
830 CHAPTER 14. FOLLOWING USERS

14.2 A web interface for following users
Section 14.1 placed some rather heavy demands on our data modeling skills, and
it’s fine if it takes a while to soak in. In fact, one of the best ways to understand
the associations is to use them in the web interface.

In the introduction to this chapter, we saw a preview of the page flow for
user following. In this section, we will implement the basic interface and fol-
lowing/unfollowing functionality shown in those mockups. We will also make
separate pages to show the user following and followers arrays. In Section 14.3,
we’ll complete our sample application by adding the user’s status feed.

14.2.1 Sample following data
As in previous chapters, we will find it convenient to use rails db:seed to
fill the database with sample relationships. This will allow us to design the look
and feel of the web pages first, deferring the back-end functionality until later
in this section.

Code to seed the following relationships appears in Listing 14.14. Here we
somewhat arbitrarily arrange for the first user to follow users 3 through 51, and
then have users 4 through 41 follow that user back. The resulting relationships
will be sufficient for developing the application interface.

Listing 14.14: Adding following/follower relationships to the sample data.
db/seeds.rb

# Users

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password_confirmation: "foobar",

admin: true,

activated: true,

activated_at: Time.zone.now)

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,



14.2. A WEB INTERFACE FOR FOLLOWING USERS 831

email: email,

password: password,

password_confirmation: password,

activated: true,

activated_at: Time.zone.now)

end

# Microposts

users = User.order(:created_at).take(6)

50.times do

content = Faker::Lorem.sentence(5)

users.each { |user| user.microposts.create!(content: content) }

end

# Create following relationships.

users = User.all

user = users.first

following = users[2..50]

followers = users[3..40]

following.each { |followed| user.follow(followed) }

followers.each { |follower| follower.follow(user) }

To execute the code in Listing 14.14, we reset and reseed the database as
usual:

$ rails db:migrate:reset

$ rails db:seed

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the console, confirm that User.first.followers.count

matches the value expected from Listing 14.14.

2. Confirm that User.first.following.count is correct as well.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


832 CHAPTER 14. FOLLOWING USERS

Figure 14.10: A mockup of the stats partial.

14.2.2 Stats and a follow form
Now that our sample users have both followed users and followers, we need to
update the profile page and Home page to reflect this. We’ll start by making a
partial to display the following and follower statistics on the profile and home
pages. We’ll next add a follow/unfollow form, and then make dedicated pages
for showing “following” (followed users) and “followers”.

As noted in Section 14.1.1, we’ll adopt Twitter’s convention of using “fol-
lowing” as a label for followed users, as in “50 following”. This usage is re-
flected in the mockup sequence starting in Figure 14.1 and shown in close-up
in Figure 14.10.

The stats in Figure 14.10 consist of the number of users the current user
is following and the number of followers, each of which should be a link to its
respective dedicated display page. In Chapter 5, we stubbed out such links with
the dummy text '#', but that was before we had much experience with routes.
This time, although we’ll defer the actual pages to Section 14.2.3, we’ll make
the routes now, as seen in Listing 14.15. This code uses the :member method
inside a resources block, which we haven’t seen before, but see if you can
guess what it does.

Listing 14.15: Adding following and followers actions to the Users con-
troller.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'



14.2. A WEB INTERFACE FOR FOLLOWING USERS 833

get '/login', to: 'sessions#new'

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users do

member do

get :following, :followers

end

end

resources :account_activations, only: [:edit]

resources :password_resets, only: [:new, :create, :edit, :update]

resources :microposts, only: [:create, :destroy]

end

You might suspect that the URLs for following and followers will look like
/users/1/following and /users/1/followers, and that is exactly what the code in
Listing 14.15 arranges. Since both pages will be showing data, the proper HTTP
verb is a GET request, so we use the get method to arrange for the URLs to
respond appropriately. Meanwhile, the member method arranges for the routes
to respond to URLs containing the user id. The other possibility, collection,
works without the id, so that

resources :users do

collection do

get :tigers

end

end

would respond to the URL /users/tigers (presumably to display all the tigers in
our application).8

A table of the routes generated by Listing 14.15 appears in Table 14.2. Note
the named routes for the followed user and followers pages, which we’ll put to
use shortly.

With the routes defined, we are now in a position to define the stats partial,
which involves a couple of links inside a div, as shown in Listing 14.16.

8For more details on such routing options, see the Rails Guides article on “Rails Routing from the Outside In”.

https://guides.rubyonrails.org/routing.html


834 CHAPTER 14. FOLLOWING USERS

HTTP request URL Action Named route
GET /users/1/following following following_user_path(1)

GET /users/1/followers followers followers_user_path(1)

Table 14.2: RESTful routes provided by the custom rules in resource in List-
ing 14.15.

Listing 14.16: A partial for displaying follower stats.
app/views/shared/_stats.html.erb

<% @user ||= current_user %>

<div class="stats">

<a href="<%= following_user_path(@user) %>">

<strong id="following" class="stat">

<%= @user.following.count %>

</strong>

following

</a>

<a href="<%= followers_user_path(@user) %>">

<strong id="followers" class="stat">

<%= @user.followers.count %>

</strong>

followers

</a>

</div>

Since we will be including the stats on both the user show pages and the
home page, the first line of Listing 14.16 picks the right one using

<% @user ||= current_user %>

As discussed in Box 8.1, this does nothing when @user is not nil (as on a
profile page), but when it is (as on the Home page) it sets @user to the current
user. Note also that the following/follower counts are calculated through the
associations using



14.2. A WEB INTERFACE FOR FOLLOWING USERS 835

@user.following.count

and

@user.followers.count

Compare these to the microposts count from Listing 13.24, where we wrote

@user.microposts.count

to count the microposts. As in that case, Rails calculates the count directly in
the database for efficiency.

One final detail worth noting is the presence of CSS ids on some elements,
as in

<strong id="following" class="stat">

...

</strong>

This is for the benefit of the Ajax implementation in Section 14.2.5, which ac-
cesses elements on the page using their unique ids.

With the partial in hand, including the stats on the Home page is easy, as
shown in Listing 14.17.

Listing 14.17: Adding follower stats to the Home page.
app/views/static_pages/home.html.erb

<% if logged_in? %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<%= render 'shared/user_info' %>

</section>

<section class="stats">

<%= render 'shared/stats' %>



836 CHAPTER 14. FOLLOWING USERS

</section>

<section class="micropost_form">

<%= render 'shared/micropost_form' %>

</section>

</aside>

<div class="col-md-8">

<h3>Micropost Feed</h3>

<%= render 'shared/feed' %>

</div>

</div>

<% else %>

.

.

.

<% end %>

To style the stats, we’ll add some SCSS, as shown in Listing 14.18 (which
contains all the stylesheet code needed in this chapter). The resulting Home
page appears in Figure 14.11.

Listing 14.18: SCSS for the Home page sidebar.
app/assets/stylesheets/custom.scss

.

.

.

/* sidebar */

.

.

.

.gravatar {

float: left;

margin-right: 10px;

}

.gravatar_edit {

margin-top: 15px;

}

.stats {

overflow: auto;

margin-top: 0;

padding: 0;

a {

float: left;

padding: 0 10px;

border-left: 1px solid $gray-lighter;



14.2. A WEB INTERFACE FOR FOLLOWING USERS 837

color: gray;

&:first-child {

padding-left: 0;

border: 0;

}

&:hover {

text-decoration: none;

color: blue;

}

}

strong {

display: block;

}

}

.user_avatars {

overflow: auto;

margin-top: 10px;

.gravatar {

margin: 1px 1px;

}

a {

padding: 0;

}

}

.users.follow {

padding: 0;

}

/* forms */

.

.

.

We’ll render the stats partial on the profile page in a moment, but first let’s
make a partial for the follow/unfollow button, as shown in Listing 14.19.

Listing 14.19: A partial for a follow/unfollow form.
app/views/users/_follow_form.html.erb

<% unless current_user?(@user) %>

<div id="follow_form">

<% if current_user.following?(@user) %>

<%= render 'unfollow' %>

<% else %>

<%= render 'follow' %>



838 CHAPTER 14. FOLLOWING USERS

Figure 14.11: The Home page with follow stats.



14.2. A WEB INTERFACE FOR FOLLOWING USERS 839

<% end %>

</div>

<% end %>

This does nothing but defer the real work to follow and unfollow partials,
which need new routes for the Relationships resource, which follows the Mi-
croposts resource example (Listing 13.30), as seen in Listing 14.20.

Listing 14.20: Adding the routes for user relationships.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get 'help' => 'static_pages#help'

get 'about' => 'static_pages#about'

get 'contact' => 'static_pages#contact'

get 'signup' => 'users#new'

get 'login' => 'sessions#new'

post 'login' => 'sessions#create'

delete 'logout' => 'sessions#destroy'

resources :users do

member do

get :following, :followers

end

end

resources :account_activations, only: [:edit]

resources :password_resets, only: [:new, :create, :edit, :update]

resources :microposts, only: [:create, :destroy]

resources :relationships, only: [:create, :destroy]

end

The follow/unfollow partials themselves are shown in Listing 14.21 and List-
ing 14.22.

Listing 14.21: A form for following a user.
app/views/users/_follow.html.erb

<%= form_with(model: current_user.active_relationships.build, local: true) do |f| %>

<div><%= hidden_field_tag :followed_id, @user.id %></div>

<%= f.submit "Follow", class: "btn btn-primary" %>

<% end %>



840 CHAPTER 14. FOLLOWING USERS

Listing 14.22: A form for unfollowing a user.
app/views/users/_unfollow.html.erb

<%= form_with(model: current_user.active_relationships.find_by(followed_id: @user.id),

html: { method: :delete }, local: true) do |f| %>

<%= f.submit "Unfollow", class: "btn" %>

<% end %>

These two forms both use form_with to manipulate a Relationship model
object; the main difference between the two is that Listing 14.21 builds a new
relationship, whereas Listing 14.22 finds the existing relationship. Naturally,
the former sends a POST request to the Relationships controller to create a
relationship, while the latter sends a DELETE request to destroy a relation-
ship. (We’ll write these actions in Section 14.2.4.) Finally, you’ll note that the
follow form doesn’t have any content other than the button, but it still needs to
send the followed_id to the controller. We accomplish this with the hid-

den_field_tag method in Listing 14.21, which produces HTML of the form

<input id="followed_id" name="followed_id" type="hidden" value="3" />

As we saw in Section 12.3 (Listing 12.14), the hidden input tag puts the rele-
vant information on the page without displaying it in the browser.

We can now include the follow form and the following statistics on the user
profile page simply by rendering the partials, as shown in Listing 14.23. Pro-
files with follow and unfollow buttons, respectively, appear in Figure 14.12 and
Figure 14.13.

Listing 14.23: Adding the follow form and follower stats to the user profile
page.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<div class="row">

<aside class="col-md-4">

<section>

<h1>



14.2. A WEB INTERFACE FOR FOLLOWING USERS 841

<%= gravatar_for @user %>

<%= @user.name %>

</h1>

</section>

<section class="stats">

<%= render 'shared/stats' %>

</section>

</aside>

<div class="col-md-8">

<%= render 'follow_form' if logged_in? %>

<% if @user.microposts.any? %>

<h3>Microposts (<%= @user.microposts.count %>)</h3>

<ol class="microposts">

<%= render @microposts %>

</ol>

<%= will_paginate @microposts %>

<% end %>

</div>

</div>

We’ll get these buttons working soon enough—in fact, we’ll do it two ways,
the standard way (Section 14.2.4) and using Ajax (Section 14.2.5)—but first
we’ll finish the HTML interface by making the following and followers pages.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that /users/2 has a follow form and that /users/5 has an unfollow
form. Is there a follow form on /users/1?

2. Confirm in the browser that the stats appear correctly on the Home page
and on the profile page.

3. Write tests for the stats on the Home page. Hint: Add to the test in List-
ing 13.28. Why don’t we also have to test the stats on the profile page?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


842 CHAPTER 14. FOLLOWING USERS

Figure 14.12: A user profile with a follow button (/users/2).



14.2. A WEB INTERFACE FOR FOLLOWING USERS 843

Figure 14.13: A user profile with an unfollow button (/users/5).



844 CHAPTER 14. FOLLOWING USERS

14.2.3 Following and followers pages
Pages to display followed users and followers will resemble a hybrid of the
user profile page and the user index page (Section 10.3.1), with a sidebar of
user information (including the following stats) and a list of users. In addi-
tion, we’ll include a raster of smaller user profile image links in the sidebar.
Mockups matching these requirements appear in Figure 14.14 (following) and
Figure 14.15 (followers).

Our first step is to get the following and followers links to work. We’ll
follow Twitter’s lead and have both pages require user login. As with most
previous examples of access control, we’ll write the tests first, as shown in
Listing 14.24. Note that Listing 14.24 uses the named routes from Table 14.2.

Listing 14.24: Tests for the authorization of the following and followers
pages. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

.

.

.

test "should redirect following when not logged in" do

get following_user_path(@user)

assert_redirected_to login_url

end

test "should redirect followers when not logged in" do

get followers_user_path(@user)

assert_redirected_to login_url

end

end

The only tricky part of the implementation is realizing that we need to add
two new actions to the Users controller. Based on the routes defined in List-
ing 14.15, we need to call them following and followers. Each action



14.2. A WEB INTERFACE FOR FOLLOWING USERS 845

Figure 14.14: A mockup of the user following page.



846 CHAPTER 14. FOLLOWING USERS

Figure 14.15: A mockup of the user followers page.



14.2. A WEB INTERFACE FOR FOLLOWING USERS 847

needs to set a title, find the user, retrieve either @user.following

or @user.followers (in paginated form), and then render the page. The re-
sult appears in Listing 14.25.

Listing 14.25: The following and followers actions. red
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update, :destroy,

:following, :followers]

.

.

.

def following

@title = "Following"

@user = User.find(params[:id])

@users = @user.following.paginate(page: params[:page])

render 'show_follow'

end

def followers

@title = "Followers"

@user = User.find(params[:id])

@users = @user.followers.paginate(page: params[:page])

render 'show_follow'

end

private

.

.

.

end

As we’ve seen throughout this tutorial, the usual Rails convention is to implic-
itly render the template corresponding to an action, such as rendering show.-

html.erb at the end of the show action. In contrast, both actions in List-
ing 14.25 make an explicit call to render, in this case rendering a view called
show_follow, which we must create. The reason for the common view is that
the ERb is nearly identical for the two cases, and Listing 14.26 covers them
both.



848 CHAPTER 14. FOLLOWING USERS

Listing 14.26: The show_follow view used to render following and follow-
ers. green
app/views/users/show_follow.html.erb

<% provide(:title, @title) %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<%= gravatar_for @user %>

<h1><%= @user.name %></h1>

<span><%= link_to "view my profile", @user %></span>

<span><b>Microposts:</b> <%= @user.microposts.count %></span>

</section>

<section class="stats">

<%= render 'shared/stats' %>

<% if @users.any? %>

<div class="user_avatars">

<% @users.each do |user| %>

<%= link_to gravatar_for(user, size: 30), user %>

<% end %>

</div>

<% end %>

</section>

</aside>

<div class="col-md-8">

<h3><%= @title %></h3>

<% if @users.any? %>

<ul class="users follow">

<%= render @users %>

</ul>

<%= will_paginate %>

<% end %>

</div>

</div>

The actions in Listing 14.25 render the view from Listing 14.26 in two con-
texts, “following” and “followers”, with the results shown in Figure 14.16 and
Figure 14.17. Note that nothing in the above code uses the current user, so the
same links work for other users, as shown in Figure 14.18.

At this point, the tests in Listing 14.24 should be green due to the before
filter in Listing 14.25:



14.2. A WEB INTERFACE FOR FOLLOWING USERS 849

Figure 14.16: Showing the users the given user is following.



850 CHAPTER 14. FOLLOWING USERS

Figure 14.17: Showing the given user’s followers.



14.2. A WEB INTERFACE FOR FOLLOWING USERS 851

Figure 14.18: Showing a different user’s followers.



852 CHAPTER 14. FOLLOWING USERS

Listing 14.27: green
$ rails test

To test the show_follow rendering, we’ll write a couple of short integra-
tion tests that verify the presence of working following and followers pages.
They are designed to be a reality check, not to be comprehensive; indeed, as
noted in Section 5.3.4, comprehensive tests of things like HTML structure are
likely to be brittle and thus counter-productive. Our plan in the case of follow-
ing/followers pages is to check the number is correctly displayed and that links
with the right URLs appear on the page.

To get started, we’ll generate an integration test as usual:

$ rails generate integration_test following

invoke test_unit

create test/integration/following_test.rb

Next, we need to assemble some test data, which we can do by adding some
relationships fixtures to create following/follower relationships. Recall from
Section 13.2.3 that we can use code like

orange:

content: "I just ate an orange!"

created_at: <%= 10.minutes.ago %>

user: michael

to associate a micropost with a given user. In particular, we can write

user: michael

instead of



14.2. A WEB INTERFACE FOR FOLLOWING USERS 853

user_id: 1

Applying this idea to the relationships fixtures gives the associations in List-
ing 14.28.

Listing 14.28: Relationships fixtures for use in following/follower tests.
test/fixtures/relationships.yml

one:

follower: michael

followed: lana

two:

follower: michael

followed: malory

three:

follower: lana

followed: michael

four:

follower: archer

followed: michael

The fixtures in Listing 14.28 first arrange for Michael to follow Lana and
Malory, and then arrange for Michael to be followed by Lana and Archer. To
test for the right count, we can use the same assert_match method we used
in Listing 13.28 to test for the display of the number of microposts on the user
profile page. Adding in assertions for the right links yields the tests shown in
Listing 14.29.

Listing 14.29: Tests for following/follower pages. green
test/integration/following_test.rb

require 'test_helper'

class FollowingTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)



854 CHAPTER 14. FOLLOWING USERS

log_in_as(@user)

end

test "following page" do

get following_user_path(@user)

assert_not @user.following.empty?

assert_match @user.following.count.to_s, response.body

@user.following.each do |user|

assert_select "a[href=?]", user_path(user)

end

end

test "followers page" do

get followers_user_path(@user)

assert_not @user.followers.empty?

assert_match @user.followers.count.to_s, response.body

@user.followers.each do |user|

assert_select "a[href=?]", user_path(user)

end

end

end

In Listing 14.29, note that we include the assertion

assert_not @user.following.empty?

which is included to make sure that

@user.following.each do |user|

assert_select "a[href=?]", user_path(user)

end

isn’t vacuously true (and similarly for followers). In other words, if @us-
er.following.empty? were true, not a single assert_select would ex-
ecute in the loop, leading the tests to pass and thereby give us a false sense of
security.

The test suite should now be green:

https://en.wikipedia.org/wiki/Vacuous_truth


14.2. A WEB INTERFACE FOR FOLLOWING USERS 855

Listing 14.30: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify in a browser that /users/1/followers and /users/1/following work.
Do the image links in the sidebar work as well?

2. Comment out the application code needed to turn the assert_select
tests in Listing 14.29 red to confirm they’re testing the right thing.

14.2.4 A working follow button the standard way
Now that our views are in order, it’s time to get the follow/unfollow buttons
working. Because following and unfollowing involve creating and destroying
relationships, we need a Relationships controller, which we generate as usual

$ rails generate controller Relationships

As we’ll see in Listing 14.32, enforcing access control on the Relationships
controller actions won’t much matter, but we’ll still follow our previous practice
of enforcing the security model as early as possible. In particular, we’ll check
that attempts to access actions in the Relationships controller require a logged-
in user (and thus get redirected to the login page), while also not changing the
Relationship count, as shown in Listing 14.31.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


856 CHAPTER 14. FOLLOWING USERS

Listing 14.31: Basic access control tests for relationships. red
test/controllers/relationships_controller_test.rb

require 'test_helper'

class RelationshipsControllerTest < ActionDispatch::IntegrationTest

test "create should require logged-in user" do

assert_no_difference 'Relationship.count' do

post relationships_path

end

assert_redirected_to login_url

end

test "destroy should require logged-in user" do

assert_no_difference 'Relationship.count' do

delete relationship_path(relationships(:one))

end

assert_redirected_to login_url

end

end

We can get the tests in Listing 14.31 to pass by adding the logged_in_user
before filter (Listing 14.32).

Listing 14.32: Access control for relationships. green
app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController

before_action :logged_in_user

def create

end

def destroy

end

end

To get the follow and unfollow buttons to work, all we need to do is find the
user associated with the followed_id in the corresponding form (i.e., List-
ing 14.21 or Listing 14.22), and then use the appropriate follow or unfollow
method from Listing 14.10. The full implementation appears in Listing 14.33.



14.2. A WEB INTERFACE FOR FOLLOWING USERS 857

Listing 14.33: The Relationships controller. green
app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController

before_action :logged_in_user

def create

user = User.find(params[:followed_id])

current_user.follow(user)

redirect_to user

end

def destroy

user = Relationship.find(params[:id]).followed

current_user.unfollow(user)

redirect_to user

end

end

We can see from Listing 14.33 why the security issue mentioned above is minor:
if an unlogged-in user were to hit either action directly (e.g., using a command-
line tool like curl), current_user would be nil, and in both cases the ac-
tion’s second line would raise an exception, resulting in an error but no harm to
the application or its data. It’s best not to rely on that, though, so we’ve taken
the extra step and added an additional layer of security.

With that, the core follow/unfollow functionality is complete, and any user
can follow or unfollow any other user, as you can verify by clicking the corre-
sponding buttons in your browser. (We’ll write integration tests to verify this
behavior in Section 14.2.6.) The result of following user #2 is shown in Fig-
ure 14.19 and Figure 14.20.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Follow and unfollow /users/2 through the web. Did it work?

2. According to the server log, which templates are rendered in each case?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


858 CHAPTER 14. FOLLOWING USERS

Figure 14.19: An unfollowed user.



14.2. A WEB INTERFACE FOR FOLLOWING USERS 859

Figure 14.20: The result of following an unfollowed user.



860 CHAPTER 14. FOLLOWING USERS

14.2.5 A working follow button with Ajax
Although our user following implementation is complete as it stands, we have
one bit of polish left to add before starting work on the status feed. You may
have noticed in Section 14.2.4 that both the create and destroy actions in
the Relationships controller simply redirect back to the original profile. In other
words, a user starts on another user’s profile page, follows the other user, and
is immediately redirected back to the original page. It is reasonable to ask why
the user needs to leave that page at all.

This is exactly the problem solved by Ajax, which allows web pages to
send requests asynchronously to the server without leaving the page.9 Because
adding Ajax to web forms is a common practice, Rails makes Ajax easy to
implement. Indeed, updating the follow/unfollow form partials is trivial: just
change

form_with(model: ..., local: true)

to

form_with(model: ..., remote: true)

and Rails automagically uses Ajax.10 The updated partials appear in Listing
14.34 and Listing 14.35.

Listing 14.34: A form for following a user using Ajax.
app/views/users/_follow.html.erb

<%= form_with(model: current_user.active_relationships.build, remote: true) do |f| %>

<div><%= hidden_field_tag :followed_id, @user.id %></div>

<%= f.submit "Follow", class: "btn btn-primary" %>

<% end %>

9Because it is nominally an acronym for asynchronous JavaScript and XML, Ajax is sometimes misspelled
“AJAX”, even though the original Ajax article spells it as “Ajax” throughout.

10In fact, the default behavior for form_with is to make remote submissions, but at least when starting out I
prefer to be explicit.

http://catb.org/jargon/html/A/automagically.html
http://www.adaptivepath.org/ideas/ajax-new-approach-web-applications/


14.2. A WEB INTERFACE FOR FOLLOWING USERS 861

Listing 14.35: A form for unfollowing a user using Ajax.
app/views/users/_unfollow.html.erb

<%= form_with(model: current_user.active_relationships.find_by(followed_id: @user.id),

html: { method: :delete }, remote: true) do |f| %>

<%= f.submit "Unfollow", class: "btn" %>

<% end %>

The actual HTML generated by this ERb isn’t particularly relevant, but you
might be curious, so here’s a peek at a schematic view (details may differ):

<form action="/relationships/117" class="edit_relationship" data-remote="true"

id="edit_relationship_117" method="post">

.

.

.

</form>

This sets the variable data-remote="true" inside the form tag, which tells
Rails to allow the form to be handled by JavaScript. By using a simple HTML
property instead of inserting the full JavaScript code (as in previous versions of
Rails), Rails follows the philosophy of unobtrusive JavaScript.

Having updated the form, we now need to arrange for the Relationships
controller to respond to Ajax requests. We can do this using the respond_to
method, responding appropriately depending on the type of request. The gen-
eral pattern looks like this:

respond_to do |format|

format.html { redirect_to user }

format.js

end

The syntax is potentially confusing, and it’s important to understand that in the
code above only one of the lines gets executed. (In this sense, respond_to is
more like an if-then-else statement than a series of sequential lines.) Adapting
the Relationships controller to respond to Ajax involves adding respond_to

as above to the create and destroy actions from Listing 14.33. The result

http://railscasts.com/episodes/205-unobtrusive-javascript


862 CHAPTER 14. FOLLOWING USERS

appears as in Listing 14.36. Note the change from the local variable user to
the instance variable @user; in Listing 14.33 there was no need for an instance
variable, but now such a variable is necessary for use in Listing 14.34 and List-
ing 14.35.

Listing 14.36: Responding to Ajax requests in the Relationships controller.
app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController

before_action :logged_in_user

def create

@user = User.find(params[:followed_id])

current_user.follow(@user)

respond_to do |format|

format.html { redirect_to @user }

format.js

end

end

def destroy

@user = Relationship.find(params[:id]).followed

current_user.unfollow(@user)

respond_to do |format|

format.html { redirect_to @user }

format.js

end

end

end

The actions in Listing 14.36 degrade gracefully, which means that they work
fine in browsers that have JavaScript disabled (although a small amount of con-
figuration is necessary, as shown in Listing 14.37).

Listing 14.37: Configuration needed for graceful degradation of form sub-
mission.
config/application.rb

require_relative 'boot'

.

.

.

module SampleApp



14.2. A WEB INTERFACE FOR FOLLOWING USERS 863

class Application < Rails::Application

.

.

.

# Include the authenticity token in remote forms.

config.action_view.embed_authenticity_token_in_remote_forms = true

end

end

On the other hand, we have yet to respond properly when JavaScript is enabled.
In the case of an Ajax request, Rails automatically calls a JavaScript embedded
Ruby (.js.erb) file with the same name as the action, i.e., create.js.erb or
destroy.js.erb. As you might guess, such files allow us to mix JavaScript
and embedded Ruby to perform actions on the current page. It is these files that
we need to create and edit in order to update the user profile page upon being
followed or unfollowed.

Inside a JS-ERb file, Rails automatically provides the jQuery JavaScript
helpers to manipulate the page using the Document Object Model (DOM). The
jQuery library (which we saw briefly in Section 13.4.2) provides a large number
of methods for manipulating the DOM, but here we will need only two. First,
we will need to know about the dollar-sign syntax to access a DOM element
based on its unique CSS id. For example, to manipulate the follow_form

element, we will use the syntax

$("#follow_form")

(Recall from Listing 14.19 that this is a div that wraps the form, not the form
itself.) This syntax, inspired by CSS, uses the # symbol to indicate a CSS id.
As you might guess, jQuery, like CSS, uses a dot . to manipulate CSS classes.

The second method we’ll need is html, which updates the HTML inside
the relevant element with the contents of its argument. For example, to replace
the entire follow form with the string "foobar", we would write

$("#follow_form").html("foobar")

http://jquery.com/
http://www.w3.org/DOM/


864 CHAPTER 14. FOLLOWING USERS

Unlike plain JavaScript files, JS-ERb files also allow the use of embedded
Ruby, which we apply in the create.js.erb file to update the follow form
with the unfollow partial (which is what should show after a successful fol-
lowing) and update the follower count. The result is shown in Listing 14.38.
This uses the escape_javascript method, which is needed to escape out the
result when inserting HTML in a JavaScript file.

Listing 14.38: The JavaScript embedded Ruby to create a following relation-
ship.
app/views/relationships/create.js.erb

$("#follow_form").html("<%= escape_javascript(render('users/unfollow')) %>");

$("#followers").html('<%= @user.followers.count %>');

Note the presence of line-ending semicolons, which are characteristic of lan-
guages with syntax descended from ALGOL.

The destroy.js.erb file is analogous (Listing 14.39).

Listing 14.39: The Ruby JavaScript (RJS) to destroy a following relationship.
app/views/relationships/destroy.js.erb

$("#follow_form").html("<%= escape_javascript(render('users/follow')) %>");

$("#followers").html('<%= @user.followers.count %>');

With that, you should navigate to a user profile page and verify that you can
follow and unfollow without a page refresh.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Unfollow and refollow /users/2 through the web. Did it work?

2. According to the server log, which templates are rendered in each case?

https://en.wikipedia.org/wiki/ALGOL
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access


14.2. A WEB INTERFACE FOR FOLLOWING USERS 865

14.2.6 Following tests
Now that the follow buttons are working, we’ll write some simple tests to pre-
vent regressions. To follow a user, we post to the relationships path and verify
that the number of followed users increases by 1:

assert_difference '@user.following.count', 1 do

post relationships_path, params: { followed_id: @other.id }

end

This tests the standard implementation, but testing the Ajax version is almost
exactly the same; the only difference is the addition of the option xhr: true:

assert_difference '@user.following.count', 1 do

post relationships_path, params: { followed_id: @other.id }, xhr: true

end

Here xhr stands for XmlHttpRequest; setting the xhr option to true issues an
Ajax request in the test, which causes the respond_to block in Listing 14.36
to execute the proper JavaScript method.

The same parallel structure applies to deleting users, with delete instead of
post. Here we check that the followed user count goes down by 1 and include
the relationship and followed user’s id:

assert_difference '@user.following.count', -1 do

delete relationship_path(relationship)

end

and

assert_difference '@user.following.count', -1 do

delete relationship_path(relationship), xhr: true

end

Putting the two cases together gives the tests in Listing 14.40.



866 CHAPTER 14. FOLLOWING USERS

Listing 14.40: Tests for the follow and unfollow buttons. green
test/integration/following_test.rb

require 'test_helper'

class FollowingTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other = users(:archer)

log_in_as(@user)

end

.

.

.

test "should follow a user the standard way" do

assert_difference '@user.following.count', 1 do

post relationships_path, params: { followed_id: @other.id }

end

end

test "should follow a user with Ajax" do

assert_difference '@user.following.count', 1 do

post relationships_path, xhr: true, params: { followed_id: @other.id }

end

end

test "should unfollow a user the standard way" do

@user.follow(@other)

relationship = @user.active_relationships.find_by(followed_id: @other.id)

assert_difference '@user.following.count', -1 do

delete relationship_path(relationship)

end

end

test "should unfollow a user with Ajax" do

@user.follow(@other)

relationship = @user.active_relationships.find_by(followed_id: @other.id)

assert_difference '@user.following.count', -1 do

delete relationship_path(relationship), xhr: true

end

end

end

At this point, the tests should be green:



14.3. THE STATUS FEED 867

Listing 14.41: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By commenting and uncommenting each of the lines in the respond_to
blocks (Listing 14.36), verify that the tests are testing the right things.
Which test fails in each case?

2. What happens if you delete one of the occurrences of xhr: true in List-
ing 14.40? Explain why this is a problem, and why the procedure in the
previous exercise would catch it.

14.3 The status feed
We come now to the pinnacle of our sample application: the status feed of
microposts. Appropriately, this section contains some of the most advanced
material in the entire tutorial. The full status feed builds on the proto-feed from
Section 13.3.3 by assembling an array of the microposts from the users being
followed by the current user, along with the current user’s own microposts.
Throughout this section, we’ll proceed through a series of feed implementa-
tions of increasing sophistication. To accomplish this, we will need some fairly
advanced Rails, Ruby, and even SQL programming techniques.

Because of the heavy lifting ahead, it’s especially important to review where
we’re going. A recap of the final status feed, shown in Figure 14.5, appears
again in Figure 14.21.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

