (a construction we saw before in Listing 7.21),
which makes sure that an empty list won’t be displayed when the user has no
microposts.

Listing 13.24: Adding microposts to the user show page.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<h1>

<%= gravatar_for @user %>

<%= @user.name %>

</h1>

</section>

</aside>

<div class="col-md-8">

<% if @user.microposts.any? %>

<h3>Microposts (<%= @user.microposts.count %>)</h3>

http://railscasts.com/episodes/23-counter-cache-column

726 CHAPTER 13. USER MICROPOSTS

Figure 13.5: The user profile page with code for microposts—but no microp-
osts.

<ol class="microposts">

<%= render @microposts %>

<%= will_paginate @microposts %>

<% end %>

</div>

</div>

At this point, we can get a look at our updated user profile page in Fig-
ure 13.5. It’s rather…disappointing. Of course, this is because there are not
currently any microposts. It’s time to change that.

13.2. SHOWING MICROPOSTS 727

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. As mentioned briefly in Section 7.3.3, helper methods like time_ago_-
in_words are available in the Rails console via the helper object. Us-
ing helper, apply time_ago_in_words to 3.weeks.ago and 6.-

months.ago.

2. What is the result of helper.time_ago_in_words(1.year.ago)?

3. What is the Ruby class for a page of microposts? Hint: Use the code in
Listing 13.23 as your model, and call the class method on paginate

with the argument page: nil.

13.2.2 Sample microposts
With all the work making templates for user microposts in Section 13.2.1, the
ending was rather anticlimactic. We can rectify this sad situation by adding
microposts to the seed data from Section 10.3.2.

Adding sample microposts for all the users actually takes a rather long time,
so first we’ll select just the first six users (i.e., the five users with custom Gra-
vatars, and one with the default Gravatar) using the take method:

User.order(:created_at).take(6)

The call to order ensures that we find the first six users that were created.
For each of the selected users, we’ll make 50 microposts (plenty to overflow

the pagination limit of 30). To generate sample content for each micropost,
we’ll use the Faker gem’s handy Lorem.sentence method.7 The result is

7Faker::Lorem.sentence returns lorem ipsum text; as noted in Chapter 6, lorem ipsum has a fascinating
back story.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://rubydoc.info/gems/faker/1.3.0/Faker/Lorem
http://www.straightdope.com/columns/read/2290/what-does-the-filler-text-lorem-ipsum-mean
http://www.straightdope.com/columns/read/2290/what-does-the-filler-text-lorem-ipsum-mean

728 CHAPTER 13. USER MICROPOSTS

the new seed data method shown in Listing 13.25. (The reason for the order
of the loops in Listing 13.25 is to intermix the microposts for use in the status
feed (Section 14.3). Looping over the users first gives feeds with big runs of
microposts from the same user, which is visually unappealing.)

Listing 13.25: Adding microposts to the sample data.
db/seeds.rb

.

.

.

Generate microposts for a subset of users.

users = User.order(:created_at).take(6)

50.times do

content = Faker::Lorem.sentence(word_count: 5)

users.each { |user| user.microposts.create!(content: content) }

end

At this point, we can reseed the development database as usual:

$ rails db:migrate:reset

$ rails db:seed

You should also quit and restart the Rails development server.
With that, we are in a position to enjoy the fruits of our Section 13.2.1 labors

by displaying information for each micropost.8 The preliminary results appear
in Figure 13.6.

The page shown in Figure 13.6 has no micropost-specific styling, so let’s
add some (Listing 13.26) and take a look at the resulting pages.9

Listing 13.26: The CSS for microposts (including all the CSS for this chap-
ter).
app/assets/stylesheets/custom.scss

8By design, the Faker gem’s lorem ipsum text is randomized, so the contents of your sample microposts will
differ.

9For convenience, Listing 13.26 actually has all the CSS needed for this chapter.

13.2. SHOWING MICROPOSTS 729

Figure 13.6: The user profile with unstyled microposts.

730 CHAPTER 13. USER MICROPOSTS

.

.

.

/* microposts */

.microposts {

list-style: none;

padding: 0;

li {

padding: 10px 0;

border-top: 1px solid #e8e8e8;

}

.user {

margin-top: 5em;

padding-top: 0;

}

.content {

display: block;

margin-left: 60px;

img {

display: block;

padding: 5px 0;

}

}

.timestamp {

color: $gray-light;

display: block;

margin-left: 60px;

}

.gravatar {

float: left;

margin-right: 10px;

margin-top: 5px;

}

}

aside {

textarea {

height: 100px;

margin-bottom: 5px;

}

}

span.image {

margin-top: 10px;

input {

border: 0;

}

}

Figure 13.7 shows the user profile page for the first user, while Figure 13.8

13.2. SHOWING MICROPOSTS 731

Figure 13.7: The user profile with microposts (/users/1).

shows the profile for a second user. Finally, Figure 13.9 shows the second page
of microposts for the first user, along with the pagination links at the bottom
of the display. In all three cases, observe that each micropost display indicates
the time since it was created (e.g., “Posted 1 minute ago.”); this is the work of
the time_ago_in_words method from Listing 13.22. If you wait a couple of
minutes and reload the pages, you’ll see how the text gets automatically updated
based on the new time.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

732 CHAPTER 13. USER MICROPOSTS

Figure 13.8: The profile of a different user, also with microposts (/users/5).

13.2. SHOWING MICROPOSTS 733

Figure 13.9: Micropost pagination links (/users/1?page=2).

734 CHAPTER 13. USER MICROPOSTS

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. See if you can guess the result of running (1..10).to_a.take(6).
Check at the console to see if your guess is right.

2. Is the to_a method in the previous exercise necessary?

3. Faker has a huge number of occasionally amusing applications. By con-
sulting the Faker documentation, learn how to print out a fake university
name, a fake phone number, a fake Hipster Ipsum sentence, and a fake
Chuck Norris fact.

13.2.3 Profile micropost tests
Because newly activated users get redirected to their profile pages, we already
have a test that the profile page renders correctly (Listing 11.33). In this sec-
tion, we’ll write a short integration test for some of the other elements on the
profile page, including the work from this section. We’ll start by generating an
integration test for the profiles of our site’s users:

$ rails generate integration_test users_profile

invoke test_unit

create test/integration/users_profile_test.rb

To test micropost pagination, we’ll also generate some additional micropost
fixtures using the same embedded Ruby technique we used to make additional
users in Listing 10.47:

<% 30.times do |n| %>

micropost_<%= n %>:

content: <%= Faker::Lorem.sentence(5) %>

created_at: <%= 42.days.ago %>

user: michael

<% end %>

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://github.com/stympy/faker
https://github.com/faker-ruby/faker/blob/master/doc/default/university.md
https://github.com/faker-ruby/faker/blob/master/doc/default/university.md
https://github.com/faker-ruby/faker/blob/master/doc/default/phone_number.md
https://github.com/faker-ruby/faker/blob/master/doc/default/hipster.md
https://github.com/faker-ruby/faker/blob/master/doc/default/chuck_norris.md

13.2. SHOWING MICROPOSTS 735

Adding this to the code from Listing 13.15 gives the updated micropost fixtures
in Listing 13.27.

Listing 13.27: Micropost fixtures with generated micropsts.
test/fixtures/microposts.yml

orange:

content: "I just ate an orange!"

created_at: <%= 10.minutes.ago %>

user: michael

tau_manifesto:

content: "Check out the @tauday site by @mhartl: https://tauday.com"

created_at: <%= 3.years.ago %>

user: michael

cat_video:

content: "Sad cats are sad: https://youtu.be/PKffm2uI4dk"

created_at: <%= 2.hours.ago %>

user: michael

most_recent:

content: "Writing a short test"

created_at: <%= Time.zone.now %>

user: michael

<% 30.times do |n| %>

micropost_<%= n %>:

content: <%= Faker::Lorem.sentence(word_count: 5) %>

created_at: <%= 42.days.ago %>

user: michael

<% end %>

With the test data thus prepared, the test itself is fairly straightforward: we
visit the user profile page and check for the page title and the user’s name,
Gravatar, micropost count, and paginated microposts. The result appears in
Listing 13.28. Note the use of the full_title helper from Listing 4.2 to test
the page’s title, which we gain access to by including the Application Helper
module into the test.10

10If you’d like to refactor other tests to use full_title (such as those in Listing 3.32), you should include the
Application Helper in test_helper.rb instead.

736 CHAPTER 13. USER MICROPOSTS

Listing 13.28: A test for the user profile. green
test/integration/users_profile_test.rb

require 'test_helper'

class UsersProfileTest < ActionDispatch::IntegrationTest

include ApplicationHelper

def setup

@user = users(:michael)

end

test "profile display" do

get user_path(@user)

assert_template 'users/show'

assert_select 'title', full_title(@user.name)

assert_select 'h1', text: @user.name

assert_select 'h1>img.gravatar'

assert_match @user.microposts.count.to_s, response.body

assert_select 'div.pagination'

@user.microposts.paginate(page: 1).each do |micropost|

assert_match micropost.content, response.body

end

end

end

The micropost count assertion in Listing 13.28 uses response.body, which
we saw briefly in the Chapter 12 exercises (Section 12.3.3). Despite its name,
response.body contains the full HTML source of the page (and not just the
page’s body). This means that if all we care about is that the number of micro-
posts appears somewhere on the page, we can look for a match as follows:

assert_match @user.microposts.count.to_s, response.body

This is a much less specific assertion than assert_select; in particular, un-
like assert_select, using assert_match in this context doesn’t require us
to indicate which HTML tag we’re looking for.

Listing 13.28 also introduces the nesting syntax for assert_select:

13.3. MANIPULATING MICROPOSTS 737

assert_select 'h1>img.gravatar'

This checks for an img tag with class gravatar inside a top-level heading tag
(h1).

Because the application code was working, the test suite should be green:

Listing 13.29: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Comment out the application code needed to change the two 'h1' lines
in Listing 13.28 from green to red.

2. Update Listing 13.28 to test that will_paginate appears only once.
Hint: Refer to Table 5.2.

13.3 Manipulating microposts
Having finished both the data modeling and display templates for microposts,
we now turn our attention to the interface for creating them through the web.
In this section, we’ll also see the first hint of a status feed—a notion brought
to full fruition in Chapter 14. Finally, as with users, we’ll make it possible to
destroy microposts through the web.

There is one break with past convention worth noting: the interface to the
Microposts resource will run principally through the Profile and Home pages,
so we won’t need actions like new or edit in the Microposts controller; we’ll
need only create and destroy. This leads to the routes for the Microposts

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

